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1. Introduction 
The “virtualization” process of the reality is unavoidable and cannot be arrested since it 
goes deeply towards the process of dematerialization initiate with the post-industrialization 
era. Formerly, in fact, the power and the richness were in the hands of people with large 
amounts of goods or lands, but nowadays are in the hands of people who sell intangible 
applications (software and firmware) or goods with poor material but highly rich contents 
(notebooks, mobile phones, ipods,..) or even only no matter services (telecom, web, 
educational,.. companies). 
Hence the “virtualization” is more and more becoming a so powerful tool that can have the 
capability to reproduce, augment and even overcome “reality”. 
In this view the “virtuality”, joined to the know-how, is the successful key for new 
fundamental achievement in really many fields, but some in particular deserve special 
attention, i.e. the health-focused disciplines, so important because there are highly 
concentrated the monetary, political and social interests. In this context our aim is to furnish 
an overview on how nowadays the virtuality supports reality for e-health applications. 

2. Virtuality reproduces, augments and overcomes reality 
Even if the term “virtual” was born for unreal things, over the time it tends to be more and 
more used in reference to things that mimic their “real” equivalents, especially via pc 
applications. So we know of virtual library, virtual earth, virtual work, virtual museum, 
virtual tour, and so on. 
We can refer the “real” mimed by the “virtual” as a “virtualization” process, which has now 
also the aim to enrich, enhance and, in some way, boost the possibilities offered by the 
“restricted” real world. 
Limiting, for the moment, out attention to the mere aspect of reproduction of the reality, the 
“virtuality” expresses a virtual vision of the real world. Nowadays this process can be 
produced by interesting 3D techniques such as stereoscopy and holography. 
Actually the stereoscopy was invented in the remote 1832 by Charles Wheathstone, but did 
not present any practical application till now. This technique exploits the human binocular 
vision to place virtual objects in a 3D space. An example is reproduced in Fig. 1 where users 
with special glasses have the impression of seeing “floating” planets in the room. The 
application in Fig. 1 has been developed by our collaborators of the PFM Multimedia 
Company (www.pfmmultimedia.it). 
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Fig. 1. Users donning special glasses see “floating” planets in the room (Courtesy by PFM 
Multimedia Company) 

The holography was theorized for the first time in 1947 by Dennis Gabor and the first 
practical applications were possible only few years later by the adoption of the laser 
technology. One of the latest holography technique has been applied and can be appreciated 
in the site of Pompei  (Naples, Italy) where in the ancient house of Polibio an hologram 
illustrates to the visitors the characteristics of the domus (see Fig. 2). This is a new technique 
indeed, being based on ultrasonic transducers which diffuse micro-particles of air mixed 
with nebulized water, as a support to the projection of the images. Again, this application 
has been developed by our collaborators of the PFM Multimedia Company. 
 

 
Fig. 2. A 3D holographic virtualization of Polibio in his domus in Pompei (Courtesy by PFM 
Multimedia Company) 

The reported examples deal not only with the possibility to reproduce reality in a virtual 
world, but also demonstrate how virtuality “augments” reality, giving visibility to ancient 
no more existing world. 
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Among all the virtual pc applications, which “copy” the reality, one of the most interesting 
is more and more becoming the avatar reproduction of measured real human postures, 
possible thanks to the current availability of suitable sensors and electronic stuff. 
In this view, we can refer to mere shoots of postures by cameras or webcams which can 
“see” the reality from a multi-point-of-view, but one at time. An example of this is 
represented by the known gait analysis system, which consists in the systematic study of 
human/animal locomotion, augmented by instrumentation for measuring body 
movements, but mainly by means of multiple cameras view. 
 

 
Fig. 3. A schematization of the camera based gait analysis system 
But actually here we want to consider the new, more interesting and innovative, wearable 
sensorized systems which can accurately measure all the angles of human joints, pointing 
out finger, wrist, pelvis, neck, knee,.. movements, and spatial positions of arms, trunk, head, 
legs,.. The “wearability” of these new systems allow the advantage of unnecessity of a 
prepared scenario and have the capability to quantitatively measure the movements in 
every time and every space without limitations. The wearable systems make it possible to 
measure every single pose and movement of a person, so allowing the real time 
reproduction in Virtual Reality (VR), by means of complex avatars which can be incredibly 
similar to the original. We are here treating of new frontier systems capable to measure all 
human postures (or single parts of them) and to reproduce such postures in VR. 
These systems have a potential huge number of applications, covering several different 
areas: working, sporting, gaming,.. with implications on social, military, medical, musical, 
edutainment, .. fields. 
In the social area the measure and the subsequent “virtualization” of human postures can 
lead to a process capable to translate the sign language into single words and phrases, in 
home automation a real movement can be virtually recognized and an action can be 
associated to it, the virtualization of real acts can be very useful for improving the 
ergonomics of some stuff, etc. 
In the work area the “virtualization” of real human actions can be useful for simulating 
dangerous activities, for verifying “off-line” the effect of some actions, for simulating the 
manipulation of hazardous stuff, for designing assistance, etc. 
In the computer science area the “virtualized” reality can be useful for realizing new input 
interfaces or for implementing new automatic programming tools. In particular, within such 
frame, we realized a computer interaction system with no necessity of mouse and keyboard 
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inputs, being the commands obtained by the “translation” of finger movements of the user 
(see Fig. 4). 

 
Fig. 4. Mouse and keyboard are unnecessary if computer interactions are made by a 
sensorized glove capable to accept commands obtained by finger motions. 

In the music area the “virtualization” can reproduce real music instruments with good 
accuracy avoiding the expenses and spaces paid in reality, and the virtual instruments can 
be played simulating the action of the player or associating a single note/chord to a real 
human body posture (Costantini et al., 2010). 
Perhaps the army, the navy and the air forces are the more potentially interested in the 
“virtualization” process of human movements, since the necessity of simulating war 
scenarios, and the necessity of predicting the consequences of soldier acts in several 
potential environments. 
So going ahead for all the other previous mentioned fields, “virtuality” can reproduce 
“reality” for the aims of training, educating, assisting, experiencing people. 
But it is in the health-focused areas that the measure of real human postures, and the 
subsequent reproduction by means of pc avatars, can lead to the most fascinating and useful 
applications. In fact the virtualization process of patient’s postures can be very useful in 
motor therapy, so that doctors can better identify pathologies, in rehabilitation, so to rightly 
evaluate pre-post effect of surgery, in functional analysis, so to create a database to classify 
the residual movements of the patient, and so on. On the other end not only the measure of 
patient’s postures can be so useful, but even the doctor’s ones! In fact, measuring the 
doctor’s hand movements can be fundamental for surgical training or skills evaluation for 
virtual implementations of new procedures, for realizing minimal invasive surgery 
techniques, even for implementing tele-surgery in a way that the doctor’s movements are 
faithfully remotely replayed by robot’s arms. 
In  such a frame is the so called augmented reality which plays a winning role (Geisen, 2005). 
The concept of Augmented Reality, short AR (sometimes referred as Mixed Reality), comes 
from a fusion of digital data together with the human perception of the environment, so that 
the virtual objects overlay the reality on a pc screen (see Fig. 5). To the aim of upgrading 
performances and accuracies of the overall system and increasing the comfort for the user, 
we think here to the digital data obtained by means of the previously mentioned wearable 
systems. Augmented and Mixed Reality technology offer seamless visualization of text-
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based physiological data and various graphical 3D data onto the patient’s body. Thanks to 
the wearable sensors together with the AR the user can see himself into the real world, with 
the virtual objects superimposed upon or composited with it. So AR supplements reality 
and, ideally, “it would appear to the user that the virtual and real objects coexisted in the 
same space.” (Azuma, 1997) 
 

 
Fig. 5. An example of AR imagine. Information about bones are superimposed over the real 
picture  

Potentials and limits of current AR in surgery have been reported elsewhere (Shuhaiber, 
2004) , so here our aim is not to discuss about that, but the introduction of novel possibilities 
which comes from different interfaces thanks to the wearable systems, not applied till now, 
which can even overcome the, for some aspect, still futuristic AR. 
As already mentioned, the AR technology is both for real and for simulate surgery. An 
example of the latter comes from the ImmersiveTouch™-SENSIMMER®  system 
(www.immersivetouch.com), which integrates a haptic device with a head and hand 
tracking system and a high resolution high pixel-density stereoscopic display. The haptic 
device is in some way “merged” with the high resolution 3D graphics, giving the user a 
more realistic and natural means to manipulate and modify 3D data in real time.  
Since the key element in AR for surgery is becoming more and more the exact measure of 
doctor’s hand postures, our argumentation will be especially focused on that in the 
following paragraphs. 
The virtualization can be even enhanced and extended thanks to 3D visualisation-related 
knowledge. Examples come from the 3DVisA (3dvisa.cch.kcl.ac.uk), Altair4 Multimedia 
(www.altair4.it), PFM Multimedia (www.pfmmultimedia.it). So virtuality results a key 
element even for hidden, inaccessible or alternative reality. 
The VR can boost the possibilities of the real world since it can even represents the hidden 
reality. Let’s think, for instance, to the wearable sensorized system donned by soldiers: even if 
no camera pictures are possible, we can have in any case their postures real-time reproduces in 
a remote location, so to guarantee information otherwise impossible to obtain (see Fig. 6) 
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Fig. 6. The wearable sensorized system makes it possible to obtain fundamental posture data 
of soldiers even if no camera shootings are possible. On the left the real situation, on the 
right the visualization of the obtained information from the sensorized garments. 

2.1 From reality to virtuality 
To reproduce reality in a virtual environment, let's start analyzing the so called Virtual 
World and all its components. To transpose reality into a 3D scenario three key topics 
should be considered: Models, Textures and Lights. 
Modelling is the art and science of creating a surface that mimics the shape of a real object. 
Each object of the virtual world has a shape and a size and this entity is called Mesh. In 
meshes everything is built from three basic structures: Vertices, Edges and Faces (see Fig. 7). 
 

 
Fig. 7. Vertices, Edges and Faces: C is a vertex, between B and C there is an edge and A is the 
mesh center point 

A vertex is primarily a single point or a position in a 3D space. A straight line connecting 
two vertices is an edge; this is the wire that is seen when a mesh is looked at in wireframe 
view. Vertices and edges are usually invisible on the rendered image. 
Edges are used to construct faces which are the highest level structure in a mesh and are 
used to build the surface of the object. A face locates the area between either three or four 
vertices (respectively triangles and quadrangles), with an edge on every side. The 
mentioned mesh can be defined as a set of connected vertices and sometimes thousands of 
vertices are necessary to built complex objects. 
It is possible to assemble the vertices in groups forming the so called Vertex Groups, so to 
reusing parts of a mesh for making copies and, eventually, hiding “everything else” while 
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details are worked and so on. Vertex Groups identify sub-components of an object, like the 
joints of a hand or the hinges of a door. With vertex groups we can easily select and work on 
them in isolation without the necessity to create apart objects. 
The “virtual world”, how described till now, produces smooth, uniform objects that can be 
animated, but such objects are not yet particularly similar to the real counterpart, because 
uniformity tends to be uncommon and out of place. In order to approach a more realistic 
scenario, a 3D model Textures can be applied so to modify the reflectivity, specularity, 
roughness and other surface qualities of a material (see Fig. 8). 
 

 
Fig. 8. This image is an example of results obtained from texture application 

The third issue, Lighting, is a very important topic in rendering, standing equal to models 
and textures. A simple model can become very realistic if a light source is skillfully adopted, 
while without a proper lighting scheme the most accurately modeled and textured scene 
will yield poor results. We have to apply the same “lighting-rules” as in the real world, 
which is never lit by a single light source, indeed even if a single light is present, its rays can 
bounce off objects being re-irradiated all over the scene. In this way every single part of the 
image or 3D space is softly shadowed, partially lit and not pitch black. 
If it is required to animate a mesh and make it move, we have to define an armature which 
is made of a series of invisible bones connected to each other via parenting or constraints, 
that allow we to pose and deform the geometry that surrounds it. The armature is used for 
building skeletal systems to animate the poses of characters and everything else which 
needs to be posed. By adding an armature system to an object, it can be deformed accurately 
so that geometry doesn’t have to be animated “manually”. The armature modifier allows 
objects to be deformed simply by specifying the name of the virtual bone. As a bone moves, 
it deforms or moves the vertices, but not necessarily all of them, only the ones assigned to it. 
The mesh surface is analogous to the skin of the human body. The armature is also referred 
as Skeleton. In some complex 3D programs there are more complex skeleton systems defined 
bipeds. These elements are pre-designed and are customizable in order to fit with the mesh. 
An example of biped is in Fig. 9. 
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Fig. 9. Biped: a complex customizable skeleton system 

By the 3D software an user can define how many fingers each hand has and how many 
phalanxes each finger has or how many sections for the torso and so on. Then the virtual 
representation of a real element (an object, a person or whatever) can be defined as a virtual 
alter-ego immersed in the virtual space. 
In order to represent a human character we need to create a 3D body model, more often 
called Avatar (see Fig. 10). In a real-time virtual environment an avatar is a textured mesh 
obviously rigged, with a skeleton inside as reported. 
 

 
Fig. 10. 3D male avatar 

There are many ways of creating a 3D model: starting from zero with a software for 
graphical applications by modeling a solid, as a sculptor would, or by editing an existing 
base model, or by creating a new one with external tools like 3D scanners for surface or 
volume acquisition. In any case we have to use a 3D graphic software to edit one or more 
meshes in a virtual complete environment, called Scene. There are several interesting 
software, freeware or under license, for such a purpose, and the best choice cannot 
necessarily correspond to the highest price. Usually the most expensive software is also too 
complicate to be utilized by beginner users. Among 3D design packages with commercial 
license, the most common and popular are 3DS Studio Max, Maya and Lightwave 3D. Two of 
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the best freeware solutions are DAZ 3D and Blender. The latter is not only free of charge but 
even open source and with a wide available toolset, defining a complete pipeline (from 
modeling to sequence editing) controlled by a flexible and consistent user interface. With 
Blender it is possible to create a scene that is a way to organize the 3D environment with 
objects, textures and lights. Each scene can contain multiple objects, which can contain 
multiple materials, which can contain many textures, and so on. 
A 3D scene is like a real space with its own coordinate system. In a 3D cartesian coordinate 
system, a generic point is referred to by three real numbers (the coordinates), indicating the 
positions of the perpendicular projections from the point to three fixed, perpendicular, 
graduated lines, called the axes, which intersect at the origin. Stands the several possible 
choices among softwares, unfortunately it has not be defined a unique coordinate reference 
set yet. 3D graphics applications use two types of Cartesian coordinate systems: right-
handed (Fig. 11B), and left-handed (Fig. 11A). 
 

 
Fig. 11. A) left handed and B) right handed coordinate systems. 

In both coordinate systems, the positive x-axis points to the right, and the positive y-axis 
points up. It is possible to remember which direction the positive z-axis points by pointing 
the fingers of either left or right hand in the positive x-direction and curling them into the 
positive y-direction. The thumb points in the positive z-axis direction for that coordinate 
system. 
The basic operations performed on objects, defined in a 3D coordinate system, are rotation, 
translation and scaling. It is possible to combine these basic transformations to create a 
transform matrix, as it will be detailed explained in the next section. Likewise our eyes see 
the reality, in the virtual reality the scene is observed by virtual cameras. Just like the 
corresponding real cameras, the virtual ones may be located in a three-dimensional space, 
capturing the scene from their point of view. Everything located inside the virtual camera 
field of view is called viewport. 

2.2 Reality-virtuality interactions 
The previous section deals with the elements existing in a virtual artificial world in order to 
reproduce reality. This section is dedicated to specify how to import a real action or 
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movement in a 3D virtual scene and consequently how reality and virtuality can interact 
and the tools devoted to this aim. 
As a starting point we need to define the medium of interaction between the real and the 
virtual world. In this sense we can utilize several interfaces such as mouse, touchpad, 
keyboard, joystick and so on, but the most interesting ones are the devices that allow users to 
move naturally within the environment, giving them an “immersive” experience. These 
systems can be based on webcams, capable to track human movements, or can be based on 
motion sensors directly sewn on garments (as is the so called data glove detailed afterwards). 
Referring the sensors as the key elements capable to reveal the states of the (active or 
passive) sources, the commercial human movement tracking systems fit basically into three 
different classifications depending on where the sensors and the sources are respectively 
placed (Wang, 2005): 
Inside-Out Systems: the sensors are positioned on the body while the sources are somewhere 
else in the world. The problem with these systems is that they tend to be bulky. 
Outside-In Systems: the sources are attached to the body while the sensors are somewhere 
else in the world. These systems are less intrusive to the subject but are particularly sensitive 
to occlusion problems.  
Inside-In Systems: the sensors and sources are on the user’s body. These systems can be used 
to study relative movements between specific parts of the body. 
Obviously each system exhibits both advantages and disadvantages: to increase accuracy 
and to reduce latency the best choice is an Inside-In System (like wearable devices can be). 
On the other hand, a good choice to obtain an intrusion decrease, is an Outside-In System. 
As an example, let’s consider the acquisition of the human hand movement: the first issue is 
to find all degrees of freedom, taking into account that for each finger’s joint not all 
movements are possible. The distal interphalangeal joint and the proximal interphalangeal 
joint have only the possibility to move in the flexion/extension plane (Fig. 12c), so 1 Degree 
of Freedom (1 DoF). The metacarpo phalangeal joint has 2 DoF: one on the 
flexion/extension plane and the other one on abduction/adduction plane (Fig. 12d). The 
first thumb joint and the wrist have 3 DoFs and 2 DoFs respectively. 
 

 
Fig. 12. a) and b) details of finger joints. c) and d) possible movements. 
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After DoFs have been identified, we can measure all of them or restrict the interest to the 
ones which are strictly necessary to our aims and, consequently, focus on the subset of 
sensors, necessary to measure the requested DoFs. 
After the most suitable acquisition system has been chosen and an appropriate 3D 
reproduction software has been selected, then it is possible to reproduce every recorded 
movements in a 3D virtual space with a high and realistic immersion degree.  
A data glove, as for instance our Hiteg-Glove (http://hiteg.uniroma2.it), is an example of 
Inside-In System. Thanks to this wearable device it is possible to track real hand’s 
movements (1 sensor for each DoF), and converting them into electric signals. Once data are 
acquired and converted into digital form, all values are sent to PC with a specific protocol 
useful to disambiguate and recognize the exact sensor under investigation and its value. The 
data can be tidily stored in a specific database, in such a way each information can be simply 
re-called and utilized in a simple numerical format or, more effectively, converted into a 
graphical representation useful for replicating the real hand movement by a virtual avatar 
on a PC screen. The software converts the digital values into bending values, expressed in 
degrees or radians, applying such bending to the corresponding virtual model. 
 

 
Fig. 13. A 3D human hand model: A) Mesh with vertex group (yellow selection). B) 
Armature: hidden hand bones. C) Final rendering of the rigged model with textures and 
lights 

In a vectorial virtual space every bone is described by two matrixes: a local one (local 
transform) and a combined one (combined transform). The local matrix describes 
translations and rotations with respect to its pivot. Obviously the bones are connected in a 
way that translation and rotation of one bone influences the others in a cascading way. This 
means that for every junction movement the combined matrix of all the junctions is 
recomputed in a recursive way: 

 Ci = Li Ci-1 (1) 

The combined matrix of the i-th junction (Ci) is computed multiplying its local matrix (Li) by 
the combined matrix of the “father junction” (Ci-1). 
By a constant application of these transformations, the virtual model is consistent with the 
movements and the postures of the user.  
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Once it has been established the way to move the mesh in the virtual world, it is necessary 
to make it interact with the objects or other animated meshes (other avatars) and in general 
there are two ways to do it. The first way is to recognize the posture or the action the user is 
making and to start a pre-set animation, if the action is known and allowed in that context. 
For example, the user indicates or touches an object in the virtual world and the software 
moves the object of a default measure, not related to real strength, speed or angle of the 
user. The second, more complex, way is to introduce a “physical engine” in the virtual 
world. A physical engine is a computer program that simulates Newtonian physic models 
using variables such as mass, velocity, friction, etc.. So it is possible to obtain simulated 
occurrences of collisions, rebounds, trajectories. With this engine, each object interacts with 
the surroundings according to its own characteristics. 
We developed an interesting application just taking advantages of the virtual interaction 
possibilities in the virtual world. Actually one of the project carried on by our group named 
Hiteg (Health Involved Technical Engineering Group) is oriented to virtual architecture: the 
aim is to reconstruct entire monuments starting from pieces of ruins acquired by 3D scanner 
(see Fig. 14 and Fig. 15). 
In such a way the real reconstruction can be made only after it is well known the exact 
location for every single pieces, so saving even a huge amount of money and time. 
So far we have seen how you can act in the virtual world, but actually in reality the 
interaction is bidirectional: the world also affects the person. In this case it is necessary to 
use an haptic device. 
  
 

 
 

Fig. 14. The 3D scanned parts of an ancient pillar are virtually reproduced in a VR 
environment. 
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Fig. 15. 3D scanned parts of an ancient pillar are virtually recombined into the original form 
utilizing our Hiteg-glove as an interaction tool 

 

 
Fig. 16. When an object is virtually touched, the haptic device can give the sensation of the 
real touch. 

The word haptic comes from the Greek verb ἁπτικός, haptes, with the meaning of “contact” 
or “touch”. Haptic technology, or haptics, is a tactile feedback technology that applies 
forces, vibrations, and/or motions to the user. This mechanical stimulation may be used to 
assist the user in the remote control of machines and devices (tele-operations). 
Now we have a world as close as possible to reality, which enjoys some of the fundamental 
laws of physics, we have an avatar, that represents the user, and a set of objects that enrich 
the environment. 
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2.3 Hiteg glove 
Generally speaking, a data glove is intended as the ensemble of mechanical to electrical 
transducers, a support (usually Lycra based), a powered conditioning electronic, a (wired or 
wireless) transmission system, all useful to measure all the DoFs of wrist and finger joints. 
In our laboratory we developed a version of data glove, referred as HITEG glove (stands our 
name “Health Involved Technical Engineering Group”), which is mostly based on bend 
sensors capable of measuring bending angles thanks to the piezoresistive effect by means of 
which, in correspondence of each angle to which the sensors are subjected, it is measured a 
distinct resistance value.  
In order to obtain high level performances of our data glove, in the sense of reliability, 
reproducibility and sensibility, we measured and characterized several piezoelectric sensors, 
manufactured by Flexpoint Sensor System Inc. (www.flexpoint.com) and Image S.I. 
(www.imagesco.com), different in length and encapsulation materials. 
Sensors resistance variation vs. bending angle was measured thanks to a home-made setup 
based on hinges where the sensors lay on, and a stepper motor which provides the rotation 
of one wing of the hinge (with respect to the other which is fix constrained) simulating a 
human finger joint rotation (see Fig. 17). 
 

A) 
 

B) 

Fig. 17. A) A three motor system to measure a sensor array, simulating movements of B) a 
real human finger 

The motor which rotates the hinge’s wing is a Trinamic PD-109 two phase hybrid stepper, 
microstepping optimized. It is provided with a Trinamic Motion Control Language (TMCL) 
which consists of an instruction set of motion control commands. On the basis of a host 
computer PC software development environment, the TMCL-IDE, motion control 
commands are provided to the motors. A rigid frame provides the necessary stability to the 
system. The motor is fixed on an optical bench by angular Newport EQ80-E shores. The 
motor motion is transmitted to the hinge’s axis thanks to an universal rigid joint in order to 
obtain an excellent stability.  
With the described measurement set-up, each sensor can be characterized in a -90° to 180° 
(from inward to outward)  range with programmable step value of bending angle, number 
of measurement repetitions and mechanical actuator speed. At known angles, the resistance 
values of the sensors are measured by an Agilent 34405A multimeter. 
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The investigated piezoelectric sensors or array of sensors, for the specific application of the 
data glove, have a large measurement range for chosen outward angles from 0° to 120°, and 
correspondingly the resistance normally changes from 10 to 170 kΩ. The hysteresis of the 
sensors is really negligible and measurement repeatability is exceptional. Among all the 
performed measurements, some relevant results are showed in Fig. 18. It reports measurement 
results, resistance mean values (including standard deviations), on 6 different 2 inches length 
polyimmide encapsulated Flexpoint sample sensors: each sensor is characterized repeating 
measurements 10 times, varying bending angle from 0° to 120° and vice versa. 
 

 
 

Fig. 18. Resistance variation vs. bending angle: mean on 6 sample sensors and standard 
deviation 

After the characterization, the sensors are sewn on a Lycra based glove, each corresponding 
to a single finger joint so to measure flex-extension movements and between fingers to 
evaluate abdu-adduction movements. The Fig. 19 shows our Hiteg glove. 
The resistance variation vs. bending angle characteristic of each sensors is utilized to 
correctly convert the electric resistance value into the corresponding finger joint flexed 
angle. 

3. E-health applications 
Healthcare is one of the areas potentially dramatically reshaped by the introduction of the 
new virtual tools. In fact, over the past few years there has been a rapid increase in the 
application of VR technology for e-health purposes in particular in diagnosis, healing, motor 
and neurological rehabilitation, motor therapy, instruction and surgery simulation, study, 
even in explanation to patients. With the aim of VR in motor therapy doctors have a multi-
view vision so to better catch pathologies (Saggio et al., 2009), in rehabilitation to 
quantitatively, not qualitatively, evaluate pre-post effect of surgery (Castagnaro et al., 2010), 
in functional analysis so to create a database to classify the residual movement of the  
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Fig. 19. The Hiteg glove 

patient, in doctor training so to evaluate their surgical skills, in understanding the genesis 
and treatment of special symptoms (Zányi et al., 2009), in biomechanical evaluation during 
work and daily-life activities (Draicchio et al., 2010), in pain reduction treatments 
(Shahrbanian et al., 2009), even in developing an additional therapy tool for eating and 
impulse control disorders (Jiménez-Murcia et al., 2009), etc. 
In the following paragraphs, we will focus our attention on some e-health applications of 
VR. In particular we will detail of surgery simulations, neurological and motor 
rehabilitations, brain computer interface facilities for severe neuromuscular impaired 
people. 

3.1 Surgery simulator 
Surgery simulator is an excellent example of application of virtuality and reality-virtuality 
interaction. Differing from classic computer graphics, with the surgery simulator the user 
can touch and interact with objects such as organs or human tissue. 
The first historical simulator was invented by Edwin Albert Link in 1929. It was a flight 
simulator called the “Blue Box” or “Link Trainer” by which it was possible to evaluated the 
pilot performances “off-line”. Many years passed since that date before the idea could be 
applied in medicine, but in the latest years it is having an increasing implementation. Just to 
refer the importance of the surgery simulator for the market, looking at the U.S. market for 
instance, the surgical training systems sold had a value of approximately 9.9M$ in 2004, 
over 11M$ in 2005, till more than 26M$ in 2009. It is believed that worldwide sales more 
than double U.S. sales. But there is not only a market for the surgery simulator itself: the 
system providers can generate percentage on the revenue by providing updates to software, 
training, and system support. 
The surgery simulator is more and more becoming an important, or somewhat fundamental, 
tool useful to train novice surgeons to practice complex operative tasks before entering the 
operating room. To practice a procedure or a given gesture repeatedly can dramatically 
increase surgical training, so surgery simulator can even become useful for those who are 
already practice but want to gain greater proficiency outside the operating room. It is 
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somewhat ascertained how simulators are helping to accelerate that learning curve, so 
improving the fundamental Patient Safety (www.oregonsimulation.com, www.surgical-
science.com). Using VR concepts (navigation, interaction, immersion), surgical planning, 
training, and teaching even for complex surgical procedure may be possible. A hypothesis 
regards even visionary leaders examining the VR as an educational technique integrated 
into traditional curricula of novice surgeons (Dawson, 2006). 
At the end, the simulator can record errors and provide an operative efficiency measure, so 
functioning both as an educational tool and a skills validation instrument. 
Nowadays VR is exploited in some specific surgery simulator applications: hepatic surgery 
(Marescaux et al., 1998), arthroscopy trainer (www.insightarthrovr.com), laparoscopic 
surgery (Ho, 2006; Schijven & Jakimowicz, 2003), endoscopic procedures (Soler et al., 2009), 
virtual cholecystectomy (www.surgical-science.com), thoracic surgery, orthopedics, 
urology, and gynecology (Haluck et al., 2002), arterial/duct clipping (Chaudhry et al., 1999), 
endovascular procedures (Van Herzeele & Aggarwal, 2008) and so on,  but with time it is 
reasonable to think that the real most part of surgery will be computer simulated. 
Since the peculiar application, for which virtual environments are interactive and reactive, 
the interactions which can occur are of unpredictable nature, so it is not possible to pre-
compute images for each of the ∼20 frames/s that are needed to provide an immersive VR 
experience. As if not enough, the physical correct behaviour of objects have to be modelled 
in real-time too. So, in practice, at present there is a limit to the desired realism of the 
physical models, and it must be balanced against the need for speed. In any case there are 
interesting studies and applications which demonstrate surgery simulations with an 
acceptable real-time occurrences. Since now modelling deformation in virtual anatomy has 
been realized by using surface models (Cover et al., 1993), but more recently the volumetric 
mass-spring models (Kuhn, et al., 1996), the Finite Element models (Bro-Nielsen & Cotin, 
1996), and the Fast Finite Element models (Bro-Nielsen, 1996), demonstrate a 3D volumetric 
deformable patient organs in a more than acceptable real-time modelling. 
The other key element is the possibility for a doctor to have a force feedback to his/her 
movements/action. In fact to correctly act, it can be fundamental to have in his/her hands a 
force feedback that mimics, for instance, how tissue and blood vessels feel and behave or 
heart beats in real life. A dissertation on methods and fundamental considerations for 
adding force feedback to a surgery simulator has been reported elsewhere, where an 
example of the virtual endoscopic surgery trainer “VS-One”, developed at the 
Forschungszentrum Karlsruhe, is treated (Maass et al., 2003). 

3.2 Virtual Reality in rehabilitation 
Virtual Reality in rehabilitation treatments is becoming more and more applied. The new 
VR technologies can potentiality improve the dynamic posturography for a better 
understanding of standing balance in clinical settings, may improve gait for people with 
amputations, can visualize how ultrasound and laser treatments may benefit wound 
healing, and so on. Within all the possibilities, we will focus our discussion on some of the 
most important rehabilitation treatments, especially respect the cognitive/neurological and 
postural training/motor rehabilitation. 
Cognitive and Neurological Rehabilitation 
Only in the U.S., traumatic brain injuries (TBI) resulting from car crashes, falls, gunshot 
wounds, and sports injuries is 500,000 to 1.9M persons (Rizzo et al., 1998), and accounts 
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around 200,000 hospitalized cases per year. Over 1.7M persons suffer a mild TBI that results 
in a temporary disability (Torner et al., 1999), while 100,000 people suffer varying degrees of 
permanent disability from TBI. So, it becomes obvious the importance of the following 
rehabilitation which can greatly contribute to reduce impairment, disability and handicap 
(Rose, 1996). Since it has been shown that the activity of mental stimulation induced by 
virtual reality can change the brain metabolic activity, it follows that exercising in a virtual 
environment offers the potential for significant gains in cognitive function (Grealy et al., 
1999) greatly improve the rehabilitation process. 
In order to achieve restoration of cognitive functions, a subject must repetitively perform 
appropriate retraining exercises. In this view, VR can help people with brain injuries to 
regain the ability to do simple activities by retraining damaged brain areas or enabling 
patients to learn to use new areas. VR can also prepare people who have lost some sensory 
functions for navigation in an unfamiliar place by letting them first experience a virtual (e.g. 
audio and haptic) layout of that setting. The fully advantages of VR technology for 
rehabilitation of the activities of daily living has been reported (Lee et al., 2003). Among the 
advantages of adopting the VR technique, is the fact that it allows to easily vary training 
parameters and to explore especially effective scenes that may be difficult or unsafe to 
construct in the real world. 
The VR can be not necessary intended as a substitute of standard techniques useful for 
rehabilitation abilities after brain damage, but novel and standard methods often strictly 
coexist together being applied in a parallel or series way (Koenig, 2009). In addiction to VR, 
also mixed reality demonstrates its efficacy for the assessment of post-traumatic stress 
disorder with (or without) TBI (Fidopiastis et al., 2009). 
Postural training and motor rehabilitation 

Visual, vestibular, and proprioceptive sensory information play a key role in postural and 
motor effectiveness, and the integration of multisensory information from the environment 
is the basis for the control of body spatial orientation and movement (Cinelli & Patla, 2008). 
On the other end, the adoption of postural measurements and VR can allow new paradigms 
aimed at altering the multisensory information contribution thus opening up many new 
research possibilities. These arguments imply that the tools offered by VR can be dangerous 
or can produce benefits in postural training and motor rehabilitation (Menegoni, 2009), so 
particular attention must be paid and ad-hoc protocols must be carefully developed 
(Boechler et al., 2009; Trotti et al., 2009). 
Several requirements and long time repetitive practices are necessary for effective postural 
training and motor rehabilitation intervention. But the average situation for hospitalized 
stroke patients is that they receive half an hour session daily by a therapist, so the healing 
time is often too long. The use of the VR technology can drastically reduce this problem by 
allowing patients to perform long time and high frequency rehabilitation exercises using a 
computer, even simply at home. Last frontier in this field is the Haptic Motor Rehabilitation 
since it offers force and tactile feedback which can be crucial for many upper and lower 
extremity rehabilitation (Kayyali et al., 2007). 
A recent study demonstrates how virtual environments and VR can offer, if correctly 
adopted, a valid tool in motor rehabilitation with respect those achieved in real-world 
applications (Sveistrup, 2004). 
So, many efforts have been paid to develop valid systems based on VR. As an example, the 
NeuroVR 1.5 is a cost-free virtual reality platform based on open-source components, 
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allowing professionals to easily modify a virtual world, to best suit the needs of the clinical 
setting (Algeri et al., 2009). 
By our side, we developed a complete VR system specific for the upper limb motor 
rehabilitation, which is now being tested on hand injured patients at the Hospital structure 
of the ASL Viterbo (Italy), Hand Surgery Dept., thanks to Dr. Antonio Castagnaro and Dr. 
Anna De Leo (Castagnaro et al., 2010). The overall system consists of a wearable sensorized 
device (the data glove), an electronic circuitry for conditioning and A/D converting 
electrical signals, a wireless data transmission board based on ZigBee protocol, a database 
on SQL platform useful for data storage for further data utilization, a virtualization software 
capable to in-line and off-line reproduce the recorded movements by avatars (see a 
schematic representation in Figs. 20 and 21). 
 

 
Fig. 20. A schematization of the overall system made of sensors, Hiteg glove, electronic for 
conditioning the signals, wireless communication board based on ZigBee protocol, and 
Virtual Reality reproduction 
 

 
Fig. 21. A schematization of the VR system we adopted for motor rehabilitation. It is made 
of a 3D model, a database where recorded user movements are stored and a Graphic User 
Interface (GUI). 
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During the post-processing data phase, thanks to the model, it is possible to replay all the 
fingers and hand movements in slow / rapid / frame-by-frame motion (see Fig. 22) and to 
isolate even just one finger at a time, removing the others from the view, in order to focus 
the operator’s attention only on some important details. 
The overall VR system is believed to become, in a near future, fully integrated to the surgery 
follow-up. 

 
Fig. 22. A reproduction session: software allows user to see an acquisition session off-line, 
and by rotating 3D model in any direction, it is possible to analyze reproduction from 
different viewpoints. 

3.3 Brain Computer Interface 
Many people in the world are affected by severe neuromuscular impairments, which make 
them lose the control on their muscular voluntary activities thus isolating them from the 
environment. Brain Computer Interface (BCI) systems try to facilitate for these people the 
communication of their intents by translating some electrophysiological signals into 
commands towards external peripherals without making use of the classical pathways of 
nerves and muscles (Wolpaw et al. 2002). Basically BCI is adopted to assist and support 
impaired people. BCIs bypass the user’s peripheral nervous system (nerves) and his/her 
muscles, establishing a direct connection between the central nervous system (brain) and the 
environment the user operates in. In this interaction paradigms, it is not needed that the 
user contracts even a single muscle (e.g. to press a button, to vocalize his/her intent, or to 
direct his/her gaze), because the interface is able to recognize specific commands by 
recognising his/her “brain states” (Cincotti et al., 2009). 
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There are different adopted methods to interface brain with computer, and these methods 
can be invasive (electrodes implanted directly into the gray matter of the brain, subdural 
Electro Cortico Graphy “ECoG”, Stereotactic Electro Encephalo Graphy “SEEG”,..) or non 
invasive (Electro Encephalo Graphy “EEG”, Magnetic Resonance Image “MRI”, Magneto 
Encephalo Graphy “MEG”, functional Magnetic Resonance Imaging “fMRI” systems, ..).  
One of the most fruitful areas of BCI research is the development of devices that can be 
controlled by thoughts, so giving to the severely disabled people the possibility to act 
independently. 
Obviously the research look forward in adopting the less possible invasive interfacing 
technique, so particular attention is being paid to BCI systems essentially based on EEG 
recording (Costantini et al., 2009). But since the performance of BCI strictly depends on the 
ability of users to control and modulate their own EEG signals, it is of fundamental 
importance to develop a system capable to increase such a control. In this view studies 
emphasize how it is possible to improve the EEG control via feedback presentation (Bianchi 
et al., 2008). To get this objective, VR technology is becoming a powerful tool by its graphical 
possibilities to improve BCI-feedback presentation, with the capability of creating 
immersive and motivating environments (Angevin, 2009). 
Let’s consider an user with upper limb immobility, or affected by a stroke with 
consequently motor decreasing. In this case, it can be useful to reproduce the hands of the 
user in a virtual environment and to stimulate his/her motor imagery with a visual stimulus 
(like a spotlight on a specific arm). The user, connected to a BCI system, holds his/her hands 
on a real desk; his/her arms are hidden by a towel or a panel, on which a projector displays 
virtual hands reproduced as avatars. It is important that the 3D model is much similar as 
possible to the user real counterpart, in order to increase the realism and the positive 
response. For the same reason, it is very important that the perspective of the virtual model 
corresponds to the user’s point of view.  During a trial, the software creates some visual 
stimuli and records the EEG activity of the user. If the BCI system recognises the user’s brain 
state, by means of classifiers (Saggio et al., 2010), then the avatars are animated so to 
reproduce the thought movement. A schematization of this feedback path is in Fig. 23, 
where the system provides as an output the movements of a robotic arm. At present, the 
overall system works thanks to a team we collaborate with, at the Santa Lucia IRCSS 
foundation in Rome, Italy. 

4. Conclusion 
Nowadays the knowledge and understanding of the reality pass through the virtual world. 
This is practically true for all the human disciplines, but it is particularly true in e-health 
applications, for healing treatment, therapy, rehabilitation, surgery and support for 
impaired people. Since health is a widespread top priority, and will remain so in the context 
of an ageing society, it appears evident how every possible contribute to the increase of 
medical solutions and the decrease of time and cost of healing, are welcome. From this point 
of view VR is a really great opportunity within this challenge. 
This chapter dealed with the techniques usefully adopted to convert the real into virtual and 
the advantages this passage offers having, in some way, assisted and/or enriched the real 
world. We treated also of our and our collaborators efforts and results in designing, 
developing and applying 3D visualization techniques (stereoscopy and holography), human  
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Fig. 23. The user wear a 61 electrodes cap by which his/her mental status is recorded. When 
the BCI system recognizes a “closing hand” gesture, the virtual hand reproduces the 
gesture. The artificial limb can be driven as well. 

postures measurements (Hiteg glove), avatar representation, human machine interaction 
(virtual mouse and keyboard), virtual interactions (reconstructions of ancient monuments), 
motor rehabilitation (for hand injured patients), communication for neuromuscular 
impaired people (BCI systems). 
Special attention was paid to the basic processes necessary for reproducing reality in a 
virtual environment and the methodology for the reality-virtuality interactions. Some e-
health applications have been detailed, especially for surgery simulations and assisted 
rehabilitation processes. 
We explained how the VR markets can be considered on the application areas of: 
rehabilitation and therapy (cognitive/neurological, postural/motor, pain distraction,..), 
surgery (simulations, pre-operative planning, assisted surgery), education and training (for 
novice surgeons, to practice procedures, to certify experienced surgeons,..), diagnostic tool 
also by means of visualization of medical data (2D, 3D modelling). 
In conclusion we can state that, if correctly utilized, Virtual Reality can be a really valid 
support for e-health applications, especially because it can reduce time and cost for effective 
therapy/treatment for health-focused disciplines, and provide doctors an opportunity to 
perform tasks in a risk-free environment. In addiction patient acceptance can be quite high 
since the VR implementation can have a low invasive impact. 
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