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1. Introduction 
Wavelets have been a prominent image analysis tool over the past decade. Face recognition 
researchers use it for varied reasons – pre-processing, compression and feature extraction. 
We refer the reader to [1] for a good review on the theory and applications of wavelets in 
face recognition. In this chapter we will concentrate on some new transforms that have 
emerged from the limitations in wavelets. First, we will outline the limitations of wavelets 
and show how the new image analysis tools overcome them. Next, we review some of the 
existing work in face recognition that has benefited from using these tools. Finally, we show 
how these new tools fit into the larger, newly developing arena of signal processing known 
as Compressive Sampling or Compressed Sensing (CS). We outline how CS can be used for 
face recognition which certainly will be a new direction in the field of face recognition.  

2. The new image analysis tools 
The literal meaning of the word ‘transform’ is ‘change’. When we speak of an ‘image 
transform’, we refer to an alternate (changed) way of representing an image. Generally an 
image is represented in the spatial domain by pixels, but there are alternate representations, 
the most popular being the frequency domain representation obtained by the Fourier 
transform. However, the Fourier transform of an image is not very informative from the 
perspective of object recognition. Other transforms like wavelets, curvelets etc. provide 
alternative image representations (other than pixels or frequency). These transforms 
represent images in such a way that recognition is facilitated. 
In [2], the five ‘must-needed’ properties of a multiresolution image transform are pointed 
out: 
1. Multiresolution. The transform should allow images to be successively approximated, 

from coarse to fine resolutions. 
2. Localization. The basis elements of the transforms should be localized in both the 

spatial and the frequency domains. 
3. Critical sampling. For some applications (e.g., compression), the transforms should 

form a basis, or a frame with small redundancy. We will discuss more about it in 
section 2.2. 

4. Directionality. The transform should contain basis elements oriented at a variety of 
directions, compared with the few directions offered by separable wavelets. 
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5. Anisotropy. When a physical property changes with direction, that property is said to 
be anisotropic, e.g. in certain crystals the conductivity of heat is more in horizontal 
direction than in vertical direction; for such a case, the conductivity is said to be 
anisotropic. For image transforms, anisotropicity means that the basis elements of the 
transforms should not be circular (similar in all directions) but may be elliptical (more 
along the major axis and less along the minor axis). 

From the above wish-list, the first three properties are provided by separable wavelets. To 
cover all the five properties, new transforms are required. This deficit inspired researchers 
to search for new methods for image representations, including curvelets, contourlets and 
surfacelets which we discuss below.  

2.1 Motivation 
In a seminal publication [3], it was shown that the widely accepted belief that an adaptive 
representation that in some sense ‘tracks’ the shape of the discontinuity of an image can be 
used to efficiently represent an otherwise smooth object with discontinuities such as edges, 
is incorrect. When the geometry of the object is known a priori, an ideal adaptive 
representation satisfies 

2|| ||mf f m−− ∝  

where f  and mf  are the image and its approximation using the m largest valued 
coefficients respectively. The error between the actual object (f) and the m-largest terms 
approximation ( mf ) is reduced quadratically in the number of terms. In practical scenarios, 
the geometry of the object is never known beforehand, so adaptive schemes like wavelets do 
not reach the ideal rate. The m-largest term approximation for wavelets satisfies 

1|| ||W
mf f m−− ∝ . 

This convergence rate is an order of magnitude smaller than the ideal rate. In [3] the authors 
proposed a non-adaptive (fixed) curvelet scheme which reached the ideal convergence rate 
asymptotically 

2 3|| || (log )C
mf f m m−− ∝  

The crux of the above discussion is that, for an image, the discontinuities (edges) will be 
better approximated by curvelets than wavelets, i.e. to capture the edge information fewer 
curvelet coefficients are needed than wavelet coefficients. Looked at it differently, the same 
number of curvelet coefficients contain more edge information compared to wavelet 
coefficients. Since object recognition is driven by edge information, the more efficiently we 
can use this information, the better the recognition. 
The curvelet transform was introduced in 1999 but its application was scarce till 2006. 
Following similar ideas to curvelets, the contourlet transform [2] was introduced in 2005. 
The contourlet transform was defined directly in the digital domain (while curvelets were 
defined in the continuous domain) and can be implemented efficiently through filter-banks. 
However it lacks the rich operator theory of curvelets and hence is not easily analyzed. The 
simpler and faster version of curvelets seen today was introduced in 2006 [4]. The problem 
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with curvelets is that they are over-complete and suffer from redundancy (redundancy 
factor is ~7.2 for 2D, and ~24 for 3D). Moreover, although theoretically it is possible to 
extend the curvelets to higher dimensions (more than 3), practically it has never been 
achieved. In 2007, surfacelets, a new transform that can be readily extended to higher 
dimensions was introduced [5]. Surfacelets are based on the filter-bank representation of 
contourlets.  
Face recognition is mainly carried out using still images or video sequences, i.e. through 2D 
information. Thus we will discuss the 2D curvelet transform and the contourlet transform 
(surfacelets can be looked upon as an efficient higher-dimensional extension of contourlets).  

2.2 Curvelet transform 
Since curvelet transform is the pioneer of all the non-adaptive transforms available today, 
we will discuss it in a more detail. Once the reader understands the basics of curvelets, it 
will be easier to understand contourlets.  
The core of the curvelet transform [4] is displayed in Fig. 1. 
 

 
Fig. 1. Curvelet Transform: Fourier Frequency Domain partitioning (left) and Spatial 
Domain representation of a wedge (right) [4] 

In Fig. 1 on the left, the Fourier plane is divided into wedges. The shaded area is one of the 
wedges. The wedge is formed by partitioning the frequency plane into radial and angular 
divisions. The radial divisions (concentric circles) are for band-passing the image at different 
resolution/scales. The angular divisions divide each bandpassed image into different 
angles. Therefore when we consider each wedge (say the shaded one), we are actually 
analyzing the bandpassed image at scale j and angle θ.  
Property 2 of the aforesaid wish-list requires the transform to be localized both in the 
frequency and the spatial domain. However, a signal that is perfectly localized in one 
domain is spread out in the other. So, one can only expect the transform to be approximately 
localized in both domains. The image on the left of Fig. 1 shows how the Fourier plane is 
divided into wedges. If a wedge has an abrupt boundary in the frequency domain, it will be 
spread in the spatial domain. To avoid that, the boundary of the wedge is tapered as shown 
in Fig. 2. 
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Fig. 2. Boundary of Wedge 

The dotted line shows an abrupt wedge boundary, the continuous lines show the actual 
wedge boundary which is tapered off. This smooth tapering allows for localization in both 
the frequency and spatial domains. 
Let us return to Fig. 1. Once the scale and the angle are defined the wedge (shaded region) is 
identified. The wedge is inverted to the spatial domain (right side of Fig. 1) by Inverse 
Fourier transform. The inverse Fourier transform of the wedge are the curvelets 
corresponding to the wedge (i.e. a particular scale and angle). The curvelets are periodic and 
repeated infinitely. In Fig. 1 they are shown as ellipses, the centres of the ellipses are shown 
as dots.  

   
Fig. 3. Fourier Transform (left) and Curvelet in spatial domain (right) [4] 

Fig. 3 shows an actual wedge (in the frequency domain) the left, and a curvelet (in spatial 
domain) corresponding to the wedge on the right. As we can see, the curvelet is not exactly 
an ellipse as depicted in Fig.1. It is elongated in one direction and wave-like in the other but 
its effective support is elliptical as shown in the right of Fig. 1 and 3. The relationship 
between the length of major and minor axes of the ellipse follow a parabolic scaling law, i.e. 
major axis ≈ minor axis2. For wavelets, the corresponding shapes would be circular, because 
they are isotropic.  
The curvelet shapes for all images are the same (elliptical). However, the values of the 
curvelet coefficients are determined by how much the curvelets and the actual image are 
aligned.  
Fig. 4 shows how the curvelet coefficients are determined. The top left shows the image of 
an arbitrary object. The top right image shows the ideal band-passed image with prominent 
edges (at a particular concentric ring in Fig. 1). The bottom image shows some curvelets in 
the spatial domain corresponding to wedges at different orientations i.e. different wedges in 
the same concentric ring of Fig. 1. In this case, the values of the curvelets that are aligned 
with the edges will have high values e.g. curvelet c in Fig. 4. Curvelets that are not aligned 
to the bandpassed image i.e. a and b have very small coefficients. The greater the ‘edginess’ 
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of the image at a particular location, scale and orientation is, the higher the values of the 
curvelet coefficients. We will not discuss the exact algorithms for finding the curvelet 
coefficients. The interested reader can refer to the original paper [4].  
 

 
Fig. 4. Curvelet Alignment [6] 

In the previous paragraph we qualitatively describe what the curvelet coefficients actually 
mean. This description applies to other transforms as well. For example, the wavelet 
representation in the frequency domain is not divided into angular wedges. The Fourier 
frequency plane is only divided into concentric rings corresponding to different scales. The 
spatial representation of such concentric rings is circles. When these circles are aligned with 
the bandpassed image the values of the coefficients is high, otherwise the values are low.  
All the five properties of the wish-list are covered by the curvelet transform. Property 1, i.e. 
the multiresolution property of the curvelet transform, is easily discernible from Fig. 1. In 
the first step of the transform, the entire frequency plane is divided into concentric rings in 
order to facilitate bandpassing at multiple resolutions. Fig. 3. refers to property 2, it shows 
the actual localization related to the curvelets in both spatial and frequency domain. 
Curvelets do not have a compact support in the spatial domain, but the effective support is 
elliptical and can be compared with wavelets having infinite vanishing moments. As for 
property 3 of the wish-list (related to critical sampling) curvelets do not form a basis, but 
form tight frames1. Unlike wavelets, the curvelet transform is redundant having a 

                                                 
1 For a basis, e.g. wavelets, we have WWT = WTW = Identity; where W and WT are the 
forward and inverse wavelet transform matrices respectively. For tight frames like 
Curvelets, CTC = Identity but CCT ≠ Identity; i.e. the forward transform followed by the 
inverse transform gets back to the original domain, but the reverse order (inverse transform 
followed by forward transform) does not. 
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redundancy factor around 7.2. The directionality of the curvelet transform (property 4) is 
easily discerned in Fig. 1. The entire frequency plane is divided into angular wedges. This 
allows for analyzing the image at various orientations. As for the last property of the wish-
list, from the perspective of image processing, a transform is said to be anisotropic if its basis 
elements are not circular. Curvelets are elliptical in shape (the major and the minor axes 
related by a parabolic scaling law), thus they are anisotropic.  

2.3 Contourlet transform 
So far, our discussion on curvelets was completely for continuous signals. The curvelet 
literature defines its concepts in this domain and digitizes it during implementation. The 
algorithms for digital implementations are quite involved [4]. To overcome this (and also for 
combating the redundancy issues) researchers defined the contourlet transform directly in 
the digital domain [2]. The contourlet keeps all the desirable properties of curvelets 
including directionality and anisotropicity and at the same time reduces the redundancy of 
the curvelets. However, the contourlet transform does not follow the nice properties of 
operator theory and hence can not be easily analyzed.  

 
Fig. 5. Wavelets (left) vs Contourlets (right) [2] 
As mentioned earlier, the coefficients of the curvelet transform are decided depending on 
how the curvelets align with the edge at a particular location, scale and orientation; the same 
argument is in fact true for all other transforms including wavelets and contourlets. In Fig. 5 
the shaded area is an image of a portion of an arbitrary object where the blue boundary 
shows an image edge. Fig. 5 (left) shows how wavelets align with the edge, while the right 
shows alignment of contourlets with the edge. As mentioned above, in the spatial domain 
the support of wavelets is circular. In a digital domain the support of wavelets is 
approximated to be square. To analyze the image by wavelets, we examine how the 
wavelets align along the edge.  
Fig. 5 (left) shows how wavelets arrange themsleves along the edge at different resolutions. 
The small blue squares represent the wavelets at the finest resolution, the green squares 
represent intermediate resolution and the red squares represent wavelets at the coarsest 
resolution. Fig. 5 on the right shows the alignment of contourlets. Notice that the squares are 
replaced by rectangles. We can see that at each resolution, the edge can be represented by a 
far less number of contourlets than wavelets. As Wavelets are isotropic they can not take 
advantage of the underlying geometry of the edge. They approximate the edge as a 
collection of dots (small squares) so many points are needed to represent an edge, but 
contourlets are representing the edge as a collection of small needles  hence only a few 
needle shaped line segments can represent the edge).  
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Very loosely speaking, one contourlet in Fig. 5 may be assumed to be formed by grouping 
several wavelets at the same resolution. For example at the finest resolution, 4 or 5 
consecutive wavelets may be grouped together to form a contourlet, at the next highest 
resolution, about 3 consecutive wavelets can be grouped to form a contourlet and so on. 
Based on this simple assumption the contourlet algorithm can be written as: 
1. Apply a scale-space decomposition on the image, i.e. find the Laplacian of the image at 

several scales. 
2. At each scale, represent the Laplacian of the image by wavelet elements (small squares 

as shown in Fig. 5). 
3. At each scale, group the wavelet elements in a particular direction to form contourlets. 
The filter-bank representation of the above three steps is shown in Fig. 6 
 

 
Fig. 6. Flow Filter-bank representation for Contourlets [7] 

The image first undergoes a wavelet-like decomposition by a Laplacian Pyramid (LP). In the 
LP block of Fig. 6, the largest parallelograms represent the decomposition at the finest scale 
(corresponding to blue squares in Fig. 5). The smaller parallelograms of the LP denote 
coarser decompositions. Once the image is decomposed into different scales, they are 
represented by small square wavelet elements. The Directional Filter Bank (DFB) groups the 
wavelet elements at each scale and groups them into different orientation to form 
contourlets. The DFB block of Fig. 6 shows that, at the finest scale (corresponding to the 
largest parallelogram of LP block), DFB decomposes the image into the maximum number 
of orientations. As the resolution becomes coarser, DFB decomposes the image into a lesser 
number of orientations.  
Although this contourlet implementation is simple to understand, it is not robust to noise; 
this version of the contourlet transform is implemented in [7]. The original implementation 
of the contourlet transform which is more robust is described in [2]. From this discussion, it 
is not clear how the redundancy is reduced in the contourlet implementation (compared to 
curvelets). We refer the interested reader to the original work in contourlets [2] to pursue the 
issue. Coarsely speaking, we can say that the contourlet transform uses a smart sub-Nyquist 
sampling scheme to check the redundancy. 

3. Review of previous work 
In a classic experiment reported in Nature [8], Field and Olshausen set up a computer 
experiment for empirically discovering the best representation for a database of 16 by 16 
image patches. Although this experiment is limited in scale, they discovered that the best 
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way (in the sense of facilitating vision) to represent these image patches is a collection of 
needle shaped filters occurring at various scales, locations and orientations. These filters are 
shown in Fig. 7. 
 

 
Fig. 7. Field and Olshausen’s Filters 
In Fig. 7, the first row shows the filters corresponding to the same scale but different 
orientations in the spatial domain and in first columns shows the filters at the same 
orientation but different scales. If an edge falls within a filter, the response of the filter is 
high. Fig. 8 shows the filter response of the filters at different scales for an arbitrary object. 
 

 
Fig. 8. Convolution of the filter-bank with an image 
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The researchers [8] found that, the response of such filter-banks facilitate object recognition. 
The stark similarity between curvelets (Fig. 1, 3 and 4), derived from mathematical analysis, 
and this empirical filter-bank arising from experiments (Fig. 7 and 8), is pointed out in [9].  
The classic experiment [8] discovered that such filter responses (encoding edge information) 
were very suitable for computer vision tasks. Besides computer vision, human vision is also 
driven to a large extent by edge information. Neuro-scientists showed that edge processing 
neurons form the earliest and most fundamental stages of the pipeline upon which 
mammalian visual processing is built [10].  
Face Recognition and other computer vision tasks in general are dependent on edge 
information. Successful multiresolution transforms mainly try to capture this information. 
Curvelets and contourlets capture the edge information more efficiently than wavelets. Once 
the implementation of these transforms were known, researchers in face recognition tried to 
use them to address different problems, but since the transforms are very new, their full 
potential is not yet completely achieved.  

3.1 Comparative works 
In [11] the author compared wavelets and curvelets as feature sets for face recognition. 
Curvelet and wavelet transform were applied to the images. The approximate coefficients i.e 
the non-directional transform coefficients (those corresponding to the innermost circle of 
Fig. 1) were used as features for recognition. It was found empirically that curvelets were 
better than wavelets for face recognition. A similar comparative empirical study, but 
between contourlets and wavelets [12] however showed that contourlets were not as good 
as wavelets for recognition.  
A comprehensive empirical study comparing curvelets, contourlets and wavelets [13] 
decomposed the face images to several resolutions from fine to coarse using the three 
transforms. At each resolution the recognition accuracy of each of the three transforms were 
compared. An interesting observation was that the recognition accuracy from wavelets 
decreased as the scale was made coarser, where as for curvelets and contourlets the accuracy 
increased. 
The studies [11 and 12] do not contradict [13] each other. In [11 and 12] the curvelet, wavelet 
and the contourlet transform was taken at the finest resolution. The studies showed that 
curvelet coefficients are the best for face recognition, followed by wavelet coefficients and 
lastly the contourlet coefficients. However [13] revealed that at coarser resolutions both 
curvelets and contourlets show better recognition accuracy than wavelets.  

3.2 Feature extraction 
Researchers have started using curvelet coefficients are used as features for face recognition 
only in the last few years [14-17]. The simplest application of using curvelets in face 
recognition can be found in [14]. The face images undergo a curvelet transform, and the 
approximate curvelet coefficients are used in a Nearest Neighbour classifier for recognition.  
Face image is a 2D projection of the actual 3D human face. The 3D information is encoded as 
change in shade in a 2D image. Researchers in [15], wanted to capture some of this 
information from the face images. The number of bits in the original 8 bit images was 
quantized to 4 bit and 2 bit versions. 8 bit images with 256 levels of grayscale allow finer 
variations in shading. The variations in shading arising out of bit-quantization can be seen 
from Fig. 9. The 8 bit image shows fine variations in depth resulting in fine edges. The 4 bit 
image loses some of the finer depth information. The 2 bit image only shows the boldest 
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edges corresponding to large variations in depth. Curvelet transform of the different bit 
quantized versions encode varying edge information. The curvelet coefficients resulting out 
of these three versions of the same image were used as features for recognition. This 
approach was based on the assumption that different types of edge information (finer to 
coarser) will enhance the recognition accuracy. The recognition results obtained in [15] were 
better than those obtained in [14]. 
 

   
Fig. 9. 8 bit, 4 bit and 2 bit representations (from left to right) [15] 

The work in [15] did not use the multiresolution properties of the curvelet transform. The 
transform was applied to bit-quantized images at a single resolution. Studies following the 
previous one [15] overcame this shortcoming [16, 17]. Each of the bit-quantized face images 
were transformed at three resolutions. For three levels of bit-quantization there were a total 
of nine sets of transform coefficients. These transform coefficients were used by separate 
classifiers for recognition. Finally the results from all the classifiers were fused using 
majority voting rule. In [16] the contourlet coefficients were used, and in [17] the same was 
done using curvelet coefficients. The results in [16, 17] showed that, curvelet and contourlet 
based schemes were better than wavelet based recognition schemes. The results also showed 
improvement over the previous approach [15].  
The idea of using coefficients at multiple resolutions was probably borrowed from 
handwriting recognition literature [18-20], where the fine details and the coarse shape of the 
image are assumed to offer complementary information. The wavelet transform of 
handwritten characters at different resolutions were used to train neural networks. The 
outputs from the different neural nets were combined using majority voting. In this manner, 
very high recognition accuracy on handwritten characters was achieved. In [16, 17] the same 
idea was implemented on face images, but using curvelet and contourlet transforms instead 
of wavelets. 
Subspace techniques like Eigenface and Fisherface are popular methods in face recognition. 
Experimental work on subspace techniques in the curvelet domain was carried out in [21]. 
The Eigenface and Fisherface techniques were applied on the curvelet coefficients. It was 
shown that such methods applied in the curvelet domain gave better recognition results 
compared to subspace methods in pixel domain and wavelet domain [22].  
The idea of using Principal Component Analysis (PCA) followed by Linear Discriminant 
Analysis (LDA) for dimensionality reduction of face images is proposed in [23, 24]. The 
rationale behind this approach is somewhat eluding, but it was empirically shown that 
better recognition results are obtained by this combination rather than by PCA or LDA 
alone. The combined approach of PCA and LDA in the curvelet and in the wavelet domain 
is carried out in [21]. In this work, several standard subspace face recognition approaches 
are compared, and it is shown that the curvelet based ones always gave better results.  
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A challenging area in face recognition arises when there is only one image available for 
training. A recent work in this area used multiresolution transform for addressing this 
problem [25]. When pixel values or transform coefficients are used to represent a face image, 
the input vector is very high dimensional. This high dimensional space is called the face-
space. In the aforesaid work, it is assumed that, there is a mapping from the high 
dimensional face-space to a lower dimensional discriminative subspace. If for a certain set of 
people, such a mapping can be found (by training) then this mapping is assumed be 
applicable to another set of people as well. The Fisher Linear Discriminant (FLD) was used 
for such a mapping in [25]. Instead of using pixel values to represent the high dimensional 
face-space, the image transform coefficients (wavelet/curvelet/contourlet) were used. The 
application of FLD mapping on the transform coefficients showed better results than 
previous discriminative subspace based approaches addressing the same problem. 
For tackling the problem of having only one single training image for each person, another 
approach is proposed in [26]. In this paper new face images with varying edge information 
are generated from the single available image. Since vision is largely edge-driven, it is 
assumed that varying the edge information will synthesize new image samples that can be 
used for recognition by standard machine learning tools. In [26] after applying the curvelet 
transform to the image, a non-linear approximation algorithm is used threshold the 
transform coefficients. By varying the number of thresholded coefficients, slightly different 
versions of the original image are obtained. As thresholding the transform coefficients 
results in the loss of some edge information, the edge information in the synthesized image 
is thus different from the original one. The results in [26] show better recognition accuracy 
compared to other algorithms that generate new face images from a single available one in 
order to address the problem of identifying a person from a single available training image. 
It also shows better recognition results when compared to [25].  

3.3 Pre-processing 
The contourlet transform has been used to denoise face images [27]. The main problem in 
[27] was to transmit face images through wireless channels, and see how the channel affects 
recognition performance. The contourlet transform was used for denoising the received 
images. Several thresholding schemes such as Hard Thresholding, Soft Thresholding and 
Stein’s Thresholding were tested. Stein’s thresholding gave the best results. However, better 
denoising schemes other than thresholding are available today – Iterative Soft Thresholding, 
Basis Pursuit Denoising, Stagewise Orthogonal Matching Pursuit etc. to name a few.  
A follow-up of [27] used the same contourlet based denoising scheme for face recognition, 
but the machine learning algorithm was different [28]. A sophisticated Active Learning 
framework called Swarm Intelligence was used to recognize faces.  

4. Dimensionality reduction: random projection and compressive sampling 
Face images are very high dimensional when represented as pixel values or transform 
coefficients. This makes the classification phase time consuming. In order to reduce the time 
during classification, a dimensionality reduction/feature extraction algorithm is usually 
applied to the face image. Standard dimensionality reduction algorithms are Eigenface 
(using PCA) and Fisherface (using LDA). However, these deterministic dimensionality 
reduction methods are computationally very complex and consequently time consuming. To 
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reduce the computational complexity, several studies [29-32] applied Random Projections 
(RP) for dimensionality reduction. In RP, the original high-dimensional data is projected 
onto a low dimensional subspace using a random matrix whose columns have unit norm. 
However, RP is instable. In this section we will show how RP can be used to make stable 
projections of face images. 
There are two advantages of RP over conventional dimensionality reduction schemes like 
PCA and LDA: 
• The conventional dimensionality reduction methods are data-dependent. The low 

dimensional components are chosen from the high dimensional input data by 
optimizing certain criterion e.g. maximizing variance in PCA. Random projection 
matrices are independent of the input data and are very easy to compute, they can be 
constructed just by normalizing the columns of a random matrix. 

• RP is computationally simple and efficient to implement. Moreover theoretical results 
show that such projections approximately preserve pair-wise distances of points in 
Euclidean space. They also preserve volumes, affine distances and the structure of the 
data. Such properties make RP especially suitable for machine learning. 

There is a problem however with RP and that the projections are not stable. A common 
practice to overcome this problem is to use multiple random projections so that the low 
dimensional projections of the input data form many random subspaces. Recognition is 
carried out in each of these low dimensional sub-spaces. Finally, the results from these 
multiple random subspaces are fused to arrive at the final decision. This approach is ad hoc. 
There is no theoretical framework for deciding how many random projections are required 
to stabilize the results. Moreover making multiple projections add to the computational 
complexity of the approach.  

4.1 Choosing the subspace 
In the Eigenface method, the number of principal components is chosen such that most of 
the energy of the original face image is retained. Formally, we chose the projection matrix P 
so that the energy is preserved 

 
|| ||

1
|| ||

Px

x
≈   (1) 

where x is the original face image. 
Unfortunately it is not possible to find a random projection matrix P, so that the above 
criterion is satisfied. Stability of projection is closely related to its energy conservation. 
Energy is approximately conserved in PCA projection (Eigenface method), but for RP the 
ratio (1) is much greater than unity, consequently the RP projections are instable. 
In the next sub-section, we will show that an emerging paradigm in signal processing, called 
Compressive Sampling or Compressed Sensing (either way it is CS in short) attain energy 
conservation and and keep the advantages of RP. The solution is computationally fast and 
the recognition results are stable. 

4.2 CS dimensionality reduction 
The Uniform Uncertainty Principle (UUP) of the CS literature states that for a sparse signal x 
there exist some matrices Ψ such that the energy of x and that of Ψx are nearly the same; i.e. 
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||Ψx||≈||x||. This approximation is quantified by the “restricted orthonormality 
hypothesis” [33] which states that 

  2 2(1 ) || || || || (1 ) || ||x xx x xδ δ− ≤ Ψ ≤ +   (2) 

δx (<< 1)is the restricted orthonormality constant.  
Finding such a projection matrix Ψ deterministically is an NP hard problem. The CS 
literature however proves that, any random projection matrix will satisfy the restricted 
orthonormality hypothesis (2) with a very high probability. 
When the signal is sparse, the restricted orthonormality hypothesis ensures that RP satisfies 
the energy conservation criterion approximately. This makes RP a stable dimensionality 
reduction technique for sparse signals.  
The words ‘restricted isometry’, ‘approximate isometry’ comes up in compressive sampling 
frequently. Equation (2) says that the energy of a sparse vector x is conserved after it is 
projected by Ψ. This shows the near orthogonality of RP matrix with sparse vectors. CS 
literature provides even stronger property of Ψ and states that Ψ behaves as an identity 
matrix (isometry), and all the information content of the sparse signal x is preserved in the 
lower dimensional projection Ψx. The isometry is a stronger property compared to the 
orthonormality.  
Equation (2) can be re-written as  

 
|| ||

1
|| || x

x

x
δ

Ψ
≈ ±   (3) 

Equations (1) and (3) are almost the same, i.e. when x is a sparse vector almost all the energy 
in the original signal is conserved by both RP (3) and the Eigenspace projection (1). This 
relation does not hold for dense signals. In the following table we show the simulation 
results we carried out to give the reader a feel of the numerical values involved in the 
discussion.  
 

Length of 
signal 

Number of non-zero 
coefficients 

 Sparse Dense 
Length of Ψx 

Ψx| / x  
for sparse 

vector 

Ψx / x  
for dense 

vector 
100 1.0056 3.5074 
200 0.9982 2.2744 
400 1.0022 4.0653 50 

800 0.9997 4.2277 
200 1.0034 2.7935 
400 1.0006 5.1309 

1000 

100 

1000 
 

800 0.9999 3.9024 
1000 0.9965 4.4473 500 
2000 1.0005 4.2946 10000 

1000 
10000 

2000 0.9994 3.9333 

Table 1. Ratio between norms after and before projection 

The results in column 5 in Table 1 were generated by creating sparse signals. The positions 
and amplitudes of the non-zero elements in the sparse signal were at random. An i.i.d 
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Gaussian matrix, with the columns normalized to unity, was used as the projection matrix. 
For the results in the last column of Table 1, the projection matrix remained the same, but 
the signal was dense. The dense signal was generated at random. The results shown in Table 
1, are obtained by averaging the results of 100 test runs.  
Table 1, is an experimental verification of compressive sampling. It demonstrates the 
theoretical result that for sparse vectors, the RP behaves as a restricted isometry.  
We conclude that, if the input vector is sparse, we could rely on RP for dimensionality 
reduction. This dimensionality reduction has two advantages 
1. RP is stable because the energy is conserved during projection. For dense vectors this 

condition was satisfied by PCA but not by RP. 
2. RP is computationally efficient. The computational cost for PCA is O(n3) + O(nd), while 

for RP is it only O(nd), where n denotes the length of the vector and d is the number of 
projections. 

But, for our signal, the input face image is not sparse.  
We now relate how the multiresolution analysis methods are related to CS (and RP) 
dimensionality reduction. Face images are not sparse in the pixel domain. However, their 
representation using the multiresolution transforms like wavelets, curvelets and contourlets 
are sparse. The following figure shows the sparsity of these transforms. 

 
Fig. 10. Decay of Transform coefficients 

In Fig. 10, in order to see how sparse the coefficients of this transforms are, the amplitude of 
the coefficients are normalized and plotted in descending order. The sparser the result of a 
transform is, the lesser is the number of high valued coefficients. Fig. 10 shows the decay of 
the transform coefficients. The results are from the ORL face database and are averaged over 
400 images in the database. In the pixel domain each face images were of 256X256 resolution 
leading to 65,536 pixel values. From the figure, we can see that curvelets give the sparsest 
representation followed by wavelets and lastly contourlets. 
A sparse representation of the image I, x can be obtained by a linear operation i.e. x I= Φ , 
where Φ, can be any of the aforesaid three transforms.  
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We now quantify the limits of dimensionality reduction. Compressive Sampling (CS) states 
that if an n dimensional signal is s sparse then m projections are required where, 

 2

, log( )m C s nμ
Φ Ψ

= ⋅ ⋅ ⋅  (4) 

C is a constant (between 2 and 5) and μΦ,Ψ ( [1, ]n∈ ) is the measure of coherence between 
the sparsifying transform Φ and the random sampling matrix Ψ.  
From equation (4), it is deduced that smaller the μ i.e. the coherence between Φ and Ψ, 
lower will is the number of projections (dimensionality) m. In [33] it is shown that for 
Gaussian projection matrices are minimally coherent with wavelet, curvelet or contourlet 
basis. Hence whatever be the choice of Φ (wavelet/curvelet/contourlet), Ψ can be a 
Gaussian random matrix with columns normalized to unity. Other projection matrices like 
random permutations of the Fourier matrix and Bernoulli matrices (whose entries are 
formed by randomly placed 1 and -1) can be used instead of Gaussian projection matrix, but 
Gaussian projection matrices have been proven to be minimally coherent.  
Equation (4) is derived for signal reconstruction and not for recognition. For the case of face 
recognition, the estimate m is pessimistic, i.e. we can afford to be greedy and can get good 
recognition accuracy with far less number of projections than indicated by (4). A study [34] 
showed that good recognition accuracy can be achieved by CS dimensionality reduction, but 
with far less number of samples that suggested by (4). However, there are no theoretical 
bounds for deciding the number of CS projections needed for recognition.  

4.3 Some results 
To apply CS dimensionality reduction in face recognition we need to follow three steps: 
1. Sparsify the images using wavelets, curvelets or contourlets. 
2. Create random projection matrices. These can be Gaussian, Bernoulli or Fourier. 
3. Use the random projections of the sparse vectors as features in the classification stage. 
In the following table, we show the results for CS dimensionality reduction and normal RP 
dimensionality reduction. A new classification framework proposed in [32] is used.  
 

Method Number of 
Projections Dimensionality Reduction Ratio 

  1:1 2:1 4:1 8:1 16:1 32:1 
1 0.08 0.09 0.095 0.085 0.145 0.21 
3 - 0.085 0.08 0.085 0.075 0.125 RP applied to original 

image 
5 - 0.085 0.085 0.085 0.075 0.105 

RP applied to sparse 
wavelet coefficients 1 0.08 0.08 0.08 0.085 0.085 0.095 

Table 2. Error Rates on ORL Face Database 

The first column denotes the type of dimensionality reduction method used. The second 
column of the table shows, how many RPs were taken. As mentioned earlier RP on dense 
inputs results in instability. To counter the instability, multiple random projections need to 
be taken. RP applied to sparse vectors (wavelet coefficients) is stable and does not require 
multiple projections. The rest of the columns (from third to last) shows error rates for 
different dimensionality reduction ratios.  
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5. Conclusion 
This chapter starts with discussion on curvelets and contourlets. These transforms are new 
and the research studies that make use of these transforms provide a formal mathematical 
description. This chapter gives a qualitative intuitive understanding of these transforms. 
Readers from areas of image processing other than pattern recognition may also find this 
section interesting. In section 2, a complete up-to-date summary of the different applications 
of these transforms in the face recognition area is provided. Current research in face 
recognition is yet to utilize the full potential of these transforms. Previous work only used 
the approximate transform coefficients of the transforms. The rich orientation information of 
the detail coefficients has yet to be used in feature extraction.  
In the final section we relate state-of-the-art signal processing techniques to traditional 
feature extraction methods. Compressive Sampling is a new paradigm in signal processing 
with many promising prospects [35]. Current literature in CS mainly deals with signal 
reconstruction. CS’s potential in signal recognition has not yet been studied. Investigating 
CS techniques in face recognition will be an exciting area of research.  
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