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1. Introduction 

Over the past two decades several attempts have been made to address the problem of face 
recognition and a voluminous literature has been produced. Current face recognition 
systems are able to perform very well in controlled environments e.g. frontal face 
recognition, where face images are acquired under frontal pose with strict constraints as 
defined in related face recognition standards. However, in unconstrained situations where a 
face may be captured in outdoor environments, under arbitrary illumination and large pose 
variations these systems fail to work. With the current focus of research to deal with these 
problems, much attention has been devoted in the facial feature extraction stage. Facial 
feature extraction is the most important step in face recognition. Several studies have been 
made to answer the questions like what features to use, how to describe them and several 
feature extraction techniques have been proposed. While many comprehensive literature 
reviews exist for face recognition a complete reference for different feature extraction 
techniques and their advantages/disadvantages with regards to a typical face recognition 
task in unconstrained scenarios is much needed. 
In this chapter we present a comprehensive review of the most relevant feature extraction 
techniques used in 2D face recognition and introduce a new feature extraction technique 
termed as Face-GLOH-signature to be used in face recognition for the first time (Sarfraz and 
Hellwich, 2008), which has a number of advantages over the commonly used feature 
descriptions in the context of unconstrained face recognition. 
The goal of feature extraction is to find a specific representation of the data that can 
highlight relevant information. This representation can be found by maximizing a criterion 
or can be a pre-defined representation. Usually, a face image is represented by a high 
dimensional vector containing pixel values (holistic representation) or a set of vectors where 
each vector summarizes the underlying content of a local region by using a high level 
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transformation (local representation). In this chapter we made distinction in the holistic and 
local feature extraction and differentiate them qualitatively as opposed to quantitatively. It 
is argued that a global feature representation based on local feature analysis should be 
preferred over a bag-of-feature approach. The problems in current feature extraction 
techniques and their reliance on a strict alignment is discussed. Finally we introduce to use 
face-GLOH signatures that are invariant with respect to scale, translation and rotation and 
therefore do not require properly aligned images. The resulting dimensionality of the vector 
is also low as compared to other commonly used local features such as Gabor, Local Binary 
Pattern Histogram ‘LBP’ etc. and therefore learning based methods can also benefit from it.  
A performance comparison of face-GLOH-Signature with different feature extraction 
techniques in a typical face recognition task is presented using FERET database. To 
highlight the usefulness of the proposed features in unconstrained scenarios, we study and 
compare the performance both under a typical template matching scheme and learning 
based methods (using different classifiers) with respect to the factors like, large number of 
subjects, large pose variations and misalignments due to detection errors. The results 
demonstrate the effectiveness and weakness of proposed and existing feature extraction 
techniques. 

 
2. Holistic Vs Local Features-What Features to Use? 

Holistic representation is the most typical to be used in face recognition. It is based on 
lexicographic ordering of raw pixel values to yield one vector per image. An image can now 
be seen as a point in a high dimensional feature space. The dimensionality corresponds 
directly to the size of the image in terms of pixels. Therefore, an image of size 100x100 pixels 
can be seen as a point in a 10,000 dimensional feature space. This large dimensionality of the 
problem prohibits the use of any learning to be carried out in such a high dimensional 
feature space. This is called the curse of dimensionality in the pattern recognition literature 
(Duda et al, 2001). A common way of dealing with it is to employ a dimensionality 
reduction technique such as Principal Component Analysis ‘PCA’ to pose the problem into a 
low-dimensional feature space such that the major modes of variation of the data are still 
preserved.  
Local feature extraction refers to describing only a local region/part of the image by using 
some transformation rule or specific measurements such that the final result describes the 
underlying image content in a manner that should yield a unique solution whenever the 
same content is encountered. In doing so, however it is also required to have some degree of 
invariance with respect to commonly encountered variations such as translation, scale and 
rotations. A number of authors (Pentland et al, 1994; Cardinaux et al, 2006; Zou et al, 2007) 
do not differentiate the holistic and local approaches according to the very nature they are 
obtained, but rather use the terms in lieu of global (having one feature vector per image) and 
a bag-of-feature (having several feature vectors per image) respectively. Here we want to 
put the both terms into their right context, and hence a holistic representation can be 
obtained for several local regions of the image and similarly a local representation can still 
be obtained by concatenating several locally processed regions of the image into one global 
vector, see figure 1 for an illustration. An example of the first usage is local-PCA or 
modular- PCA (Gottumukkal and Asari, 2004; Tan and Chen, 2005), where an image is 
divided into several parts or regions, and each region is then described by a vector 
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comprising underlying raw-pixel values, PCA is then employed to reduce the 
dimensionality. Note that it is called local since it uses several local patches of the same 
image but it is still holistic in nature. An example of the second is what usually found in the 
literature, e.g. Gabor filtering, Discrete Cosine Transform ‘DCT’, Local Binary Pattern ‘LBP’ 
etc where each pixel or local region of the image is described by a vector and concatenated 
into a global description (Zou et al, 2007), note that they still give rise to one vector per 
image but they are called local in the literature because they summarize the local content of 
the image at a location in a way that is invariant with respect to some intrinsic image 
properties e.g. scale, translation and/or rotation. 
Keeping in view the above discussion it is common in face recognition to either follow a 
global feature extraction or a bag-of-features approach. The choice, of what is optimal, 
depends on the final application in mind and hence is not trivial. However, there are a 
number of advantages and disadvantages with both the approaches. For instance, a global 
description is generally preferred for face recognition since it preserves the configural (i.e., 
the interrelations between facial parts) information of the face, which is very important for 
preserving the identity of the individual as have been evidenced both from psychological 
(Marta et al, 2006), neurobiological (Schwaninger et al, 2006; Hayward et al, 2008) and 
computer vision ( Belhumeur et al, 1997; Chen et al, 2001) communities. On the other hand, 
a bag-of-features approach has been taken by a number of authors (Brunelli and Poggio, 
1993; Martnez, 2002; Kanade and Yamada, 2003) and shown improved recognition results 
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Fig. 1. Global and bag-of-feature representation for a facial image 
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in the presence of occlusion etc., nonetheless, in doing so, these approaches are bound to 
preserve the configural information of the facial parts either implicitly or explicitly by 
comparing only the corresponding parts in two images and hence puts a hard demand on 
the requirement of proper and precise alignment of facial images.  
Note that while occlusion may be the one strong reason to consider a bag-of-features 
approach, the tendency of preserving the spatial arrangement of different facial parts 
(configural information) is largely compromised. As evidenced from the many studies from 
interdisciplinary fields that this spatial arrangement is in fact quite crucial in order to 
preserve the identity of an individual, we therefore, advocate the use of a global 
representation for a face image in this dissertation, as has also been used by many others.  
One may, however, note that a global representation does not necessarily mean a holistic 
representation, as described before. In fact, for the automatic unconstrained face recognition, 
where there may be much variation in terms of scale, lighting, misalignments etc, the choice 
of using local feature extraction becomes imperative since holistic representation cannot 
generalize in these scenarios and is known to be highly affected by these in-class variations. 

 
3. Holistic Feature Extraction 

Holistic feature extraction is the most widely used feature description technique in 
appearance based face recognition methods. Despite its poor generalization abilities in 
unconstrained scenarios, it is being used for the main reason that any local extraction 
technique is a form of information reduction in that it typically finds a transformation that 
describes a large data by few numbers. Since from a strict general object recognition stand 
point, face is one class of objects, and thus discriminating within this class puts very high 
demands in finding subtle details of an image that discriminates among different faces. 
Therefore each pixel of an image is considered valuable information and holistic processing 
develops. However, a holistic-based global representation as been used classically (Turk and 
Pentland, 1991) cannot perform well and therefore more recently many researchers used a 
bag-of-features approach, where each block or image patch is described by holistic 
representation and the deformation of each patch is modeled for each face class (Kanade 
and Yamada, 2003; Lucey and Chen, 2006; Ashraf et al, 2008). 

 
3.1 Eigenface- A global representation 
Given a face image matrix F of size Y x X, a vector representation is constructed by 
concatenating all the columns of F to form a column vector f


of dimensionality YX. Given a 

set of training vectors 1{ }Np
i if 


 for all persons, a new set of mean subtracted vectors is formed 

using: 
 

, 1,2,....,i i pg f f i N  
 

 (1) 
 
The mean subtracted training set is represented as a matrix 1 2[ , ,..., ]NpG g g g

   . The 

covariance matrix is then calculated using, TGG  . Due to the size of  , calculation of the 
eigenvectors of   can be computationally infeasible. However, if the number of training 
vectors (Np) is less than their dimensionality (YX), there will be only Np-1 meaningful 
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eigenvectors. (Turk and Pentland, 91) exploit this fact to determine the eigenvectors using 
an alternative method summarized as follows. Let us denote the eigenvectors of matrix GTG 
as jv  with corresponding eigenvalues j : 

T
j j jG Gv v 
   (2) 

 
Pre-multiplying both sides by G gives us: T

j j jGG Gv Gv 
  , Letting je Gv

   and substituting 
for   from equation 1: 
 

j j je e  
   (3) 

 
Hence the eigenvectors of   can be found by pre-multiplying the eigenvectors of GTG by G. 
To achieve dimensionality reduction, let us construct matrix 1 1[ , ,..., ]DE e e e

   , containing D 

eigenvectors of  with largest corresponding eigenvalues. Here, D<Np, a feature vector x  

of dimensionality D is then derived from a face vector f


  using: 
 

( )Tx E f f 
   (4) 

 
Therefore, a face vector f


 is decomposed into D eigenvectors, known as eigenfaces. 

Similarly, employing the above mentioned Eigen analysis to each local patch of the image 
results into a bag-of-features approach. Pentland et al. extended the eigenface technique to a 
layered representation by combining eigenfaces and other eigenmodules, such as eigeneyes, 
eigennoses, and eigenmouths(Pentland et al, 1994). Recognition is then performed by 
finding a projection of the test image patch to each of the learned local Eigen subspaces for 
every individual. 

 
4. Local Feature Extraction 

(Gottumukkal and Asari, 2004) argued that some of the local facial features did not vary 
with pose, direction of lighting and facial expression and, therefore, suggested dividing the 
face region into smaller sub images. The goal of local feature extraction thus becomes to 
represent these local regions effectively and comprehensively. Here we review the most 
commonly used local feature extraction techniques in face recognition namely the Gabor 
wavelet transform based features , discrete cosine transform DCT-based features and more 
recently proposed Local binary pattern LBP features.  

 
4.1 2D Gabor wavelets 
The 2D Gabor elementary function was first introduced by Granlund (Granlund, 1978). 
Gabor wavelets demonstrate two desirable characteristic: spatial locality and orientation 
selectivity. The structure and functions of Gabor kernels are similar to the two-dimensional 
receptive fields of the mammalian cortical simple cells (Hubel and Wiesel, 1978). (Olshausen 
and Field, 1996; Rao and Ballard, 1995; Schiele and Crowley, 2000) indicates that the Gabor 
wavelet representation of face images should be robust to variations due to illumination and 
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facial expression changes. Two-dimensional Gabor wavelets were first introduced into 
biometric research by Daugman (Daugman, 1993) for human iris recognition. Lades et al. 
(Lades et al, 1993) first apply Gabor wavelets for face recognition using the Dynamic Link 
Architecture framework. 
A Gabor wavelet kernel can be thought of a product of a complex sinusoid plane wave with 
a Gaussian envelop. A Gabor wavelet generally used in face recognition is defined as (Liu, 
2004): 
 

2 2
2,

2 ,

2
, 2 2

, 2( ) [ ]
u

u

k z
u ik z

u

k
z e e e






 




 
   (5) 

 
where z = (x, y) is the point with the horizontal coordinate x and the vertical coordinate y in 
the image plane. The parameters u and v define the orientation and frequency of the Gabor 

kernel, . denotes the norm operator, and   is related to the standard derivation of the 

Gaussian window in the kernel and determines the ratio of the Gaussian window width to 
the wavelength. The wave vector ,k  is defined as ,

ui
uk k e 
  . 

Following the parameters suggested in (Lades et al, 1993) and used widely in prior works 

(Liu, 2004) (Liu and Wechsler, 2002)  max
v v

kk
f

  and 
8u
u  . kmax is the maximum frequency, 

and fv is the spatial frequency between kernels in the frequency domain. {0,...,4}v and 
{0,...,7}u  in order to have a Gabor kernel tuned to 5 scales and 8 orientations. Gabor 

wavelets are chosen relative to 2   , max 2
k 

  and 2f  . The parameters ensures that 

frequencies are spaced in octave steps from 0 to  , typically each Gabor wavelet has a 
frequency bandwidth of one octave that is sufficient to have less overlap and cover the 
whole spectrum. 
The Gabor wavelet representation of an image is the convolution of the image with a family 
of Gabor kernels as defined by equation (6). The convolution of image I and a Gabor kernel 

, ( )u z is defined as follows: 
 

, ,( ) ( ) ( )u v uG z I z z   (6) 
 
where ( , )z x y denotes the image position, the symbol ‘ ’ denotes the convolution 
operator, and , ( )u vG z  is the convolution result corresponding to the Gabor kernel at scale v 
and orientation u . The Gabor wavelet coefficient is a complex with a real and imaginary 
part, which can be rewritten as , ( )

, ,( ) ( ).e u vi z
u v u vG z A z  , where Au,v  is the magnitude response 

and ,u v  is the phase of Gabor kernel at each image position. It is known that the magnitude 
varies slowly with the spatial position, while the phases rotate in some rate with positions, 
as can be seen from the example in figure 2. Due to this rotation, the phases taken from 
image points only a few pixels apart have very different values, although representing 
almost the same local feature (Wiskott et al, 1997). This can cause severe problems for face 
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(a) (b) 
Fig. 2. Visualization of (a) Gabor magnitude (b) Gabor phase response, for a face image with
40 Gabor wavelets (5 scales and 8 orientations). 

matching, and it is just the reason that all most all of the previous works make use of only 
the magnitude part for face recognition. Note that, convolving an image with a bank of 
Gabor kernel tuned to 5 scales and 8 orientations results in 40 magnitude and phase 
response maps of the same size as image. Therefore, considering only the magnitude 
response for the purpose of feature description, each pixel can be now described by a 40 
dimensional feature vector (by concatenating all the response values at each scale and 
orientation) describing the response of Gabor filtering at that location.  
Note that Gabor feature extraction results in a highly localized and over complete response 
at each image location. In order to describe a whole face image by Gabor feature description 
the earlier methods take into account the response only at certain image locations, e.g. by 
placing a coarse rectangular grid over the image and taking the response only at the nodes 
of the grid (Lades et al, 1993) or just considering the points at important facial landmarks as 
in (Wiskott et al, 1997). The recognition is then performed by directly comparing the 
corresponding points in two images. This is done for the main reason of putting an upper 
limit on the dimensionality of the problem. However, in doing so they implicitly assume a 
perfect alignment between all the facial images, and moreover the selected points that needs 
to be compared have to be detected with pixel accuracy.  
One way of relaxing the constraint of detecting landmarks with pixel accuracy is to describe 
the image by a global feature vector either by concatenating all the pixel responses into one 
long vector or employ a feature selection mechanism to only include significant points (Wu 
and Yoshida, 2002) (Liu et al, 2004). One global vector per image results in a very high and 
prohibitive dimensional problem, since e.g. a 100x100 image would result in a 
40x100x100=400000 dimensional feature vector. Some authors used Kernel PCA to reduce 
this dimensionality termed as Gabor-KPCA (Liu, 2004), and others (Wu and Yoshida, 2002; 
Liu et al, 2004; Wang et al, 2002) employ a feature selection mechanism for selecting only the 
important points by using some automated methods such as Adaboost etc. Nonetheless, a 
global description in this case still results in a very high dimensional feature vector, e.g. in 
(Wang et al, 2002) authors selected only 32 points in an image of size 64x64, which results in 
32x40=1280 dimensional vector, due to this high dimensionality the recognition is usually 
performed by computing directly a distance measure or similarity metric between two 
images. The other way can be of taking a bag-of-feature approach where each selected point 
is considered an independent feature, but in this case the configural information of the face 
is effectively lost and as such it cannot be applied directly in situations where a large pose 
variations and other appearance variations are expected. 
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The Gabor based feature description of faces although have shown superior results in terms 
of recognition, however we note that this is only the case when frontal or near frontal facial 
images are considered. Due to the problems associated with the large dimensionality, and 
thus the requirement of feature selection, it cannot be applied directly in scenarios where 
large pose variations are present. 

 
4.2 2D Discrete Cosine Transform 
Another popular feature extraction technique has been to decompose the image on block by 
block basis and describe each block by 2D Discrete Cosine Transform ‘DCT’ coefficients. An 
image block ( , )f p q , where ,  {0,1.., N 1}p q   (typically N=8), is decomposed terms of 
orthogonal 2D DCT basis functions. The result is a NxN matrix C(v,u) containing 2D DCT 
coefficients: 
 

1 1

0 0
( , ) ( ) ( ) ( , ) ( , , , )

N N

y x
C v u v u f p q p q v u  

 

 

   (7) 

 
where , 0,1,2,..., 1v u N  , 1( ) Nv  for v=0, and 2( ) Nv  for v=1,2,…,N-1  and  
 

(2 1) (2 1)( , , , ) cos cos
2 2

p v q up q v u
N N

             
 (8) 

 
The coefficients are ordered according to a zig-zag pattern, reflecting the amount of 
information stored (Gonzales and Woods, 1993). For a block located at image position (x,y), 
the baseline 2D DCT feature vector is composed of: 
 

( , ) ( , ) ( , )
1 1[ ... ]x y x y x y T

o Mx c c c   (9) 
 
Where ( , )x y

nc  denotes the n-th 2D DCT coefficient and M is the number of retained 
coefficients3. To ensure adequate representation of the image, each block overlaps its 
horizontally and vertically neighbouring blocks by 50% (Eickeler et al, 2000). M is typically 
set to 15 therefore each block yields a 15 dimensional feature vector. Thus for an image 
which has Y rows and X columns, there are (2 1) (2 1)Y X

D N NN     blocks. 
DCT based features have mainly been used in Hidden Markov Models HMM based 
methods in frontal scenarios. More recently (Cardinaux et al, 2006) proposed an extension of 
conventional DCT based features by replacing the first 3 coefficients with their 
corresponding horizontal and vertical deltas termed as DCTmod2, resulting into an 18-
dimensional feature vector for each block. The authors claimed that this way the feature 
vectors are less affected by illumination change. They then use a bag-of-feature approach to 
derive person specific face models by using Gaussian mixture models.  

 
4.2 Local Binary Pattern Histogram LBPH and its variants  

Local binary pattern (LBP) was originally designed for texture classification (Ojala et al, 
2002), and was introduced in face recognition in (Ahonen et al, 2004). As mentioned in 



Feature Extraction and Representation for Face Recognition 9

 

The Gabor based feature description of faces although have shown superior results in terms 
of recognition, however we note that this is only the case when frontal or near frontal facial 
images are considered. Due to the problems associated with the large dimensionality, and 
thus the requirement of feature selection, it cannot be applied directly in scenarios where 
large pose variations are present. 

 
4.2 2D Discrete Cosine Transform 
Another popular feature extraction technique has been to decompose the image on block by 
block basis and describe each block by 2D Discrete Cosine Transform ‘DCT’ coefficients. An 
image block ( , )f p q , where ,  {0,1.., N 1}p q   (typically N=8), is decomposed terms of 
orthogonal 2D DCT basis functions. The result is a NxN matrix C(v,u) containing 2D DCT 
coefficients: 
 

1 1

0 0
( , ) ( ) ( ) ( , ) ( , , , )

N N

y x
C v u v u f p q p q v u  

 

 

   (7) 

 
where , 0,1,2,..., 1v u N  , 1( ) Nv  for v=0, and 2( ) Nv  for v=1,2,…,N-1  and  
 

(2 1) (2 1)( , , , ) cos cos
2 2

p v q up q v u
N N

             
 (8) 

 
The coefficients are ordered according to a zig-zag pattern, reflecting the amount of 
information stored (Gonzales and Woods, 1993). For a block located at image position (x,y), 
the baseline 2D DCT feature vector is composed of: 
 

( , ) ( , ) ( , )
1 1[ ... ]x y x y x y T

o Mx c c c   (9) 
 
Where ( , )x y

nc  denotes the n-th 2D DCT coefficient and M is the number of retained 
coefficients3. To ensure adequate representation of the image, each block overlaps its 
horizontally and vertically neighbouring blocks by 50% (Eickeler et al, 2000). M is typically 
set to 15 therefore each block yields a 15 dimensional feature vector. Thus for an image 
which has Y rows and X columns, there are (2 1) (2 1)Y X

D N NN     blocks. 
DCT based features have mainly been used in Hidden Markov Models HMM based 
methods in frontal scenarios. More recently (Cardinaux et al, 2006) proposed an extension of 
conventional DCT based features by replacing the first 3 coefficients with their 
corresponding horizontal and vertical deltas termed as DCTmod2, resulting into an 18-
dimensional feature vector for each block. The authors claimed that this way the feature 
vectors are less affected by illumination change. They then use a bag-of-feature approach to 
derive person specific face models by using Gaussian mixture models.  

 
4.2 Local Binary Pattern Histogram LBPH and its variants  

Local binary pattern (LBP) was originally designed for texture classification (Ojala et al, 
2002), and was introduced in face recognition in (Ahonen et al, 2004). As mentioned in 

 

(Ahonen et al, 2004) the operator labels the pixels of an image by thresholding some 
neighbourhood of each pixel with the centre value and considering the result as a binary 
number. Then the histogram of the labels can be used as a texture descriptor. See figure 3 for 
an illustration of the basic 2

,
U
P RLBP  operator. The face area is divided into several small 

windows. Several LBP operators are compared and 2
8,2
ULBP  the operator in 18x21 pixel 

windows is recommended because it is a good trade-off between recognition performance 
and feature vector length. The subscript represents using the operator in a (P, R) 
neighbourhood. Superscript U2 represent using only uniform patterns and labelling all 
remaining patterns with a single label, see (Ahonen et al, 2004) for details. The 2  statistic 
and the weighted 2 statistic were adopted to compare local binary pattern histograms.  

 
Recently (Zhang et al, 2005) proposed local Gabor binary pattern histogram sequence 
(LGBPHS) by combining Gabor filters and the local binary operator. (Baochang et al, 2007) 
further used LBP to encode Gabor filter phase response into an image histogram termed as 
Histogram of Gabor Phase Patterns (HGPP).  

 
5. Face-GLOH-Signatures –introduced feature representation 

The mostly used local feature extraction and representation schemes presented in previous 
section have mainly been employed in a frontal face recognition task. Their ability to 
perform equally well when a significant pose variation is present among images of the same 
person cannot be guaranteed, especially when no alignment is assumed among facial 
images. This is because when these feature representations are used as a global description 
the necessity of having a precise alignment becomes unavoidable. While representations like 
2D-DCT or LBP are much more susceptible to noise, e.g. due to illumination change as 
noted in (Zou et al, 2007) or pose variations, Gabor based features are considered to be more 
invariant with respect to these variations. However, as discussed earlier the global Gabor 
representation results in a prohibitively high dimensional problem and as such cannot be 
directly used in statistical based methods to model these in-class variations due to pose for 
instance. Moreover the effect of misalignments on Gabor features has been studied 

(a) 

(b) 

Fig. 3. (a) the basic LBP operator. (b) The circular (8,2) neighbourhood. The pixel values are
bilinearly interpolated whenever the sampling point is not in the centre of a pixel (Ahonen
et al, 2004) 
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(Shiguang et al, 2004), where strong performance degradation is observed for different face 
recognition systems. 
As to the question, what description to use, there are some guidelines one can benefit from. 
For example, as discussed in section 3.1 the configural relationship of the face has to be 
preserved. Therefore a global representation as opposed to a bag-of-features approach 
should be preferred. Further in order to account for the in-class variations the local regions 
of the image should be processed in a scale, rotation and translation invariant manner. 
Another important consideration should be with respect to the size of the local region used. 
Some recent studies (Martnez, 2002; Ullman et al, 2002; Zhang et al, 2005) show that large 
areas should be preferred in order to preserve the identity in face identification scenarios.  
Keeping in view the preceding discussion we use features proposed in (Mikolajczyk and 
Schmid, 2005), used in other object recognition tasks, and introduce to employ these for the 
task of face recognition for the first time (Sarfraz, 2008; Sarfraz and Hellwich, 2008) Our 
approach is to extract whole appearance of the face in a manner which is robust against 
misalignments. For this the feature description is specifically adapted for the purpose of face 
recognition. It models the local parts of the face and combines them into a global description 
We use a representation based on gradient location-orientation histogram (GLOH) 
(Mikolajczyk and Schmid, 2005), which is more sophisticated and is specifically designed to 
reduce in-class variance by providing some degree of invariance to the aforementioned 
transformations. 
GLOH features are an extension to the descriptors used in the scale invariant feature 
transform (SIFT) (Lowe, 2004), and have been reported to outperform other types of 
descriptors in object recognition tasks (Mikolajczyk and Schmid, 2005). Like SIFT the GLOH 
descriptor is a 3D histogram of gradient location and orientation, where location is 
quantized into a log-polar location grid and the gradient angle is quantized into eight 
orientations. Each orientation plane represents the gradient magnitude corresponding to a 
given orientation. To obtain illumination invariance, the descriptor is normalized by the 
square root of the sum of squared components.  
Originally (Mikolajczyk and Schmid, 2005) used the log-polar location grid with three bins 
in radial direction (the radius set to 6, 11, and 15) and 8 in angular direction, which results in 
17 location bins. The gradient orientations are quantized in 16 bins. This gives a 272 bin 
histogram. The size of this descriptor is reduced with PCA. While here the extraction 
procedure has been specifically adapted to the task of face recognition and is described in 
the remainder of this section. 
The extraction process begins with the computation of scale adaptive spatial gradients for a 
given image I(x,y). These gradients are given by: 
 

( , , ) ( , ; )tw x y t t L x y txy xyt
    (10) 

 
where L(x,y; t) denotes the linear Gaussian scale space of I(x,y) (Lindeberg, 1998) and w(x,y,t) 
is a weighting, as given in equation 11. 
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The gradient magnitudes obtained for an example face image (Figure 5 e) are shown in 
Figure 5 b. The gradient image is then partitioned on a grid in polar coordinates, as 
illustrated in Figure 5 c. As opposed to the original descriptor the partitions include a 
central region and seven radial sectors. The radius of the central region is chosen to make 
the areas of all partitions equal. Each partition is then processed to yield a histogram of 
gradient magnitude over gradient orientations. The histogram for each partition has 16 bins 
corresponding to orientations between 0 and 2π, and all histograms are concatenated to give 
the final 128 dimensional feature vector, that we term as face-GLOH-signature, see Figure 5 
d. No PCA is performed in order to reduce the dimensionality.  
The dimensionality of the feature vector depends on the number of partitions used. A 
higher number of partitions results in a longer vector and vice versa. The choice has to be 
made with respect to some experimental evidence and the effect on the recognition 
performance. We have assessed the recognition performance on a validation set by using 
ORL face database. By varying the partitions sizes from 3 (1 central region and 2 sectors), 5, 
8, 12 and 17, we found that increasing number of partitions results in degrading 
performance especially with respect to misalignments while using coarse partitions also 
affects recognition performance with more pose variations. Based on the results, 8 partitions 
seem to be the optimal choice and a good trade off between achieving better recognition 
performance and minimizing the effect of misalignment. The efficacy of the descriptor is 
demonstrated in the presence of pose variations and misalignments, in the next section. It 

Fig. 5. Face-GLOH-Signature extraction (a-b) Gradient magnitudes (c) polar-grid partitions
(d) 128-dimentional feature vector (e) Example image of a subject. 
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should be noted that, in practice, the quality of the descriptor improves when care is taken 
to minimize aliasing artefacts. The recommended measures include the use of smooth 
partition boundaries as well as a soft assignment of gradient vectors to orientation 
histogram bins.  

 
6. Performance Analysis 

In order to assess the performance of introduced face-GLOH-signature with that of various 
feature representations, we perform experiments in two settings. In the first setting, the 
problem is posed as a typical multi-view recognition scenario, where we assume that few 
number of example images of each subject are available for training. Note that, global 
feature representations based on Gabor, LBP and DCT cannot be directly evaluated in this 
setting because of the associated very high dimensional feature space. These representations 
are, therefore, evaluated in a typical template matching fashion in the second experimental 
setting, where we assess the performance of each representation across a number of pose 
mismatches by using a simple similarity metric. Experiments are performed on two of the 
well-known face databases i.e. FERET (Philips et al, 2000) and ORL face database 
(http://www.cam-orl.co.uk). 

 
6.1 Multi-view Face recognition 
In order to perform multi-view face recognition (recognizing faces under different poses) it 
is generally assumed to have examples of each person in different poses available for 
training. The problem is solved form a typical machine learning point of view where each 
person defines one class. A classifier is then trained that seek to separate each class by a 
decision boundary. Multi-view face recognition can be seen as a direct extension of frontal 
face recognition in which the algorithms require gallery images of every subject at every 
pose (Beymer, 1996). In this context, to handle the problem of one training example, recent 
research direction has been to use specialized synthesis techniques to generate a given face 
at all other views and then perform conventional multi-view recognition (Lee and Kim, 
2006; Gross et al, 2004). Here we focus on studying the effects on classification performance 
when a proper alignment is not assumed and there exist large pose differences. With these 
goals in mind, the generalization ability of different conventional classifiers is evaluated 
with respect to the small sample size problem. Small sample size problem stems from the 
fact that face recognition typically involves thousands of persons in the database to be 
recognized. Since multi-view recognition treats each person as a separate class and tends to 
solve the problem as a multi-class problem, it typically has thousands of classes. From a 
machine learning point of view any classifier trying to learn thousands of classes requires a 
good amount of training data available for each class in order to generalize well. Practically, 
we have only a small number of examples per subject available for training and therefore 
more and more emphasis is given on choosing a classifier that has good generalization 
ability in such sparse domain. 
The other major issue that affects the classification is the representation of the data. The 
most commonly used feature representations in face recognition have been introduced in 
previous sections. Among these the Eigenface by using PCA is the most common to be used 
in multi-view face recognition. The reason for that is the associated high dimensionality of 
other feature descriptions such as Gabor, LBPH etc. that prohibits the use of any learning to 
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be done. This is the well known curse of dimensionality issue in pattern recognition (Duda 
et al, 2001) literature and this is just the reason that methods using such over complete 
representations normally resort to performing a simple similarity search by computing 
distances of a probe image to each of the gallery image in a typical template matching 
manner. While by using PCA on image pixels an upper bound on the dimensionality can be 
achieved.  
In line with the above discussion, we therefore demonstrate the effectiveness of the 
proposed face-GLOH signatures with that of using conventional PCA based features in 
multi-view face recognition scenarios with respect to the following factors. 
When facial images are not artificially aligned 
When there are large pose differences 
Large number of subjects 
Number of examples available in each class (subject) for training. 
In order to show the effectiveness of face-GLOH signature feature representation against 
misalignments, we use ORL face database. ORL face database has 400 images of 40 subjects 
(10 images per subject) depicting moderate variations among images of same person due to 
expression and some limited pose. Each image in ORL has the dimension of 192x112 pixels. 

Fig. 6. An example of a subject from O-ORL and its scale and shifted examples from SS-ORL 
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Fig. 7. Cropped faces of a FERET subject depicting all the 9 pose variations. 
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All the images are depicted in approximately the same scale and thus have a strong 
correspondence among facial regions across images of the same subject. We therefore 
generate a scaled and shifted ORL dataset by introducing an arbitrary scale change between 
0.7 and 1.2 of the original scale as well as an arbitrary shift of 3 pixels in random direction in 
each example image of each subject. This has been done to ensure having no artificial 
alignment between corresponding facial parts. This new misaligned dataset is denoted 
scaled-shifted SS-ORL (see Figure 6). The experiments are performed on both the original 
ORL denoted O-ORL and SS-ORL using PCA based features and face-GLOH signatures. 
ORL face database is mainly used to study the effects on classification performance due to 
misalignments since variations due to pose are rather restricted (not more than 20o). To 
study the effects of large pose variations and a large number of subjects, we therefore repeat 
our experiments on FERET database pose subset. The FERET pose subset contains 200 
subjects, where each subject has nine images corresponding to different pose angles 
(varying from  0o  frontal to left/right profile 60o ) with an average pose difference of o15 . 
All the images are cropped from the database by using standard normalization methods i.e. 
by manually locating eyes position and warping the image onto a plane where these points 
are in a fixed location. The FERET images are therefore aligned with respect to these points. 
This is done in order to only study the effects on classifier performance due to large pose 
deviations. All the images are then resized to 92x112 pixels in order to have the same size as 
that of ORL faces. An example of the processed images of a FERET subject depicting all the 9 
pose variations is shown in Figure 7. 
We evaluate eight different conventional classifiers. These include nearest mean classifier 
‘NMC’, linear discriminant classifier ‘LDC’, quadratic ‘QDC’, fisher discriminant, parzen 
classifier, k-nearest neighbour ‘KNN’, Decision tree and support vector machine ‘SVM’, see 
(Webb, 2002) for a review of these classifiers.  

 
6.1.1 Experiments on ORL database 
We extract one global feature vector per face image by using lexicographic ordering of all 
the pixel grey values. Thus, for each 92 x 112 ORL image, one obtains a 10384 dimensional 
feature vector per face. We then reduce this dimensionality by using unsupervised PCA. 
Where the covariance matrix is trained using 450 images of 50 subjects from FERET set. The 
number of projection Eigen-vectors are found by analysing the relative cumulative ordered 
eigenvalues (sum of normalized variance) of the covariance matrix. We choose first 50 
largest Eigen vectors that explain around 80% of the variance as shown in figure 4-3. By 
projecting the images on these, we therefore obtain a 50-dimentional feature vector for each 
image. We call this representation the PCA-set.  
The second representation of all the images is found by using face-GLOH-signature 
extraction, as detailed in section 5.  
In all of our experiments we assume equal priors for training, SVM experiments on O-ORL 
use a polynomial kernel of degree 2, to reduce the computational effort, since using RBF 
kernel with optimized parameters C and kernel width σ did not improve performance. For 
SS-ORL a RBF kernel is used with parameter C=500 and σ = 10, these values were 
determined using 5-fold cross validation and varying sigma between 0.1 and 50 and C 
between 1 and 1000. All the experiments are carried out for classifiers on each of two 
representations for both O-ORL and SS-ORL. 
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We use a 10-fold cross validation procedure to produces 10 sets of the same size as original 
dataset each with a different 10% of objects being used for testing. All classifiers are 
evaluated on each set and the classification errors are averaged. The results from this 
experiment on both O- ORL and SS-ORL for both feature representations are reported in 
table 1. 
 

Classifiers 
O-ORL  Representation sets SS-ORL Representation sets 

PCA face-GLO H PCA face-GLOH 

NMC 0.137 0.152 0.375 0.305 
LDC 0.065 0.020 0.257 0.125 
Fisher 0.267 0.045 0.587 0.115 
Parzen 0.037 0.030 0.292 0.162 
3-NN 0.097 0.062 0.357 0.255 
Decision Tree 0.577 0.787 0.915 0.822 
QDC 0.64 0.925 0.760 0.986 
SVM 0.047 0.037 0.242 0.105 

Table 1. Classification errors in 10-fold cross validation tests on ORL 
 
Table 1 shows how classification performance degrades, when the faces are not aligned i.e. 
arbitrarily scaled and shifted, on PCA based feature representation. The robustness of the 
face-GLOH-signature representation against misalignments can be seen by comparing the 
results on O-ORL and SS-ORL, where it still gives comparable performance in terms of 
classification accuracy. Best results are achieved by using LDC or SVM in both cases. 

 
6.1.2 Experiments on FERET database 
As stated earlier, FERET database pose subset is used to assess the performance with 
regards to large pose variations and large number of subjects. 50 out of 200 FERET subjects 
are used for training the covariance matrix for PCA. The remaining 1350 images of 150 
subjects are used to evaluate classifier performance with respect to large pose differences. In 
order to assess the small sample size problem (i.e. number of raining examples available per 
subject), experiments on FERET are performed with respect to varying training/test sizes by 
using 2, 4, 6, and 8 examples per subject and testing on the remaining. Similarly, tests at each 
size are repeated 5 times, with different training/test partitioning, and the errors are 
averaged. Figure 8 shows the averaged classification errors for all the classifiers on FERET 
set for both the feature representations with respect to varying training and test sizes. As 
shown in figure 8, increasing number of subjects and pose differences has an adverse affect 
on the performance of all the classifiers on PCA-representation set while face-GLOH-
Signature representation provides relatively better performance. 

 
6.2 Template matching Setting 
As stated earlier, due to the associated high dimensionality of the extracted features of 
GABOR, LBP, DCT etc, we assess the performance of these feature descriptions with that of 
face-GLOH signature across a number of pose mismatches in a typical template matching 
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setting. Frontal images of 200 FERET subjects are used as gallery while images for the 
remaining eight poses of each subject are used as test probes. Each probe is matched with 
each of the gallery images by using the cosine similarity metric. Probe is assigned the 
identity of the gallery subject for which it has the maximum similarity.  

 
6.2.1 Test Results 
We obtain each of the three feature descriptions as described in section 4. Gabor features are 
obtained by considering real part of the bank of Gabor filter kernel response tuned to 8 
orientations and 5 scales, at each pixel location. This resulted in 40x92x112=412160 
dimensional feature vector for each image. Due to memory constraints we used PCA to 
reduce the dimensionality to 16000-dimensional vector. For the LBPH feature 
representation, we use 2

8,2
ULBP  operator in 18x21 window as described in (Ahonen et al, 

2004) which resulted in a 2124 dimensional feature vector. The recognition scores in each 
pose are averaged. Table 2 depicts the performance comparison of different feature 
representations with that of Face-GLOH-Signature across a number of pose mismatches. 

Feature 
Description 

Average Recognition across each FERET Probe Pose 
15o  25o  45o  60o  

Eigenface 70.1% 56.2% 31.1% 13.4% 
Gabor 91.4% 81.2% 68.5% 32.1% 
LBPH 87.3 % 71.4% 56% 18.3% 

Face-GLOH-
Signature 

100% 94.5% 81.1% 53.8% 

Table 2. Comparison of face identification performance across pose of different feature 
representations  

Fig. 8. Classifiers evaluation On FERET by varying training/test sizes (a) Using PCA-set (b) 
Using face-GLOH-signature set 
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7. Conclusion 

A comprehensive account of almost all the feature extraction methods used in current face 
recognition systems is presented. Specifically we have made distinction in the holistic and 
local feature extraction and differentiate them qualitatively as opposed to quantitatively. It 
is argued that a global feature representation should be preferred over a bag-of-feature 
approach. The problems in current feature extraction techniques and their reliance on a 
strict alignment is discussed. Finally we have introduced to use face-GLOH signatures that 
are invariant with respect to scale, translation and rotation and therefore do not require 
properly aligned images. The resulting dimensionality of the vector is also low as compared 
to other commonly used local features such as Gabor, LBP etc. and therefore learning based 
methods can also benefit from it. 
In a typical multi-view face recognition task, where it is assumed to have several examples 
of a subject available for training, we have shown in an extensive experimental setting the 
advantages and weaknesses of commonly used feature descriptions. Our results show that 
under more realistic assumptions, most of the classifiers failed on conventional features. 
While using the introduced face-GLOH-signature representation is relatively less affected 
by large in-class variations. This has been demonstrated by providing a fair performance 
comparison of several classifiers under more practical conditions such as misalignments, 
large number of subjects and large pose variations. An important conclusion is to be drawn 
from the results on FERET is that conventional multi-view face recognition cannot cope well 
with regards to large pose variations. Even using a large number of training examples in 
different poses for a subject do not suffice for a satisfactory recognition. In order to solve the 
problem where only one training example per subject is available, many recent methods 
propose to use image synthesis to generate a given subject at all other views and then 
perform a conventional multi-view recognition (Beymer and Poggio, 1995; Gross et al, 2004). 
Besides the fact that such synthesis techniques cause severe artefacts and thus cannot 
preserve the identity of an individual, a conventional classification cannot yield good 
recognition results, as has been shown in an extensive experimental setting. More 
sophisticated methods are therefore needed in order to address pose invariant face 
recognition. Large pose differences cause significant appearance variations that in general 
are larger than the appearance variation due to identity. One possible way of addressing this 
is to learn these variations across each pose, more specifically by fixing the pose and 
establishing a correspondence on how a person’s appearance changes under this pose one 
could reduce the in-class appearance variation significantly. In our very recent work 
(Sarfraz and Hellwich, 2009), we demonstrate the usefulness of face-GLOH signature in this 
direction. 
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