16

Code Clone Detection Using String
Based Tree Matching Technique

Ali Selamat and Norfaradilla Wahid
Universiti Teknologi Malaysia
Malaysia

1. Introduction

As the world of computers is rapidly evolving, there is a tremendous need of software
development for different purposes. As we can see today, the complexity of the software
being developed is different from one to another. Sometimes, developers take the easier way
of implementation by copying some fragments of the existing programs and use the codes in
their work. This kind of work is known as code cloning. Somehow the attitude of cloning
can lead to the other issues of software development, for example plagiarism and software
copyright infringement (Roy and Cordy, 2007). In most cases, in order to figure out the
issues and help better software maintenance, we need to detect the codes that have been
cloned (Baker, 1995). In the web applications development, the chances of cloning are bigger
since there are too many open source software available on the Internet (Bailey and Burd,
2005). The applications are sometimes just a ‘cosmetic’ of another existing system. There are
quite a number of researches in software code cloning detection, but not so particularly in
the area of web based applications.

2. Background of the problem

Software maintenance has been widely accepted as the most costly phase of a software
lifecycle, with figures as high as 80% of the total development cost being reported (Baker,
1995). As cloning is one of the contributors towards this cost, the software clone detection
and resolution has got a considerable attention from the software engineering research
community and many clone detection tools and techniques have been developed (Baker,
1995).

However, when it comes to commercialization of the software codes, most of the software
house developers tend to claim that their works are 100% done in-house without using other
codes copied from various sources. This has caused a difficulty to the intellectual property
copyright entities such as SIRIM and patent searching offices in finding the genuine
software source codes developed by the in-house companies. There is a need to identify the
software source submitted for patent copyright application as a genuine source code
without having any copyright infringements. Besides, cloning somehow brings up the issue

280 Semantic Web

of plagiarism. The simplest example can be seen in the academic field where students tend
to copy their friends” works and submit the assignments with only slight modifications.
Generally, in software development process, there is a need for components reusability
either in designing and coding. Reuse in object-oriented systems is made possible through
different mechanisms such as inheritance, shared libraries, object composition, and so on.
Still, programmers often need to reuse components which have not been designed for reuse.
This may happen during the initial stage of systems development and also when the
software systems go through the expansion phase and new requirements have to be
satisfied. In these situations, the programmers usually follow the low cost copy-and-paste
technique, instead of the costly redesigning-the-system approach, hence causing clones. This
type of code cloning is the most basic and widely used approach towards software reuse.
Several studies suggest that as much as 20% - 30% of large software systems consist of
cloned codes (Krinke, 2001). The problem with code cloning is that errors in the original
must be fixed in every copy. Other kinds of maintenance changes, for instance, extensions or
adaptations, must be applied multiple times, too. Yet, it is usually not documented from
where the codes were copied. In such cases, one needs to detect them. For large systems,
detection is feasible only by automatic techniques. Consequently, several techniques have
been proposed to detect clones automatically (Bellon et al., 2007).

There are quite a number of works that detect the similarities by representing the code in a
tree or graph representation and also by using string-based detection, and semantic-based
detection. Almost all of the clone detection techniques have the tendency of detecting
syntactic similarities while only some detect the semantic part of the clones. Baxter in his
work (Baxter et al., 1998) proposed a technique to extract cloned pairs of statements,
declarations, or sequences of them from C source files. The tool parses source code to build
an abstract syntax tree (AST) and compares its subtrees by characterization metrics (hash
functions). The parser needs a “full-fledged” syntax analysis for C to build AST. Baxter's
tool expands C macros (define, include, etc) to compare code portions written with macros.
Its computation complexity is O(rn1), where n is the number of the subtree of the source files.
The hash function enables one to do parameterized matching, to detect gapped clones, and
to identify clones of code portions in which some statements are reordered. In AST
approaches, it is able to transform the source tree into a regular form as we do in the
transformation rules. However, the AST based transformation is generally expensive since it
requires full syntax analysis and transformation.

Another work (Jiang et al, 2007) presented an efficient algorithm for identifying similar
subtrees and applied it to tree representations of source code. Their algorithm is based on a
novel characterization of subtrees with numerical vectors in the Euclidean space R» and an
efficient algorithm to cluster these vectors with respected to the Euclidean distance metric.
Subtrees with vectors in one cluster are considered similar. They have implemented the tree
similarity algorithm as a clone detection tool called DECKARD and evaluated it on large
code bases written in C and Java including the Linux kernel and JDK. The experiments show
that DECKARD is both scalable and accurate. It is also language independent, applicable to
any language with a formally specified grammar.

Krinke (Krinke, 2001) presented an approach to identify similar code in programs based on
finding similar subgraphs in attributed directed graphs. This approach is used on program
dependence graphs and therefore considers not only the syntactic structure of programs but

Code Clone Detection Using String Based Tree Matching Technique 281

also the data flow within (as an abstraction of the semantics). As a result, it is said that no
trade-off between precision and recall - the approach is very good in both.

for_s

= Key:
= 521111111
brmink

t“\
/ 7 ! I itelevant
I for 71 (; - i < -
NIANY) N = 4 = = _
1,1000001.0 | [2.00001.0; . 0, nonterminal
TR ___ T .. . — i R —
L 4 : L B : " T - -
I\Tt)' o “-=J' ‘.‘ primary_e { | primary_e § 1 > { | pimary_e §" ! primary_e I‘J :‘ _‘[r,?\f_,ﬁin}_)

‘:_pﬂmary_e\) (_) ‘:_pnmary_e) '\h]) LomTETIET

€)

Fig. 1. A sample parse tree with generated characteristic vectors[14]

Kamiya in one of his works (Kamiya et al., 2002) suggested the use of suffix tree. In the
paper they have used a suffix tree matching algorithm to compute token-by-token matching,
in which the clone location information is represented as a tree with sharing nodes for
leading identical subsequences and the clone detection is performed by searching the
leading nodes on the tree. Their token-by-token matching is more expensive than line-by-
line matching in terms of computational complexity since a single line is usually composed
of several tokens. They proposed several optimization techniques specially designed for the
token-by-token matching algorithm, which enable the algorithm to be practically useful for
large software.

3. Problem Statement

As we can see from the previous works, some of the works are scalable, and are able to
detect more than one type of clone. But some of them face the trade-off of the computational
complexity. This could be due to the fact that most of the techniques apply expensive syntax
analysis for transformation. From the literature that has been done, more than half of
existing techniques used tree-based detection as it was more scalable. However, most of the
techniques perform a single layer detection which means after the transformation into
normalized data e.g. tree, graph, and etc, the process of finding the similarities of codes, i.e.
code clones, were done directly by processing each node in the data. All possible clones
need to be searched directly without some kind of filtering, which can increase the cost of
computational process.

As ontology is being widely used nowadays, we cannot deny its importance in the current
web technology. The major similarity of ontology and clone detection works is that both can
be represented as tree. Besides that, many works have been done to do the mapping of
different ontologies between each other, to find the similarities of the concepts among them.
This activity is actually almost the same with what needs to be done in detecting clone
codes.

282 Semantic Web

Since there are some kinds of similarities in both problems, detecting clones in a source code
can be done using the same way as mapping the ontologies. The research question of this
thesis is to identify the possibility of using a technique of ontology mapping to detect clones
in a web-based application. Obviously there will be no ontologies used in the experiments
since we are dealing with source codes and not ontology. But we will use the technique of
mapping to detect clones.

In order to achieve the objective, there are a few questions that need to be addressed:

(a) What are the attributes or criteria that might be possible to be cloned in web documents?
(b) What are the approaches that had been proposed in the previous research in the
ontology mapping area than had been used in clone detection tool?

(c) What are the issues of the recovered approach and how to solve it?

4. Literature Review

4.1 Code Cloning

Code duplication or copying a code fragment for reuse by pasting with or without any
modifications is known as code smell in software maintenance. This type of reuse approach
of existing code is called code cloning and the pasted code fragment (with or without
modifications) is called a clone of the original. Several studies show that duplicated code is
basically the result of copying existing code fragments and using them by pasting with or
without minor modifications. People always believe that the major cause of cloning is by the
act of copying and pasting. Some say that it may happen accidentally. In some cases, a new
developed system is actually a ‘cosmetic’ of another existing system. This type of case
usually happens in the web based application. They tend to modify the appearance of the
application or system by changing the background colour, images, etc.

Refactoring of the duplicated code is another prime issue in software maintenance although
several studies claimed that refactoring of certain clones is not desirable and there is a risk of
removing them. However, it is also widely agreed that clones should at least be detected.
Several studies have shown that, the cost of maintenance is promisingly increasing
wherever there are clones in the source code compared with the codes without any clones.
Definition of code cloning had been mentioned in different researches and some of them
used different terminologies to refer to the code cloning.

According to Koschke (Koschke, 2006), a clone is one that appears to be a copy of an original
form. It is synonymous to ‘duplicate’. Often in literature, there was a misconception of code
clone and redundant code. Even though code clone usually leads to code redundancy, but
not every redundant code is harmful, on the other hand cloned codes are usually harmful
especially for the maintenance phase of software development life cycle. Baxter in his
outstanding work (Baxter et al., 2008), stated that a clone is a program fragment that is
identical to another fragment”, Krinke (Krinke, 2001) used the term “similar code", Ducasse
(Ducasse et al. 1999) used the term “duplicated code", Komondoor and Horwitz
(Komondoor and Horwitz, 2001) also used the term “duplicated code" and used “clone" as
an instance of duplicated code. Mayrand and Leblanc (Mayrand and Leblanc, 1996) used
metrics to find “an exact copy or a mutant of another function in the system".

All these definitions of clones carry some kind of vagueness (e.g., “similar" and “identical")
and this imperfect definition of clones makes the clone detection process much harder than
the detection approach itself. Generally, it can be said that code clone pair is a fragment of

Code Clone Detection Using String Based Tree Matching Technique 283

code that is syntactically or semantically identical or similar. From all arguments above, we
could simplify the clones into four types:

(@) An exact copy without modifications (except for white spaces and comments) i.e.
identical.

(b) A syntactically identical copy; only variable, type or function identifiers have been
changed. i.e. nearly identical.

(c) A copy with further modifications; statements have been changed, added, or removed i.e.
similar.

(d) A code portion that is partly similar to another code fragment. It may involve some
deletion, modification and addition from the original code i.e. gapped clone.

According to our understanding from Ueda (Ueda et al., 2002), we may group the second
and the third types as a single major type called renamed code clone. Renamed code clone
still has similar structures between each other. So it is part of this report that the framework
proposed should at least be capable to detect the identical clone and renamed code clone.
Figure 2 shows an example of cloned code. Obviously the code in the example has the same
code structure and the pair is considered similar.

lintsum=0;

2

3 void foo (Iterator iter){

4 for(item = first (iter); has_more(iter); item = next(iter)){
5 sum = sum + value (item);

6 }

7}

1 int bar (Iterator iter){
2intsum=0;

3 for(item = first (iter); has_more(iter); item = next(iter)) {
4 sum = sum + value (item);

5 }

6}

Fig. 2. Example of a pair of cloned code in traditional program

4.2 Code Cloning in web applications

In this era, the computer has been a powerful tool to solve various kinds of problems in our
everyday lives. The WWW has been the pit stop for people to find, share and exchange
information all around the world. Today’s web sites are not only a collections of static web
sites that only display information but they also offer a lot more tasks and functions in more
critical domains such as e-business, e-finance, e-government, e-learning, and so on that
apply dynamic web pages with richer contents that are being retrieved from databases and
such. These types of web applications require a lot more work efforts in their development
life-cycles and thus require a lot more investments. People need to realize that web
applications are not only meant for the Internet but if we can have at least a local area

284 Semantic Web

network (LAN), we can still have web application and people within the network can still
access the system.

Normally, web applications development needs shorter time of development processes and
fuzzy initial requirement, thus brings to a lot of latent changes over the development life
cycle (Jarzabek and Rajapakse, 2005). Since there is a need of shorter development time,
there is a possibility of an increase in code cloning activities. Programmers are often forced
to copy the code from existing works so that they can shorten the time to develop and make
their jobs easier.

We can see there are quite a number of researches that have been carried out in the area of
code cloning especially in traditional software (e.g. developed for stand alone application,
using C, C++, etc) in the past decade. However, we can say that such researches are still in
their infancy states for web-based application. The statement is due to the small number of
researches that can be found available. Most of the researches revolve in the code clone
detection whereby different strategies of detection are used. Callefato(2004) conducted an
experiment of semi-automated approach of function cloned detection. Lucca et al. (2002)
introduced the detection approach based on similarity metrics, to detect duplicated pages in
Web sites and applications, implemented with HTML language and ASP technology.
Meanwhile, Lanubile and Mallardo(2003) introduced a simple semi-automated approach
that can be used to identify cloned functions within scripting code of web applications.
Some of the researches adopted the approaches that have been done in traditional software.
The most frequently appeared in the researches is the use of CCFinder (Kamiya et al., 2002)
as the clone detector which can detect exact clones and parameterized clones. While most of
the researches are discussing about the strategies of clone detection, Jarzabek and
Rajapakse(2005) conducted a systematic research to find out the extent of cloning in web
domain in comparing with traditional software. They found out that cloning in web
application has significantly exceeded the rate for traditional software. Jarzabek also
introduced metrics that might be useful for similar studies.

4.3 Existing Work of Code Cloning Detection

Code cloning detection has been an active research for almost two decades. Within that
period many tools and techniques have been invented either for commercial use or for
academic purposes. At the same time, a number of issues have been raised along the
researches in terms of number of clones detected, types of detected clones, the recall and
precision, the scalability, and the coupling towards language i.e. language
dependent/independent. Various researches have shown that their tools can detect almost
up to 70% of clones within a particular source code.

According to Jiang (Jiang et al, 2007) the researches in this area can be classified into four
main bases; string-based, token-based, tree-based and semantic-based. According to this
classification, we found out that most of the clones that were detected could involve in two
general ways which are syntactically and semantically. The first type of clones is usually
found from the similarity of functions including scripting e.g. JavaScript, VBScript, the
classes, the attributes, etc. On the other hand the semantic clones is related to the meaning of
the content i.e. knowledge represented, sequence of declaration of statement (Baxter et al,
1998), etc.

Code Clone Detection Using String Based Tree Matching Technique 285

Figure 3 shows the relationship of classification of detection and the type of clones detected.
Most of the reports show that most of them tend to find clones syntactically rather than
semantically. Syntactic clone detections cover from string-based to tree-based works. Some
tree-based works also show the ability of finding clone semantically. Appendix B of this
report presents some of previous works in clone detection area.

Code
Clone Detection

v
v v v _

String-based Token- based Tree- based Semantic- based
Syntactic ()
Semantic

Fig. 3. Variations of clone detection research and the classification of detection

4.4 Semantic Web

It is obvious that the term ‘ontology’ has become a key word within the modern computer
science world. It is becoming more important in fields such as knowledge management,
information integration, cooperative information systems, information retrieval, and
electronic commerce. One application area which has recently seen an explosion of interest
is the so-called Semantic Web.

The Semantic Web is an evolving extension of the World Wide Web(WWW) in which the
web content can be expressed not only in natural languages, but also in a format that can be
read and used by automated tools, thus permitting people and machines to find, share and
integrate information more easily. It was derived from W3C director Tim Berners-Lee's
vision of the Web as a universal medium for data, information, and knowledge exchange.

In building one layer of the Semantic Web on top of another, there are some principles that
should be followed; downward compatibility and upward partial understanding (Antoniou
etal., 2003).

At the bottom we find XML, a language that lets one write structured Web documents with
a user-defined vocabulary. XML is particularly suitable for sending documents across the
Web. RDF is a basic data model, like the entity-relationship model, for writing simple
statements about Web objects (resources). The RDF data model does not rely on XML, but
RDF has an XML-based syntax. Therefore in Figure 4 it is located on top of the XML layer.
RDF Schema provides modelling primitives for organizing Web objects into hierarchies. Key
primitives are classes and properties, subclass and subproperty relationships, and domain
and range restrictions. RDF Schema (RDEF-S) is based on RDF. RDF Schema can be viewed as
a primitive language for writing ontologies. But there is a need for more powerful ontology

286 Semantic Web

languages that expand RDF Schema and allow the representations of more complex
relationships between Web objects.

N
v
3 [Inference \ jiop weight
5 ontology
(V]
Ontology vocabulary | & / language
RDF + rdfschema ‘/g/
Structure Document

XML + NS + xmlschema

A

] exchange
} standard

Unicode

Coding

Fig. 4. Architecture of Semantic Web

The logic layer is used to enhance the ontology language further, and to allow writing
application-specific declarative knowledge. The proof layer involves the actual deductive
process, as well as the representation of proofs in Web languages (from lower levels) and
proof validation. Finally trust will emerge through the use of digital signatures, and other
kinds of knowledge, based on recommendations by agents we trust, or rating and
certification agencies and consumer bodies. The Web will only achieve its full potential
when users have trust in its operations (security) and the quality of information provided.

4.5 Clone Detection Evaluation

As we see in the previous researches, there are many clone detection techniques and their
corresponding tools, and therefore, a comparison of these techniques/tools is worthy in
order to pick the right technique for a particular purpose of interest. There are several
parameters with which the tools can be compared. These parameters are also known as
clone detection challenges. In the following we list some of the parameters we use for
comparing the different tools/techniques:

(a) Portability: The tool should be portable in terms of multiple languages and dialects.
Having thousands of programming languages in use with several dialects for many of them,
a clone detection tool is expected to be portable and easily configured for different types of
languages and dialects tackling the syntactic variations of those languages

(b) Precision: The tool should be sound enough so that it can detect less number of false
positives i.e., the tool should find duplicated code with higher precision. Formula shown in
M)

(c) Recall: The tool should be capable of finding most (or even all) of the clones in a system of
interest. Often, duplicated fragments are not textually similar. Although editing activities on
the copied fragments may disguise the similarity with the original, a cloning relationship
may exist between them. A good clone detection tool will be robust enough in identifying

Code Clone Detection Using String Based Tree Matching Technique 287

such hidden cloning relationship so that it can detect most or even all the clones of the
subject system. Formula shown in (2)

(d) Scalability: The tool should be capable of finding clones from large code bases as
duplication is the most problematic in large and complex system. The tool should handle
large and complex systems with efficient use of memory. In this thesis it can be concluded
by analyzing computational time taken for different sizes of testing

(e) Robustness: A good tool should be robust in terms of the different editing activities that
might be applied on the copied fragment so that it can detect different types of clones with
higher precision and recall. In this thesis we apply the robustness by listing the type of
clones the respective clone detector finds and their frequencies.

number of correct found clone (1)

Precision,p =
P number of all found clone

Recall, 1 = number of correct found clone @

number of possible existing clone

5. Proposed technique of code clone detection

We will start by defining the relation assumed by our model between ontologies and source
code, on the one hand, and source code and instances on the other hand. A set of documents
can serve as a base to extract ontological information (Stumme., and Maedche, 2001). In this
model we represent the source codes using XML parse tree. Hence we assume that the
ontological information in this case are all the tagging name in XML trees, i.e. known as
concept in this thesis as stated in the following formal definition. The instances are all
similar concepts that are actually populated in the source code. An instance will consist of
the concept itself and the attributes and value of that concept.

In ontology mapping, given two schemas, A and B, one wants to find mapping p from the
concepts in A into the concepts of B in such a way that, if a = p(b), then b and a have the
same meaning. This clone detection basically uses the same concept as in ontology mapping
work.

Definition 1: if a = p (b), then b and a have the same meaning, hence derived code clones.
Our strategy is to do a one-to-one mapping since using specific shared ontologies might
request for a specific domain of knowledge for different applications that need to be
compared. The idea is to derive mappings from candidate concept A to the concepts A" with
the same names as in the selected ontologies.

Definition 2: Ontology, O’ = {C’, R’, CH’, rel’, OA’} where (a) C is the set of concepts in each
of the nodes in the tree, (b) CH'C C'xC' is concept hierarchy or taxonomy, where
CH'(C';,C";) indicates that C’; is a subconcept of C’,, (c) rel:R'— C'xC" is a function that

relates the concepts non-taxonomically, R” is the set of relations where R’ = (J, (d) OA is a set
of ontology axioms, where OA’ is the properties of concepts, in practical the contents of tags,
the attribute and the value.

Figure 5 shows the overall phases of clone detection. The key idea of the proposed technique
is by combining detection by the structural information and the instance-based detection as
both of the techniques have their own strengths and weaknesses (Todorov, 2008) and has

288

Semantic Web

been discussed in the previous chapter. The output of the processes will be a set of similar
fragments of code, i.e. under different types of clones between two different systems. In our
framework we assume that the population phase had already taken place and there exists a

set of source codes so that:

(a) It covers all concepts of the source code trees. "Covers" is understood as: Instances of
every concept can be found in at least one of the trees in the collection of source code trees.

Every tree contains instances of at least one concept,

(b) A tree node is considered to be assigned to a concept node if and only if it provides

instances of that concept with a higher cardinality than a fixed threshold (Fig. 6).

Web documents A

Web documents B

p [

PREPROCESSING
Transform into XML parse tree
syntax

1¢t step

Structural Similarity
(using frequent subgraph miner)
yield

frequent subgraphs
(indicating frequent substructure found
in all program trees

!

String-based matching
(using string metrics)
yield

g

Clone pairs, i.e. similarity>0

3rd step

POSTPROCESSING
Extract clones

i

ANALYSIS

5th step

Fig. 5. Diagrammatic view of clone detection technique

Code Clone Detection Using String Based Tree Matching Technique 289

In the sequel we will deal with hierarchical trees. We are concerned with studying their
similarities on purely structural level, so let us assume that only the concept nodes are
labeled but not for the relations. Under these assumptions we provide the following
definition of a hierarchical source code tree.

O O

0, 0,

Fig. 6. Title Mapping between concepts of O', and O'y

Definition 3: A hierarchical tree is a couple O":= (C, is_ a), where C is a finite set whose elements
are called concepts and is_ a is a partial order on C. We proceed to formalize the association of
tree of different source codes. Let o be a set of hierarchical source code trees of system 1
and S a set of hierarchical source trees of system 2 satisfying the assumption 1 and 2. Let
y:a — [be an injection from the set of source code trees of system 1 to the set of source
code trees of system 1. For every subtree of O', e« and subtree of O'se S that can be

mapped so that there exists y(0';,) =0' B, it exists an injection g:Co —> CO'ﬁ which map

concepts in source code tree of system 1 to system 2. The following figure shows an
illustration of the mapping between trees.

5.1 Structural Tree Similarity

As mentioned in the previous chapter, we are going to do two layers of tree comparing. The
first layer is about the structural tree similarity. It eventually provides some kind of filtering
to the model since it finds parts of the trees which is similar between each other before we
do the real similarity comparison. As has been discussed in the literature review, XML tree
is actually a directed rooted tree which can be represented formally using the definition of
graphG=(V,E). So a source code tree can formally be represented by the following
definition:

Definition 4: Let O'y be a source code tree. A source code tree corresponding to 0 is a
directed rooted tree G(V'(G),E(G)), so that (a) V(G)=C, (b) E(G)< CxCsuch that

3f where <f(c,»,cj)> €Ep, < (cig)eis_a.

290 Semantic Web

Todorov (Todorov, 2008), used Bunke’s graph distance metric to calculate the distance of
source code structure based on maximal common subgraph. We are not going to find the
maximal subgraph since this technique is often an NP-complete problem and it has been
used several times in the previous works of clone detection. So instead of using maximal
common subgraph, we used the frequent subgraph miner available. Before that we start by
giving a couple of definitions which are needed before introducing the distance ratio. The
distance ratio is used to find out number of programs that could have high similarities of
structures between each other. All definitions are given for general graphs and are also
applicable for trees.

Definition 5: Graph Isomophism. A bijectie function uz:¥; -V, is a graph isomorphism

form graph G(V1,E;) to a graph G,(V,,E)if for any viovh el

() e By o (uoD, uh)) € Ey
Definition 6: Subgraph isomorphism. An injective function u:V; -V, is a subgraph
isomorphism from G; to G; if it exist a subgraph S ¢ G,so that x4 is a graph isomorphism

from G; to S.
Definition 7: Graph distance ratio: We simplify the distance of graph G1 and G2 by using
the following ratio since we are using frequent subgraph mining. Let F;, (3) and Fg, (4) as

sets of frequent subgraphs which owned by G1 and G2.

Fg={t,ty t5..., tu} 3)

Fg,={t, ty t5..., tu} 4)

Distance of G1 and G2 (5) can be calculated as follows:

#(IGI thz) (5)

d(G,,Gy)=1-
(G1.G2) max(#1g,,#1,)

5.2 Preprocessing

The initial idea is by doing the detection with combination of tree detection and string
detection. For this reason, the clone detection will start with the pre-processing where all
documents will be standardized into XML documents in order to get the tags and contents
of each node. We are going to test the model on HTML, ASP, PHP and JSP systems. Web
page documents from system A and system B need to be compared to detect the cloning.
Then the XML will be parsed into a tree. Fig. 7 shows the main process of pre-processing.

To minimize the code for each file, all XML codes will be cleaned to eliminate all useless
lines of code so that we could maximize the code comparing without trying to compare the
formatting information which is only used for the purpose of information appearance to the
end user. For each and every XML source code, the tag names will be taken and inserted
into a file called “vocabulary’ that will be used for XML node matching. Duplicate entries in
the vocabulary will then be deleted from the list to minimize number of entries in the
vocabulary.

Code Clone Detection Using String Based Tree Matching Technique

291

file1

file 2

Original Web Programs

Convert
into XML
document

C VOCABULARY

Clean XML code where
all useless tagging will
be eliminated i.e.
formatting tag.

A collection of clean
XML documents

-

Fig. 7. Preprocessing phase

5.3 Frequent subgraph mining

The detection process will then start with the structural comparison of the tree. The
comparison of nodes is done between O';, and O's which represent two different systems.

After generating the frequent subgraphs, we store the shared subtree of different programs
or source codes in a cross table. Table 1 shows the example of cross-table used to compare

programs across two systems.

Program, p P1 p1 Pn
p1 ti, t - - t1, t3, ta - - -
p1 - ti, t - - - - -
- - t1, t3, ta - t1, t3, ta - -
P - - - - - - ti, t3, £

Table 1. Example of cross table used to compare programs across two systems

For each subtree in the table that was generated by the frequent subgraph miner, we set the
minimum size i.e. number of edges of subtree is 5 and the maximum is 6. The decision is
made after an initial experiment where it showed the number of frequent subtree generated
was not too large or too small in comparison with other value of parameter. Then the string-

292 Semantic Web

based matching will be done as described above. The example of a frequent subgraph
between two trees is shown in Fig. 8.

Frequent sub-
graph

Program 1

Fig. 8. Illustration of frequent subgraph of two trees

5.4 String based matching

In Fig. 9, an example of instance-based matching is presented. We found that depth of
fragment 1 and fragment 2 are equal to three, so the comparison using string metric was
done but in the original experiment we used five and six instead of depth equal to three. If
the similarity is above the threshold, the string will be taken as a clone pair. Instead of using
vocabulary as in our initial experiment, we compare the similar structure of subgraph found
and it is recorded in the table above.

As mentioned before, we assumed that all elements of the subtree were treated as an
instance i.e. including the node name, attribute and value, etc. We took all the elements as a
string for simplicity in order to calculate the similarities of the set of instance in fragment 1
i.e. set A and the set of instance of fragment 2 i.e. set B. The last stage of the code clone
detection would be the post-processing. At this stage, all clones will be extracted from the
original code for further analysis.

Code Clone Detection Using String Based Tree Matching Technique

293

<a>

<c>My name is Marry</c>

Fragment 1

‘ 1 toString()

<a><c>My name is Marry</c> <a><c>My name is
 Bob</c>
-N

Compute string similarity

Fig. 9. A pair of source code fragment classified as nearly identical

5.5 Clone detection algorithm

The previous subtopics explained the process of the proposed clone detection. The process

can be summarized into general algorithm in Fig. 10:

Variable: threshold, p, minNode.

begin

Step 1: Define parameter threshold, p, minNode.

Step 2: Convert all files of system A and system B into XML and clean files
Step 3: Generate frequent subgrapghs and record in cross table, D.

Step 4: For all subgraphs in D,

begin-while

294 Semantic Web

Step 4.1: For all XML code file in system A
begin-while
Step 4.1.1: For all XML code file in system B
begin-while
Step 4.1.1.1: - read XML nodes as string
- compute similarity using string
metric.
Step 4.1.1.2: If simm> threshold, select string
as clone.
end-while
end-while
end-while
Step 6: Post-processing. Extract all clones.
Step 7: Determine program which highly in similarity.

end

Fig. 10. Clone Detection Algorithm

6. Experimental Result and Discussions

This chapter primarily presents the results obtained by searching for clone pairs using a
methodology inspired from ontology mapping works. As mentioned in the previous
chapter, in the ontology mapping work, the author used maximal common subgraph in the
first layer and the calculating of the instances similarities using Jaccard coefficient. So in our
methodology, instead of using maximal common subgraph, we are using frequent common
subgraph miner as the maximal common subgraph technique is frequently reported as NP-
complete problem.

Generally, methodology consists of four main stages, i.e. preprocessing stage, frequent
subtree generation using frequent subgraph miner, subtree similarity computation, and
extraction of clone pairs and analysis. The frequent subtree mining in this work is taken as
the process of getting candidate cloned pairs which have similar subtree structure by only
taking into account the node tags and omitting any other elements of the tree such as
attributes, labels or values of the tree.

Before we discuss in depth about the result of code clone detection, we will discuss the
experiment that has been carried out in this project. The following first two subchapters will
discuss the pre-processing stage. In this stage, we do the preparation where the original
source code is transformed into inexpensive standardized form and a representation of web
source programs in order to induce the data into the frequent subgraph miner.

6.1 Data Representation

A few group of system files were used for testing purposes. We divided the data into three
different sizes of data; i.e. small data size, medium size, and large size where all the
programs were taken from open sources web applications. The original web program was in
HTML, ASP and PHP format to test the portability of our system where our system is

Code Clone Detection Using String Based Tree Matching Technique 295

considered portable if it managed to process different types of web programming
languages.

As mentioned before, all programs need to be transformed into a standard form of program.
In our system, we transformed the programs into XML format where the transformations
were inexpensive. This was because we needed to make sure that the entire program was in
a valid form of tagging so that we could extract all the tagging names of each XML tree.

<?php

Sconn=mysqgl connect ("localhost","","");

$db= mysql select db("inventory"); (a) Original PHP code
?>

<!DOCTYPE HTML PUBLIC "-//W3C//DID HTML 4.0 Transitional//EN"
"http://www.w3.0rg/TR/REC-html40/loose.dtd">
<HTML>
<HEAD>
<!-- Converted by AscToTab 4.0 - fully registered version -->
<TITLE>Converted from "C:\Documents and Settings\DiLLa
DiLLoT\Desktop\dbase.php"</TITLE>
<META NAME="Generator" CONTENT="AscToHTM from www.jafsoft.com">
</HEAD>
<BODY BGCOLOR="white">

<!-- User-specified TABLE structure -->

<TABLE ID="table 1" BORDER=2 CELLSPACING=0 CELLPADDING=2>
<TR VALIGN="TOP">

<TD>&1t; ?php

Sconn=mysql connect ("localhost","","");

Sdb= mysqgl select db("inventory");

?>

</TD>

</TR>

</TABLE>

<!-- end of user-specified TABLE structure -->

<!-- Converted by AscToTab 4.0 - fully registered version -->
</BODY>
</HTML> (b) Generated HTML code

Fig. 11. Transformation of original PHP code into HTML code

6.1.1 Original Source Programs into XML Format

The first step for data normalization is by converting all programs into the HTML format.
This is to make sure that all XML documents generated are in a valid form of tagging. As for
now, the process is done by using a freeware tool called AscToTab which can transform any
form of text into HTML or RTF format. This stage needs to be done manually. After all the

296 Semantic Web

transformations are done, by using our system, the HTML programs will be converted into
XML documents for further processes. For any program which is not an HTML program e.g.
PHP and ASP, the programs are treated as text files. Transformation using the tool is done
by applying formatting tags such as
, <p>, etc onto the text code. Fig. 11 shows an
example of an original source code transformation into HTML. After transformation into
HTML, the code is then converted into XML to ensure their validity. This process can be
done automatically using our system where it provides a function to convert HTML into
XML. Fig. 12 shows a result of converting HTML into XML.

<?xml version="1.0" encoding="iso-8859-1" 2>

<root>
<doctype>HTML PUBLIC "-//W3C//DTD HTML 4.0
Transitional//EN" "http://www.w3.0rg/TR/REC-html40/loose.dtd"</doctype>

<html>
<head>
<comment>Converted by AscToTab 4.0 - fully registered version</comment>
<title>

<text>Converted from "C:\Documents and Settings\DiLLa
DiLLoT\Desktop\dbase.php"</text>
</title>
<meta NAME="Generator" CONTENT="AscToHTM from www.jafsoft.com" />
</head>
<body BGCOLOR="white">
<comment>User-specified TABLE structure</comment>
<table ID="table 1" BORDER="2" CELLSPACING="0" CELLPADDING="2">
<tr VALIGN="TOP">
<td>
<text>< ?php
Sconn=mysql connect ("localhosté", " ", " ") ;
Sdb= mysql select db ("inventory"); ?></text>
</td></tr>
</table>
<comment>end of user-specified TABLE structure</comment>
<comment>Converted by AscToTab 4.0 - fully registered version</comment>
</body>
</html>

</root>

Fig. 12. XML form of the previous HTML code

6.1.2 Subtree Mining Data Representation

XML representation is not suitable to be fed directly into our frequent subgraph miner. So,
as the solution we need to represent the tree structure into a simpler form of data. This is
important so as to reduce the complexity of the mining process.

Code Clone Detection Using String Based Tree Matching Technique 297

The simplest way is by representing the trees as a node and edge lists. Before generating the
data, we extract all node names or tagging in XML code and treat them as a bag of concept
or vocabulary, as had been used in Project I. The subgraph mining data is represented as a
list of nodes and edges as in Figure 13 below. In the figure, t represents tree, v represents
vertex and e represents edge. Label of node in figure below represents the node name or
tagging of the XML. But instead of putting the node name in the list, we put the index of
vocabulary as we had explained before.

t # <name of the graph>
v 0 <label of node 0>

v 1 <label of node 1>

e <node a> <node b> <edge label>

e <node x> <node y> <edge label>

Fig. 13. XML form of the previous HTML code

] text

] title

] a href

I'p

] hl

] meta http-equiv
] head

o Ul W N O

(a) Vocabulary/ Bag of concepts

s1.XML 10.xml
1

< < < <t
W N P O
w O o

® @
co.
w N =
= e

(b) A tree represented as list of vertices and edges
Fig. 14. Example of tree as vertices and edges list

Fig. 14 shows the example of vocabulary generated and the tree representation following the
format in Fig. 13. In example below, [v 0 1] means that node name for vertex0 is title and [e 0
1 1] means there is an edge between vertex0 and vertexl. The last digit 1 is the default
labelling for all edges since we are working with trees instead of graphs, so we need to omit
any labelling of all edges. Data in Fig. 14(b) will be fed in the frequent subgraph miner.

298

Semantic Web

OO0 00<<<g < o
NV WkE P OB WN P O #*
(R R

[2.0]

0

26
11
10
3

O 00099 <SS =
NV WHE R O®WNKEF O #*

S W R oo
o e

1
[2.0]

0

28
11
10
3

OO0 0D<<d S
NV WR, PO WND R O =

s W RN O
N

1
[2.0]

w |l

XML 21.xml,s1.XML 10.xml

XML 21.xml,s1.XML 10.xml

XML 20.xml,s1.XML 11.xml

(a) Example of frequent subtrees

generated

GSpan subgraph miner found 76
frequent fragments
>>SIMILAR SUB TREE CROSS-TABLE ; x=

for system 1, y= for system 2

BetweenFile([0][0]:77,72,70,68,66,64,
38,36,34,32,30,

BetweenFile([0][1]:176,171,169,155,15
3,151,149,147,145,143,141,139,137,13
2,130,128,116,114,112,110,108,106,10
4,102,100,93,91,89,87,85,77,72,70,68
,66,64,56,54,52,50,48,46,44,42,40,38
,36,34,32,30,26,24,

BetweenFile([1][0]:192,184,164,162,16
0,120,118,95,77,72,70,68,66,64,62,60
,58,38,36,34,32,30,28,

BetweenFile([1]([1]:77,72,70,68,66,64,
38,36,34,32,30,

(b) Example of cross- table containing subtree id

shared between different files

Fig 15. Frequent subtrees generated by graph miner

6.2 Frequent Subtree Mining
As we mentioned before, we used four well-known frequent subgraph miners to get similar
substructure of trees that existed between the files. We induced the data as in the previous
example into the miner and the miner will generate all frequent subtrees or substructures

Code Clone Detection Using String Based Tree Matching Technique 299

that existed among the files. There are a few configurations that need to be set before doing
the mining. The configurations are:

(a) MinimumFrequencies sets the minimum frequency (support) a subgraph must have to get
reported. In the experiment, we set the value as low as 10% so that the miner will be capable
to find all similar substructures even though the appearances in the codes are not so
frequent,

(b) MinimumFragmentSize sets the minimum size (in edges) a frequent subtree must have in
order to be reported,

(c) MaximumFragmentSize sets the maximum size (in edges) a frequent subtree can have in
order to be reported.

In the experiment, we set the value of (b) and (c) with 5 edges in size. We selected this size
after some preliminary experiments where this value is capable to generate the average
number of subtrees. So instead of using minimal depth of a subtree, we used the minimum
and maximum fragment size. After executing the graph miner, a list of frequent subtree will
be generated from the system as well as the original tree that holds that particular subtree.
So to summarize, we can generate a cross-table which contains all subtrees IDs that were
shared among different files in different systems.

String s = <root><doctype>HTML PUBLIC "-//W3C//DTD HTML 4.0
Transitional//EN" "http://www.w3.0rg/TR/REC-
html40/loose.dtd"</doctype><html><head><title><text>Converted
from "C:\Documents and Settings\DiLLaDiLLoT\Desktop\

dbase.phpé"</text></head></root>

<root>

<doctype>HTML PUBLIC ",; -//W3C//DTD HTML 4.0
Transitional//EN" ",; http://www.w3.org/TR/REC-
html140/loose.dtd" </doctype>

<html>

<head>
<comment>Converted by AscToTab 4.0 - fully registered
version</comment>
<title>
<text>Converted from ",; C: \Documents and
Settings\DiLLa DiLLoT\Desktop\dbase.phpé"</text>
</title>
<meta NAME="Generator" CONTENT="AscToHTM from
www.Jjafsoft.com" />
</head>

</root>

Fig. 16. Code fragment containing original frequent subtree

300 Semantic Web

6.2.1 String Metric Computation

The most challenging part of the system is to extract the original subtree from the original
XML documents according to the frequent subtree generated above. Once the original
subtree is successfully extracted, it will be taken as a string so that we can compute the
similarities of the subtree with another subtree from another file using a string metric. We
realized that this technique is suitable in finding cloned pairs. Instead of using frequent
subgraph miner, we used vocabulary element to find the subtree rooted with a node which
has a similar name with the vocabulary element. As we discussed before, it was quite
expensive to do it this way. So, for the similarity computation, we used all the string metric
that were stated in section 4 before. In the following example, we will show how the subtree
is represented as a string before we can compute the similarity. Consider if the bold italic
lines match the frequent sub tree, the string equivalent would be as in Fig. 16.

6.3 Experimental Setup

The implementation process was done using Java language as the base language. To support
the program, we used a Java library named Chilkat Java which can be found available on
the Internet. This library offers a few features like XML parser and tree walker ability. All
process of converting web pages into standard XML and generating the vocabulary for
mapping purposes were done automatically in the program. All executions were done using
an Intel® Core Duo 1.86GHz machine with 1.5 GB of RAM.

The following settings were meant for the Ontology-Winkler Similarity part. We set the
most lenient values for all those parameter:

(a) The similarity threshold, 0 is set to 0.7

(b) Define the similarity, Sim as Sim(sy,s,)= Comm(sy,s,)— Diff (s1,s,) + winkler(s;,s,) where
Comm(sy,s;) is the commonality value between two strings and Diff(sy,s;) is the difference
between two strings

(c) Omit the Winkler(sy,s;) calculation from the equation to simplify the programming. Value
for Winkler is set to 0.1

(d) Value of parameter p is set to 0.6 as the original author of this technique reported that
the result for their experiment works best with this value.

6.4 Experimental Results

This subsection is mainly to present the result of our code clone detection using all the
metrics that have been discussed in the previous chapter. In this experiment, we will
consider any valid candidate clone as a clone even though that code fragment is in fact an
accidental clone.

Several experiments were conducted to investigate the performances of our clone detection
program. The experiments were executed using the same parameters setting and data
setups as in the previous subchapter. We conduct the experiment using two open source
management systems as (a) Module 1.1 - 54.9Mb(size), >4000 files, (b) Tutor 1.55 -
49.7Mb(size), >3000 files.

For the test, we randomly selected the files from these two systems for comparison where
the test is done on a different number of files. By using 1.5Gb RAM processor, the number of
files that can be processed are quite limited and it only allowed a small size of detection

Code Clone Detection Using String Based Tree Matching Technique 301

which is less than 100 files. We split the testing in three groups of testings. Table 2 shows
information of data being used for the testing process.

Number of Number of files(NOF) Line of codes(LOC)
testings

Testing #1 10 259 lines

Testing #2 30 575 lines

Testing #3 50 1200 lines

Table 2. Data for program testing

As it is shown , our experiment is basically on a different subgraph miner and different
string metric or similarity coefficients. The following figure shows an example of the
realtime output of detection using our program which has been written in Java.

>>COMPARE FILES:

*Compare file between:
D:/Documents/MASTER/4thSEM/Project II/Code Clone
Detection/procl/XML 10.xml
D:/Documents/MASTER/4th SEM/Project II/Code Clone
Detection/proc2/XML_ 20.xml
#1:
<head>Thisisatest<title>Thisisatest<text>ThisisatestThisisatestThis
isatest<meta><meta>
<head>Thisisatest<title>Thisisatest<text>ThisisatestThisisatestThis
isatest<meta><meta>

=1.0

*Compare file between:

D:/Documents/MASTER/4th SEM/Project II/Code Clone
Detection/procl/XML 10.xml

D:/Documents/MASTER/4th SEM/Project II/Code Clone
Detection/proc2/XML 20.xml

#1:
<head>Thisisatest<title>Thisisatest<text>ThisisatestThisisatestThis
isatest<meta><meta>
<head>Thisisatest<title>Thisisatest<text>ThisisatestThisisatestThis
isatest<meta><meta>

Fig. 17. Realtime output from the clone detection system

We show the result of the experimental testing using our default subgraph miner which is
GSpan miner. As mentioned before, the test is done on three different sizes of files as shown
above. Table 3 shows some of the graphical output using Jaro Winkler and Levenshtein
Distance as the string metric.

302 Semantic Web

Recall and Precision for GSpan-
JaroWinkler

80 __.4.*._ —8— Recall

40 Precision

Test#l Test#2 Test#3

Document size

Fig. 18. Recall and precision for GSpan-Jaro Winkler

Fig. 18 to Fig. 23 show the result of using GSpan frequent subgraph miner. As we can see
from the diagram, mining the similar structure using GSpan miner generated almost similar
graph trends where the value generated is almost similar between these two string metrics.

As shown in the figure, all cloned pairs that were found by our code clone detection system
were all positive clones. This situation yielded our precision to be 100% for small size or
bigger data. But there was a trade-off for the recall. Our system only managed to find a
small number of clones, where most of the clones found were identical clones, but we can
say the limitation is on searching for similar clones.

Another big issue shown in the data above is the computational time taken was rapidly
increasing as the number of documents increase. This is practically not feasible for detecting
cloned pairs. However, we may need more testing done to find out whether the line will
keep increasing towards the infinite as the number of document increased.

Robustness for GSpan-JaroWinkler

190
100
80 J—

60 . —8— [dentical

40 Similar

20 —
0 T T

Test#l Test#2 Test#3

Document size

Fig. 19. Robustness of GSpan-Jaro Winkler

Code Clone Detection Using String Based Tree Matching Technique 303

Computational time for GSpan-JaroWinkler

3000
2000
1000

0 -/'/

Test#1 Test#2 Test#3

seconds

/ | —=— Time taken

Document size

Fig. 20. Computational time for GSpan-JaroWinkler

Recall and Precision for GSpan-Levenshtein
R Distance
12\0
100 +— —
80 T —8—8— [& Recll

60 ..
40 Precision

20
0 T T

Test#l Test#2 Test#3

Document size

Fig. 21. Recall and Precision for GSpan-Levenshtein Distance

304 Semantic Web

Robustness for GSpan-Levenshtein Distance

150
100

80 - —a— g ——Identical
60 Simil
40 imilar

20
0 T T

Test#l Test#2 Test#3

Document size

Fig. 22. Robustness for GSpan-Levenshtein Distance

Computational time for GSpan-Levenshtein

Distance
3000
% 2000 |+Time taken
2 1000 -
0 -/'/

Test#l Test#2 Test#3

Document size

Fig. 23. Computational time for GSpan-Levenshtein Distance

Generally, there is not much difference in the trends of graphs using different frequent
subgraph miner. The major difference is on the overall computational time of the detection
as different frequent subgraph miner offers different performance in generating frequent
subgraph. The result shows that Gaston offers the best computational time, followed by
gSpan, FFSM and MoFa.

6.5 Limitation of the Code Clone Detection Program

As we can see, the overall result of our code clone detection program did not show the good
result that we had expected. In general, we noticed that for each and every subgraph miner
and string metric used, the computational time increased rapidly as the number of source
codes increased. This is practically not healthy for code clone detection or for any
experiments related to this area, e.g. plagiarism.

Code Clone Detection Using String Based Tree Matching Technique 305

Another significant concern is the results showed a big trade-off between the recall and
precision. From the precision view, the program managed to achieve very good results but
not from the recall view, where only a part of all expected clones were found during the
detection. For analysis purposes, we identified a few points that may affect the overall
results. The points are:

(a) The computational time taken may be affected by the pre-processing time taken to
convert the original code into the XML form.

(b) It may also be affected by processing taken by sub graph miner. The miner most
probably will generate all subtrees from the code subtrees which sometimes reached
thousands of subtree even for only a small number of source code being tested before it
identifies which subtrees are the frequent ones.

(c) We need a higher specification of a machine to perform the test as the current machine is
only capable to test less than 100 source files per time. We have initially tested more than
100 times, but the computational time had gone to infinite.

(d) The program is only capable to detect identical clones and near identical clones since
our program is using the string-based detection. As we know the strength of string-based
detection is it is able to detect more languages i.e. it is language independent, but the
weakness is in terms of the robustness where it is only able to detect identical and near
identical clones.

(e) The clones found were always the same size as the particular testing since we already
predefined the fragment size of frequent subtree in the frequent subgraph miner. So, there
might be similarities between the clones and the differences may only be a node in a subtree.
Fig. 24 shows the illustration of the scenario. Assume that the shaded part of the tree is
taken as a frequent subtree by the subgraph miner and detected as a clone in a source code.
It shows there are nodes in both frequent subtrees that intersect and the subtrees actually
can be taken as a single clone but our program was unable to do that.

Two clone sub trees
in a same source code
"""""""""""""""" 'S
o & ‘

Fig. 24. Two close clones cannot be taken as a single clone

306 Semantic Web

7. Conclusion

As the number of web pages extensively increases across the time, the number of possible
clones among source codes may also increase. The programmer is always trying to find the
easiest way to write the coding and that might result to cloning and would risk the
maintenance of the system. As we know, the overall aim of this project is to be familiar with
the ability of ontology mapping technique to solve the clone detection between files of
different systems. There are already many researches that had done the code clone detection
but none of them had used the ontology mapping as part of the detection.

From the findings that we get from the previous chapter, we know that there is a possibility
of using a mapping technique to detect clones. Somehow the results shown are not so good
and of course the next process should be to refine the proposed methodology in order to get
a better result. Below are the strengths of our system:

(a) Capable in finding structural similarity among XML tree, i.e. structural clone,

(b) Capable in finding structural similarity among XML tree, i.e. structural clone.

In order for us to get a good result of clone detection, we need to do some refinements to the
methodology. Below are a few things that can be considered as the project moves on in
aiming for a better recall and precision such as:

(a) Refine the process of generating vocabulary

(b) Pre-processing phase where original codes were transformed into standard codes need
to be refined to make sure all scripting and dynamic web pages lines of code e.g. PHP and
ASP code clones can be detected as well

(c) In the process of mapping the tags using vocabulary, enhance the searching towards the
end of every single page

(d) Manipulate the subgraph miner so that number subtree generated would be lenient
without having any redundancy of subtrees, etc.

8. Acknowledgements

This work was supported by the Ministry of Science & Technology and Innovation (MOSTI),
Malaysia, and the Research Management Center, Universiti Teknologi Malaysia (UTM),
under Vot 79266.

9. References

Al-Ekram, R.; Kapser, C. & Godfrey, M. (2005). Cloning by Accident: An Empirical Study of
Source Code Cloning Across Software Systems, International Symposium on
Empirical Software Engineering

Antoniou, G. & Van Harmelen, F. (2003). Web Ontology Language: OWL, In Handbook on
Ontologies in Information Systems, 67-92

Bailey, J. & Burd, E. (2002). Evaluating Clone Detection Tools for Use during Preventative
Maintenance, Proceeding Second IEEE International Workshop Source Code Analysis and
Manipulation (SCAM '02), IEEE, 36-43

Bailey, J. & Burd, E. (2002). Evaluating Clone Detection Tools for Use during Preventative
Maintenance, Proceeding Second IEEE International Workshop Source Code Analysis and
Manipulation (SCAM '02), IEEE, 36-43

Code Clone Detection Using String Based Tree Matching Technique 307

Baker, B. S. (1995). On finding duplication and near- duplication in large software system, In
Proc. 2nd Working Conference on Reverse Engineering, 1995, Toronto, Ont., Canada,
IEEE, 86-95

Baxter, I.; Yahin, A.; Moura, L. & Anna, M. S. (1998). Clone detection using abstract syntax
trees. In Proc. Intl. Conference on Software Maintenance. Bethesda, MD, USA, IEEE,
368-377

Baxter, I.D. & Churchett, D. (2002). Using Clone Detection to Manage a Product Line, In
ICSR7 Workshop

Bellon, S.; Rainer, K. & Giuliano, A. (2007). Comparison and Evaluation of Clone Detection
Tools, In Transactions on Software Engineering, 33(9), 577-591

Benassi, R.; Bergamaschi, S.; Fergnani, A. & Misell, D. (2004). Extending a Lexicon Ontology
for Intelligent Information Integration, European Conference on Artificial Intelligence
(ECAI2004), Valencia, Spain, 278-282

Borgelt, B. & Berthold, M. R. (2002). Mining Molecular Fragments: Finding Relevant
Substructures of Molecules, IEEE International Conference on Data Mining (ICDM
2002, Maebashi, Japan), 51-58 IEEE Press, Piscataway, NJ, USA

Brank,]J.; Grobelnik, M. & Mladeni¢, D. (2005). A survey of ontology evaluation techniques,
In SIKDD 2005 at Multiconference IS 2005

Breitman, K. K., Casanova, M. A. & Truszkowsk, W. (2006). Semantic Web: concepts,
technologies and applications, Springer

Calasanz, R.T,; Iso,].N.; Bejar, R, Medrano, P.M. & Soria, F.Z. (2006). Semantic
interoperability based on Dublin Core hierarchical one-to-one mappings,
International Journal of Metadata, Semantics and Ontologies, 1(3), 183-188

Calefato, F.; Lanubile, F.; Mallardo, T. (2004). Function Clone Detection in Web
Applications: A Semiautomated Approach, Journal Web Engineering, 3(1), 3-21

De Lucia, A.; Scanniello, G. & Tortora, G. (2004). Identifying Clones in Dynamic Web Sites
Using Similarity Thresholds, Proc. Intl. Conf. on Enterprise Information Systems
(ICEIS'04), 391-396

Di Lucca, G. A.; Di Penta, M,; Fasilio, A. R. & Granato, P. (2001). Clone analysis in the web
era: An approach to identify cloned web pages, Seventh IEEE Workshop on Empirical
Studies of Software Maintenance, 107-113

Di Lucca, G. A.; Di Penta, M. & Fasolino, A. R. (2002). An Approach to Identify Duplicated
Web Pages, COMPSAC, 481-486

Dou, D. & McDermott, D (2005). Ontology Translation on the Semantic Web, Journal on Data
Semantics (JoDS) I, 35-57

Ducasse, S.; Rieger, M. & Demeyer, S. (1999). A Language Independent Approach for
Detecting Duplicated Code, Proceeding International Conference Software Maintenance
(ICSM "99)

Ehrig, M. (2006). Ontology Alignment: Bridging the Semantic Gap, New York, Springer

Ehrig, M. & Sure, Y. (2000). Ontology Mapping - An Integrated Approach, Lecture Notes in
Computer Science, No. 3053. 76-91

Estival, D.; Nowak, C. & Zschorn, A. (2004). Towards Ontology-Based Natural Language
Processing, DF/RDFS and OWL in Language Technology: 4th Workshop on NLP and
XML (NLPXML-2004), ACL 2004, Barcelona, Spain

Fox, M. S.; Barbuceanu, M.; Gruninger, M. & Lin,]. (1998). An Organization Ontology for
Enterprise Modeling, In Simulating Organizations: Computational Models of

308 Semantic Web

Institutions and Groups, M. Prietula, K. Carley & L. Gasser (Eds), Menlo Park CA,
AAAI/MIT Press, 131-152

Gasevié, D. & Hatala, M. (2006). Ontology mappings to improve learning resource search,
British Journal of Educational Technology, 37(3), 375-389

Gruber, T. R. (1993). A translation approach to portable ontologies, Knowledge Acquisition.
5(2), 199-220

Huan, J.; Wang, W. & Prins,]. (2003). Efficient Mining of Frequent Subgraph in the Presence
of Isomorphism, in Proceedings of the 3rd IEEE International Conference on Data
Mining (ICDM), pp. 549-552

Ichise, R. (2008). Machine Learning Approach for Ontology Mapping Using Multiple
Concept Similarity Measures, Seventh IEEE/ACIS International Conference on
Computer and Information Science (icis 2008), IEEE, 340-346

Visser, P. R. S. & Tamma, V. A. M. (1999). An experience with ontology-based agent
clustering, Proceedings of IJCAI-99 Workshop on Ontologies and Problem-Solving
Methods (KRR5), Stockolm, Sweden, Morgan Kaufmann, 1-12

Jiang, L.; Misherghi, G.; Su, Z.; Glondu, S. (2007). DECKARD: Scalable and Accurate Tree-
based Detection of Code Clones, In Proc. 29th IEEE International Conference on
Software Engineering (ICSE 2007), IEEE, 96-105

Jin, T,; Fu, Y,; Ling, X.; Liu, Q. & Cui, Z. (2007). A Method of Ontology Mapping Based on
Sub tree Kernel, IITA, 70-73

Kamiya, T.; Kusumoto, S. & Inoue K. (2002). CCFinder: a multilinguistic token-based code
clone detection system for large scale source code, IEEE Transactions on Software
Engineering, 28(7), 654-670

Kapser, C. & Godfrey, M. W. (2006). Clones considered harmful, In Working Conference on
Reverse Engineering

Komondoor, R. & Horwitz, S. (2001). Using slicing to identify duplication in source code, In
Proceedings of the 8th International Symposium on Static Analysis, July 16-18, 2001,
Paris, France, In SAS. 40-56

Kontogiannis, K.; De Mori, R.; Merlo, E.; Galler, M. & Bernstein, M. (1996). Pattern matching
for clone and concept detection, Automated Soft. Eng., 3(1/2), 77-108

Krinke, J. (2001). Identifying Similar Code with Program Dependence Graphs, Proceedings
of the Eight Working Conference on Reverse Engineering, October 2001, Stuttgart,
Germany, IEEE, 301-309

Lanubile, F. & Mallardo, T. (2003). Finding Function Clones in Web Applications, Proceeding
Conference Software Maintenance and Reengineering, 379- 386

Li, Z.; Lu, S.; Myagmar, S. & Zhou, Y. (2006). CP-Miner: finding copy-paste and related bugs
in large-scale software code, IEEE Computer Society Transactions on Software
Engineering, 32(3), 176-192

Maedche, A. & Staab, S. (2002). Measuring Similarity between Ontologies, Lecture Notes in
Computer Science, 251

Mayrand, J. & Leblanc, C. (1996). Experiment on the Automatic Detection of Function
Clones in a Software System Using Metrics, In Proc. Conference on Software
Maintenance

McGuinness, D. L. (1999). Ontologies for Electronic Commerce, Proceedings of the AAAI "99
Artificial Intelligence for Electronic Commerce Workshop, Orlando, Florida

Code Clone Detection Using String Based Tree Matching Technique 309

Nijssen, S. & Kok, J. N. (2004). A Quickstart in Frequent Structure Mining can make a
Difference, LIACS Technical Report

Noy, N. F. (2004). Semantic Integration: A Survey Of Ontology-Based Approaches, In ACM
SIGMOD Record, Special Section on Semantic Integration, 33(4), 65-70

Qian, P. & Zhang, S.(2006a). Ontology Mapping Approach Based on Concept Partial
Relation, In Proceedings of WCICA

Qian, P. & Zhang, S. (2006b). Ontology Mapping Meta-model Based on Set and Relation
Theory, IMSCCS (1), 503-509

Koschke, R. (2006). Survey of Research on Software Clones, Dagstuhl Seminar Proceedings

Rajapakse, D. C. & Jarzabek, S. (2005). An Investigation of Cloning in Web Applications, 5th
Intl Conference on Web Engineering (ICWE'05), Washington, DC, IEEE, 252-262

Roy, C. K. & Cordy, J. R. (2007). A Survey on Software Clone Detection Research, Technical
Report 2007-541, School of Computing, Queen's University, Canada

Sabou, M.; D'Aquin, M. & Motta, E. (2006). Using the semantic web as background
knowledge for ontology mapping, ISWC 2006 Workshop on Ontology Mapping

Schleimer, S.; Wilkerson, D. S. & Aiken, A. (2003). Winnowing: Local Algorithms for
Document Fingerprinting, Proceeding SIGMOD International Conference Management
of Data, 76-85

Stevens, R. D.; Goble, C. A. & Bechhofer, S. (2000). Ontology-based knowledge
representation for bioinformatics, Brief Bioinform 1(4), 398-416

Stoilos, G.; Stamou, G. & Kollias, S. (2005). A String Metric for Ontology Alignment, in
Proceedings of the ninth IEEE International Symposium on Wearable Computers, Galway,
624- 237

Stumme, G. & Maedche, A. (2001). FCA-Merge: BottomUp Merging of Ontologies, IICAI,
225-234

Stutt, A. (1997). Knowledge Engineering Ontologies, Constructivist Epistemology,
Computer Rhetoric: A Trivium for the Knowledge Age, Proceedings of Ed-Media '97,
Calgary, Canada

The World Wide Web Consortium Official Site at www.w3c.org

Todorov, K. (2008). Combining Structural and Instance-based Ontology Similarities for
Mapping Web Directories, The Third International Conference on Internet and Web
Applications and Services

Ueda, Y.; Kamiya, T.; Kusumoto, S. & Inoue, K. (2002). Gemini: Maintenance support
environment based on code clone analysis, In Proceedings of the 8th IEEE Symposium
on Software Metrics (METRICS'02), Ottawa, Canada, 67-76

Ueda, Y.; Kamiya, T.; Kusumoto, S. & Inoue, K. (2002). On detection of gapped code clones
using gap locations, In Proceedings 9th Asia-Pacific Software Engineering Conference
(APSEC'02), Gold Coast, Queensland, Australia, 327-336

Vallet D.; M. Fernandez & P. Castells (2005). An Ontology-Based Information Retrieval
Model, Proc. Second European Semantic Web Conf. (ESWC '05)

Visser, P. R. S,; Jones, D. M.; Beer, M. D.; Bench-Capon, T.]. M., Diaz, B. M. & Shave, M. J. R.
(1999). Resolving Ontological Heterogeneity in the KRAFT Project, In Proceedings of
Database and Expert Systems Applications 99, Lecture Notes in Computer Science
1677, Berlin, Springer, 688-697

Winkler, W. E. (1999). The State of Record Linkage and Current Research Problems,
Statistical Society of Canada, Proceedings of the Section on Survey Methods, 73-79

310 Semantic Web

Yan, X. & Han, J. (2002). gSpan: Graph-Based Substructure Pattern Mining, Proc. 2002 of Int.
Conf. on Data Mining (ICDM'02), Expanded Version, UIUC Technical Report,
UIUCDCS-R-2002-2296

Zhang, Z.; Xu, D. & Zhang, T. (2008). Ontology Mapping Based on Conditional
Information Quantity, IEEE International Conference on Networking, Sensing and
Control, 2008, ICNSC 200, Sonya, IEEE, 587-591

