Non-commutative chern characters of the *C**-algebras of the sphers

Nguyen Quoc Tho*

Department of Mathematics, Vinh University, 12 Le Duan, Vinh city, Vietnam

Received 8 September 2009

Abstract. We propose in this paper the construcion of non-commutative Chern characters of the C^* -algebras of spheres and quantum spheres. The final computation gives us clear relation with the ordinary $\mathbb{Z}/(2)$ -graded Chern chracters of torsion or their normalizers. *Keyworks:* Characters of the C^* -algebras.

1. Introduction

For compact Lie groups the Chern character $ch: K^*(G) \otimes \mathbb{Q} \longrightarrow H^*_{DR}(G; \mathbb{Q})$ were constructed. In [4]-[5] we computed the non-commutative Chern characters of compact Lie goup C^* -algebras and of compact quantum groups, which are also homomorphisms from quantum K-groups into entire current periodic cyclic homology of group C^* -algebras (resp., of C^* -algebra quantum groups), $ch_{C^*}: K_*(C^*(G)) \longrightarrow HE_*(C^*(G))$, (resp., $ch_{C^*}: K_*(C^*_\varepsilon(G)) \longrightarrow HE_*(C^*_\varepsilon(G))$). We obtained also the corresponding algebraic vesion $ch_{alg}: K_*(C^*(G)) \longrightarrow HP_*(C^*(G))$, which coincides with the Fedosov-Cuntz- Quillen formula for Chern characters [5]. When $A = C^*_\varepsilon(G)$ we first computed the K-groups of $C^*_\varepsilon(G)$ and the $HE_*(C^*_\varepsilon(G))$. Thereafter we computed the Chern character $ch_{C^*}: K_*(C^*_\varepsilon(G)) \longrightarrow HE_*(C^*_\varepsilon(G))$ as an isomorphism modulo torsions.

Using the results from [4]-[5], in this paper we compute the non-commutative Chern characters $ch_{C^*}: K_*(A) \longrightarrow HE_*(A)$, for two cases $A = C^*(S^n)$, the C^* -algebra of spheres and $A = C^*_{\varepsilon}(S^n)$, the C^* -algebras of quantum spheres. For compact groups G = O(n+1), the Chern character $ch: K^*(S^n) \otimes \mathbb{Q} \longrightarrow H^*_{DR}(S^n; \mathbb{Q})$ of the sphere $S^n = O(n+1)/O(n)$ is an isomorphism (se, [15]). In the paper, we describe two Chern character homomorphisms

$$ch_{C^*}: K_*(C^*(S^n)) \longrightarrow HE_*(C^*(S^n)),$$

and

$$ch_{C^*}: K_*(C^*_{\varepsilon}(S^n)) \longrightarrow HE_*(C^*_{\varepsilon}(S^n)).$$

^{*} E-mail: thonguyenquoc@gmail.com

Finally, we show that there is a commutative diagram

$$K_{*}(C^{*}(S^{n})) \xrightarrow{ch_{C^{*}}} HE_{*}(C^{*}(S^{n}))$$

$$\cong \downarrow \qquad \qquad \downarrow \cong$$

$$K_{*}(\mathbb{C}(\mathcal{N}_{T_{n}})) \xrightarrow{ch_{C^{*}}} HE_{*}(\mathbb{C}(\mathcal{N}_{T_{n}}))$$

$$\cong \downarrow \qquad \qquad \downarrow \cong$$

$$K^{*}(\mathcal{N}_{T_{n}}) \xrightarrow{ch} HE_{DR}^{*}(\mathcal{N}_{T_{n}}))$$

(Similarly, for $A = C_{\varepsilon}^*(n)$, we have an analogous commutative diagram with $W \times S^1$ of place of $W \times S^n$), from which we deduce that ch_{C^*} is an isomorphism modulo torsions.

We now briefly review he structure of the paper. In section 1, we compute the Chern chracter of the C^* -algebras of spheres. The computation of Chern character of $C^*(S^n)$ is based on two crucial points:

i) Because the sphere $S^n = O(n+1)/O(n)$ is a homogeneous space and C^* -algebra of S^n is the transformation group C^* -algebra, following J.Parker [10], we have:

$$C^*(S^n) \cong C^*((O(n)) \otimes \mathcal{K}(L^2(S^n))).$$

ii) Using the stability property theorem K_* and HE_* in [5], we reduce it to the computation of C^* -algebras of subgroup O(n) in O(n+1) group.

In section 2, we compute the Chern character of C^* -algebras of quantum spheres. For quantum sphere S^n , we define the compact quantum C^* -algebras $C^*_{\varepsilon}(S^n)$, where ε is a positive real number. Thereafter, we prove that:

$$C_{\varepsilon}^*(S^n) \cong \mathbb{C}(S^1) \oplus \bigoplus_{e \neq \omega \in W} \int_{S^1}^{\oplus} \mathcal{K}(H_{\omega,t}) dt,$$

where $\mathcal{K}(H_{\omega,t})$ is the elementary algebra of compact operators in a separable infinite dimensional Hilbert space $H_{\omega,t}$ and W is the Weyl of a maximal torus $\mathbf{T_n}$ in SO(n).

Similar to Section 1, we first compute the $K_*(C_{\varepsilon}^*(S^n))$ and $HE_*(C_{\varepsilon}^*(S^n))$, and we prove that

$$ch_{C^*}: K_*(C^*_{\varepsilon}(S^n)) \longrightarrow HE_*(C^*_{\varepsilon}(S^n))$$

is a isomorphism modulo torsion.

Notes on Notation: For any compact space X, we write $K^*(X)$ for the $\mathbb{Z}/(2)-$ graded topological K-theory of X. We use Swan's theorem to identify $K^*(X)$ with $\mathbb{Z}/(2)-$ graded $K^*(\mathbb{C}(X))$. For any involution Banach algebra $A, K_*(A), HE_*(A)$ and $HP_*(A)$ are $\mathbb{Z}/(2)-$ graded algebraic or topological K-groups of A, enire cyclic homology, and periodic cyclic homology of A, respectively. If \mathbf{T} is a maximal torus of a compact group G, with the corresponding Weyl group W, write $\mathbf{C}(\mathbf{T})$ for the algebra of complex valued functions on \mathbf{T} . We use the standard notation from the root theory such as P, P^+ for the positive highest weights, etc... We denote by $\mathcal{N}_{\mathbf{T}}$ the normalizer of \mathbf{T} in G, by \mathbb{N} the set of natural numbers, \mathbb{R} the fied of real numbers and \mathbb{C} the field of complex numbers, $\ell_A^2(\mathbb{N})$ the standard ℓ^2 space of square integrable sequences of elements from A, and finally by $C_{\varepsilon}^*(G)$ we denote the compact quantum algebras, $C^*(G)$ the C^*- algebra of G.

2. Non-commutative Chern characters of C^* -algebras of spheres.

In this section, we compute non-commutative Chern characters of C^* -algebras of spheres. Let A be an involution Banach algebra. We construct the non-commutative Chern characters ch_{C^*} : $K_*(A) \longrightarrow HE_*(A)$, and show in [4] that for C^* -algebra $C^*(G)$ of compact Lie groups G, the Chern character ch_{C^*} is an isomorphism.

Proposition 2.1. ([5], Theorem 2.6) Let H be a separable Hilbert space and B an arbitrary Banach space. We have

$$K_*(\mathcal{K}(H)) \cong K_*(\mathbb{C});$$

 $K_*(B \otimes \mathcal{K}(H)) \cong K_*(B)$
 $HE_*(\mathcal{K}(H)) \cong HE_*(\mathbb{C});$
 $HE_*(B \otimes \mathcal{K}(H)) \cong HE_*(B),$

where K(H) is the elementary algebra of compact operators in a separable infinite dimensional Hilbert space H.

Proposition 2.2. ([5], Theorem 3.1) Let A be an involution Banach algebra with unity. There is a Chern character homomorphism

$$ch_{C^*}: K_*(A) \longrightarrow HE_*(A).$$

Proposition 2.3. ([5], Theorem 3.2) Let G be an compact group and \mathbf{T} a fixed maximal torus of G with Weyl $W := \mathcal{N}_{\mathbf{T}}/\mathbf{T}$. Then the Chern character $ch_{C^*}: K_*(C^*(G)) \longrightarrow HE_*(C^*(G))$. is an isomorphism modulo torsions. i.e.

$$ch_{C^*}: K_*(C^*(G)) \otimes \mathbb{C} \xrightarrow{\cong} HE_*(C^*(G)),$$

which can be identified with the classical Chern character

$$ch_{C^*}: K_*(C(\mathcal{N}_{\mathbf{T}})) \longrightarrow HE_*(C(\mathcal{N}_{\mathbf{T}})),$$

that is also an isomorphic modulo torsion, i.e

$$ch: K_*(\mathcal{N}_{\mathbf{T}}) \otimes \mathbb{C} \xrightarrow{\cong} H_{DR}^*(\mathcal{N}_{\mathbf{T}}).$$

Now, for $S^n = O(n+1)/O(n)$, where O(n), O(n+1) are the orthogonal matrix groups. We denote by \mathbf{T}_n a fixed maximal torus of O(n) and $\mathcal{N}_{\mathbf{T}_n}$ the normalizer of \mathbf{T}_n in O(n). Following Proposition 1.2, there a natural Chern character $ch_{C^*}: K_*(C(S^n)) \longrightarrow HE_*(C(S^n))$. Now, we compute first $K_*(C(S^n))$ and then $HE_*(C(S^n))$ of C^* -algebra of the sphere S^n . Proposition 2.4.

$$HE_*(C(S^n)) \cong H_{DR}^W(\mathbf{T}_n)$$
.

Proof. We have

$$HE_*(C(S^n)) = HE_*(C(O(n+1)/O(n)))$$

 $\cong HE_*(C^*(O(n)) \otimes \mathcal{K}(L^2(O(n+1)/O(n))))$

(in virtue of, the $\mathcal{K}(L^2(O(n+1)/O(n)))$) is a C*-algebra compact operators in a separable Hilbert space $L^2(O(n+1)/O(n))$

$$\cong HE_*(C(O(n)))$$
 (by Proposition 1.1)
 $\cong HE_*(\mathbb{C}(\mathcal{N}_{T_n}))$ (see [5]).

Thus, we have $HE_*(C^*(S^n)) \cong HE^*(\mathbb{C}(\mathcal{N}_{\mathbf{T}_n}))$.

Apart from that, because $\mathbb{C}(\mathcal{N}_{\mathbf{T}_n})$ is then commutative C^* -algebra, by a Cuntz- Quillen's result [1], we have an isomorphism

$$HP_*(\mathbb{C}((N_{\mathbf{T}_n})) \cong H_{DB}^*(\mathcal{N}_{\mathbf{T}_n})).$$

Moreover, by a result of Khalkhali [8],[9], we have

$$HP_*(\mathbb{C}((N_{\mathbf{T}_n})) \cong HE_*(\mathbb{C}((N_{\mathbf{T}_n})).$$

We have, hence

$$HE_*(C^*(S^n)) \cong HE^*(\mathbb{C}(\mathcal{N}_{\mathbf{T}_n})) \cong HP_*(\mathbb{C}((N_{\mathbf{T}_n})))$$

 $\cong H_{DR}^*(\mathcal{N}_{\mathbf{T}_n}) \cong H_{DR}^W(\mathcal{N}_{\mathbf{T}_n}) \text{ (by [15])}.$

Remark 1. Because $H_{DR}^W(\mathcal{N}_{\mathbf{T}_n})$ is the de Rham cohomology of \mathbf{T}_n , invariant under the action of the Weyl group W, following Watanabe [15], we have a canonical isomorphism $H_{DR}^W(\mathbf{T}_n) \cong H^*(SOn) = \Lambda$ $(x_3, x_7, ..., x_{2i+3})$, where $x_{2i+3} = \sigma^*(p_i) \in H^{2n+3}(S0(n))$ and $\sigma^* : H^*(BSO(n), R) \longrightarrow H^*(SO(n), R)$ for a commutative ring R with a unit $1 \in R$, and $p_i = \sigma_i(t_1^2, t_2^2, ..., t_i^2) \in H * (B\mathbf{T}_n\mathbb{Z})$ the Pontryagin classes.

Thus, we have

$$HE_*(C^*(S^n)) = \Lambda (x_3, x_7, ..., x_{2i+3}).$$

Proposition 2.5.

$$K_*(C(S^n)) \cong K^*(\mathcal{H}_{\mathbf{T}_n})$$
.

Proof. We have

$$K_*(C(S^n)) = K_*(C(O(n+1)/O(n)))$$

$$\cong K_*(C^*(O(n)) \otimes \mathcal{K}(L^2(O(n+1)/O(n)))) \text{ (see [10])}$$

$$\cong K_*(C^*(O(n))) \text{ (by Proposition 1.1)}$$

$$\cong K_*(\mathbb{C}(\mathcal{N}_{\mathbf{T}_n}))$$

$$\cong K_*(\mathcal{N}_{\mathbf{T}_n}) \text{ (by Lemma 3.3, from [5])}.$$

Thus, $K_*(C(S^n)) \cong K_*(\mathcal{N}_{\mathbf{T}_n})$.

Remark 2. Following Lemma 4.2 from [5], we have

$$K_*(\mathcal{N}_{\mathbf{T}_n}) \cong K^*(SO(n+1))/Tor$$

= $\Lambda (\beta(\lambda_1),, \beta(\lambda_{n-3}, \varepsilon_{n+1}),$

where $\beta: R(SO(n)) \longrightarrow \widetilde{K}^{-1}(SO(n))$ be the homomorphism of Abelian groups assigning to each representation $\rho: SO(n) \longrightarrow U(n+1)$ the homotopic class $\beta(\rho) = [i_n \rho] \in [SO(n), U] = \widetilde{K}^{-1}(SO(n))$, where $i_n: U(n+1) \longrightarrow U$ is the canonical one, U(n+1) and U by the n-th and infinite unitary groups respectively and $\varepsilon_{n+1} \in K^{-1}(SO(n+1))$. We have, finally

$$K^*(C^*(S^n)) \cong \Lambda \ (\beta(\lambda_1),, \beta(\lambda_{n-3}, \varepsilon_{n+1}).$$

Moreover, the Chern character of SU(n+1) was computed in [14], for all $n \ge 1$. Let us recall the result. Define a function

$$\phi: \mathbb{N} \times \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{Z}.$$

given by

$$\phi(n, k, q) = \sum_{i=1}^{k} (-1)^{i-1} \binom{n}{k-1} i^{q-1}.$$

Theorem 2.6. Let \mathbf{T}_n be a fixed maximal torus of O(n) and T the fixed maximal torus of SO(n), with Weyl groups $W := \mathcal{N}_{\mathbf{T}}/\mathbf{T}$, the Chern character of $C^*(S^n)$

$$ch_{C^*}: K_*(C^*(S^n)) \longrightarrow HE_*(C^*(S^n))$$

is an isomorphism, given by

$$\begin{array}{lcl} ch_{C^*}(\beta(\lambda_k)) & = & \sum_{i=1}^n ((-1)^{i-1}2/(2i-1)!\phi(2n+1,k,2i)x_{2i+1} & (\text{k=1, ..., n-1}); \\ ch_{C^*}(\varepsilon_{n+1}) & = & \sum_{i=1}^n ((-1)^{i-1}2/(2i-1)!)((\frac{1}{2^n}\sum_{i=1}^n \phi(2n+1,k,2i)x_{2i+1}. \end{array}$$

Proof. By Proposition 1.5, we have

$$K_*(C^*(S^n)) \cong K_*(\mathbb{C}(\mathcal{N}_{T_n})) \cong K^*(\mathcal{N}_{T_n})$$

and

$$HE_*(C^*(S^n)) \cong HE_*(\mathbb{C}(\mathcal{N}_{T_n})) \cong H^*_{DR}(\mathcal{N}_{T_n})$$
 (by Proposition 1.4).

Now, consider the commutative diagram

$$K_{*}(C^{*}(S^{n})) \xrightarrow{ch_{C^{*}}} HE_{*}(C^{*}(S^{n}))$$

$$\cong \downarrow \qquad \qquad \downarrow \cong$$

$$K_{*}(\mathbb{C}(\mathcal{N}_{T_{n}})) \xrightarrow{ch_{CQ}} HE_{*}(\mathbb{C}(\mathcal{N}_{T_{n}}))$$

$$\cong \downarrow \qquad \qquad \downarrow \cong$$

$$K^{*}(\mathcal{N}_{T_{n}}) \xrightarrow{ch} H^{*}_{DR}(\mathcal{N}_{T_{n}})).$$

Moreover, by the results of Watanabe [15], the Chern character $ch: K^*(\mathcal{N}_{\mathbf{T}_n}) \otimes \mathbb{C} \longrightarrow H^*_{DR}(\mathcal{N}_{\mathbf{T}_n})$ is an isomorphism

Thus, $ch_{C^*}: K_*(C^*(S^n)) \longrightarrow HE_*(C^*(S^n))$ is an isomorphic (Proposition 1.4 and 1.5), given by

$$\begin{array}{lcl} ch_{C^*}(\beta(\lambda_k)) & = & \sum_{i=1}^n ((-1)^{i-1}2/(2i-1)!)\phi(2n+1,k,2i)x_{2i+1} & \text{(k=1, ..., n-1)}; \\ \\ ch_{C^*}(\varepsilon_{n+1}) & = & \sum_{i=1}^n ((-1)^{i-1}2/(2i-1)!)\Big((\frac{1}{2^n})\sum_{i=1}^n \phi(2n+1,k,2i)\Big)x_{2i+1}, \end{array}$$

where

$$K^*(C^*(S^n)) \cong \Lambda (\beta(\lambda_1),, \beta(\lambda_{n-3}, \varepsilon_{n+1}))$$

 $HE_*(C^*(S^n)) \cong \Lambda (x_3, x_7, ..., x_{2i+3}).$

3. Non-commutative Chern characters of C^* -algebras of quantum spheres

In this section, we at first recall definition and main properties of compact quantum spheres and their representations. More precisely, for S^n , we define $C^*_{\varepsilon}(S^n)$, the C^* -algebras of compact quantum spheres as the C^* -completion of the *-algebra $\mathcal{F}_{\varepsilon}(S^n)$ with respect to the C^* -norm, where $\mathcal{F}_{\varepsilon}(S^n)$ is the quantized Hopf subalgebra of the Hopf algebra, dual to the quantized universal enveloping algebra $U(\mathcal{G})$, generated by matrix elements of the $U(\mathcal{G})$ modules of type 1(see [3]). We prove that

$$C_{\varepsilon}^*(S^n) \cong \mathbb{C}(S^1) \oplus \bigoplus_{e \neq \omega \in W} \int_{S^1}^{\oplus} \mathcal{K}(H_{\omega,t}) dt,$$

where $\mathcal{K}(H_{\omega,t})$ is the elementary algebra of compact operators in a separable infinite dimensional Hilbert space $H_{\omega,t}$ and W is the Weyl group of S^n with respect to a maximal torus T.

After that,we first compute the K-groups $K_*(C^*_{\varepsilon}(S^n))$ and the $HE_*(C^*_{\varepsilon}(S^n))$, respectively. Thereafter we define the Chern character of C^* -algebras quantum spheres, as a homomorphism from $K_*(C^*_{\varepsilon}(S^n))$ to $HE_*(C^*_{\varepsilon}(S^n))$, and we prove that $ch_{C^*}: K_*(C^*_{\varepsilon}(S^n)) \longrightarrow HE_*(C^*_{\varepsilon}(S^n))$ is an isomorphism modulo torsion.

Let G be a complex algebraic group with Lie algebra $\mathcal{G} = \text{Lie}G$ and ε is real number, $\varepsilon \neq -1$. **Definition 3.1.** ([3], Definition 13.1). The quantized function algebra $\mathcal{F}_{\varepsilon}(G)$ is the subalgebra of the Hopf algebra dual to $U_{\varepsilon}(\mathcal{G})$, generated by the matrix elements of the finite-dimensional $U_{\varepsilon}(\mathcal{G})$ -modules of type 1.

For compact quantum groups the unitary representations of $\mathcal{F}_{\varepsilon}(G)$ are parameterized by pairs (ω,t) , where t is an element of a fixed maximal torus of the compact real form of G and ω is a element of the Weyl group W of T in G.

Let $\lambda \in P^+, V_{\varepsilon}(\lambda)$ be the irreducible $U_{\varepsilon}(\mathcal{G})$ -module of type 1 with the highest weight λ . Then $V_{\varepsilon}(\lambda)$ admits a positive definite hermitian form (.,.) such that $xv_1, v_2 = (v_1, x^*v_2)$ for all $v_1, v_2 \in V_{\varepsilon}(\lambda), x \in U(\mathcal{G})$. Let $\{v_{\mu}^{\nu}\}$ be an orthogonal basis for weight space $V_{\varepsilon}(\lambda)_{\mu} \quad \mu \in P^+$. Then $\bigcup \{v_{\mu}^{\nu}\}$ is an orthogonal basis for $V_{\varepsilon}(\lambda)$. Let $C_{\nu,s,\mu,r}^{\lambda}(x) = (xv_{\mu}^{r}, v_{\nu}^{s})$ be the associated matrix elements of $V_{\varepsilon}(\lambda)$. Then the matrix elements $C_{\nu,s,\mu,r}^{\lambda}(x)$ where λ runs through P^+ , while (μ, r) and (ν, s) runs independently through the index set of a basis of $V_{\varepsilon}(\lambda)$ form a basis of $\mathcal{F}_{\varepsilon}(G)$ (see [3]).

Now very irreducible *-representation of $\mathcal{F}_{\varepsilon}(SL_2(\mathbb{C}))$ is equivalent to a representation belonging to one of the following two families, each of which is parameterized by $S^1 = \{t \in \mathbb{C} \setminus |t| = 1\}$

- i) the family of one-dimensional representations \mathcal{T}_t
- ii) the family π_t of representations in $\ell^2(\mathbb{N})$ (see [3]).

Moreover, there exists a surjective homomorphism $\mathcal{F}_{\varepsilon}(G) \longrightarrow \mathcal{F}_{\varepsilon}(SL_2(\mathbb{C}))$ induced by the natural inclusion $SL_2\mathbb{C} \hookrightarrow G$ and by composing the representation π_{-1} of $\mathcal{F}_{\varepsilon}(SL_2\mathbb{C})$ with this homomorphic, we obtain a representation of $\mathcal{F}_{\varepsilon}(G)$ in $\ell^2(\mathbb{N})$ denoted by π_{s_i} , where s_i appears in the reduced decomposition $\omega = s_{i_1}, s_{i_2}, ..., s_{i_k}$. More precisely, $\pi_{s_i} : \mathcal{F}_{\varepsilon}(G) \longrightarrow \mathcal{L}(\ell^2(\mathbb{N}))$ is of class CCR(see [11]),i.e, its image is dense in the ideal of compact operators $\mathcal{L}(\ell^2(\mathbb{N}))$.

Then representation \mathcal{T}_t is one-dimensional and is of the form

$$\mathcal{T}_t(C_{\nu,s,\mu,r}^{\lambda}) = \delta_{r,s}\delta_{\mu,\nu}\exp(2\pi\sqrt{-1}\mu(x)),$$

if $t = \exp(2\pi\sqrt{-1}\mu(x)) \in \mathbf{T}$, for $x \in \text{Lie}\mathbf{T}$ (see [3]).

Proposition 3.1. ([3], 13.1.7). Every irreducible unitary representation of $\mathcal{F}_{\varepsilon}(G)$ on a separable Hilbert space is the completion of a unitarizable highest weight representation. Moreover, two such representation are equivalent if and only if they have the same highest weight.

Proposition 3.2. ([3],13.1.9) Let $\omega = s_{i_1}, s_{i_2}, ..., s_{i_k}$ be a reduced decomposition of an element ω of the Weyl group W of G. Then

- i) The Hilbert space tensor product $\rho_{\omega,t} = \pi_{s_{i_1}} \otimes \pi_{s_{i_2}} \otimes \otimes \pi_{s_{i_t}} \otimes \mathcal{T}_t$ is an irreducible *-representation of $\mathcal{F}_{\varepsilon}(G)$ which is associated to the Schubert cell S_{ω} ;
- ii) Up to equivalence, the representation $\rho_{\omega,t}$ does not depend on the choice of the reduced decomposition of ω ;
 - iii) Every irreducible *-representation of $\mathcal{F}_{\varepsilon}(G)$ is equivalent to some $\rho_{\omega,t}$.

The sphere S^n , can be realized as the orbit under the action of the compact group SU(n+1) of the highest weight vector v_0 in its natural (n+1)-dimensional representation V of SU(n+1). If t_{rs} , $0 \le r, s \le n$, are the matrix entries of V, the algebra of functions on the orbit is generated by the entries in the "first column" t_{s0} and their complex conjugates. In fact,

$$\mathcal{F}(S^n) := \mathbb{C}[t_{00}, ..., t_{n0}, \overline{t}_{00}, ..., \overline{t}_{n0}]/\sim,$$

where " \sim " is the following equivalence relation

$$t_{s0} \sim \overline{t}_{s0} \Longleftrightarrow \sum_{s=0}^{n} t_{s0} \overline{t}_{s0} = 1.$$

Proposition 3.3. ([3], 13.2.6). The *-structure on Hopf algebra $\mathcal{F}_{\varepsilon}(SL_2(\mathbb{C}))$, is given by

$$t_{rs}^* = (-\varepsilon)^{r-s} q \det(\widehat{T}_{rs}),$$

where \widehat{T}_{rs} is the matrix obtained by removing the r^{th} row and the s^{th} column from T.

Definition 3.2. ([3],13.2.7). The *-subalgebra of $\mathcal{F}_{\varepsilon}(SL_{n+1}(\mathbb{C}))$ generated by he elements t_{so} and $t*_{so}$, for s=0,...,n, is called the quantized algebra of functions on the sphere S^n , and is denoted by $\mathcal{F}_{\varepsilon}(S^n)$. It is a quantum $SL_{n+1}(\mathbb{C})$ -space.

We set $z_s = t_{s0}$ from now on. Using Proposition 2.4, it is easy to see that the following relations hold in $\mathcal{F}_{\varepsilon}(S^n)$:

$$\begin{cases} z_{r}.z_{s} = \varepsilon^{-1}z_{s}z_{r} & \text{if } r < s \\ z_{r}.z_{s}^{*} = \varepsilon^{-1}z_{s}^{*}z_{r} & \text{if } r \neq s \\ z_{r}.z_{r}^{*} - z_{r}^{*}.z_{r} + (\varepsilon^{-2} + 1)\sum_{s>r} z_{s}.z_{s}^{*} = 0 \\ \sum_{s=0}^{n} z_{s}.z_{s}^{*} = 0. \end{cases}$$
(CP)

Hence, $\mathcal{F}_{\varepsilon}(S^n)$ has (CP) as its defining relations. The construction of irreducible *-representation of $\mathcal{F}_{\varepsilon}(S^n)$, is given by.

Theorem 3.4. ([3],13.2.9). Every irreducible *-representation of $\mathcal{F}_{\varepsilon}(S^n)$ is equivalent exactly to one of the following:

i) the one-dimensional representation $\rho_{0,t}$ $t \in S^1$, given by $\rho_{0,t}(z_0^*) = t^{-1}$ and $\rho_{0,t}(z_r^*) = 0$ if r > 0,

ii) the representation $\rho_{0,t}$, $1 \le r \le n$, $t \in S^1$, on the Hilbert space tensor product $\ell^2(\mathbb{N})^{\otimes r}$, give by

$$\rho_{r,t}(z_s^*)(e_{k_1}\otimes\ldots\otimes e_{k_r}) = \begin{cases} \varepsilon^{(-\frac{s}{i-1}k_i+s)}(1-\varepsilon^{-2(k_{s+1}+1)})^{-2}e_{k_1}\otimes\ldots\otimes e_{k_s}\otimes e_{k_{s+1}}+1\otimes e_{k_{s+2}}\otimes\ldots\otimes e_{k_s} \text{ if } s < r\\ t^{-1}\varepsilon^{(-\frac{r}{j-1}k_j+r)}e_{k_1}\otimes\ldots\otimes e_{k_r} & \text{if } s = r\\ 0 & \text{if } s > r. \end{cases}$$

The representation $\rho_{0,t}$ is equivalent t_0 the restriction of the representation \mathcal{T}_t of $\mathcal{F}_{\varepsilon}(SL_{n+1}(\mathbb{C}))$ (cf.2.3); and or r > 0, $\rho_{r,t}$ is equivalent to the restriction of $\pi_{s_1} \otimes ... \otimes \pi_{s_r} \otimes \mathcal{T}_t$.

From Theorem 2.6, we have

$$\bigcap_{(\omega,t)\in W\times T} \ker \rho_{\omega,t} = \{0\},\,$$

i.e. the representation $\bigoplus_{\omega \in W} \int_{T}^{\oplus} \rho_{\omega,t} dt$ is faithful and

$$\dim \rho_{\omega,t} = egin{cases} 1 & \text{if } \omega = e \\ 0 & \text{if } \omega \neq e. \end{cases}$$

We recall now the definition of compact quantum of spheres C^* – algebra.

Definition 3.3. The C^* -algebraic compact quantum sphere $C^*_{\varepsilon}(S^n)$ is he C^* -completion of the * -algebra $\mathcal{F}_{\varepsilon}(S^n)$ with respect to the C^* -norm

$$\|f\| = \sup_{
ho} \|
ho(f)\|, \quad f \in \mathcal{F}_{arepsilon}(S^n)$$

where ρ runs through the* – representations of $\mathcal{F}_{\varepsilon}(S^n)$ (cf., Theorem 2.6) and the norm on the right-hand side is the operator.

It suffcies to show that ||f|| is finite for all $f \in \mathcal{F}_{\varepsilon}(S^n)$, for it is clear that ||.|| is a C^* -norm, i.e. $||f.f^*|| = ||f||^2$. We now prove that following result about he structure of compact quantum C^* -algebra of sphere S^n .

Theorem 3.5. With notation as above, we have

$$C_{\varepsilon}^*(S^n) \cong \mathbb{C}(S^1) \oplus \bigoplus_{e \neq \omega \in W} \int_{S^1}^{\oplus} \mathcal{K}(H_{\omega,t}) dt,$$

where $\mathbb{C}(S^1)$ is the algebra of complex valued continuous functions on S^1 and $\mathcal{K}(H)$ ideal of compact operators in a separable Hilbert space H.

Proof. Let $\omega = s_{i_1}.s_{i_2}...s_{i_k}$ be a reduced decomposition of the element $\omega \in W$ into a product of reflections. Then by Proposition 2.6, for r > o, the representation $\rho_{\omega,t}$ is equivalent to the restriction of $\pi_{s_{i_1}} \otimes \otimes \pi_{s_{i_k}} \otimes \mathcal{T}_t$, where π_{s_1} is the composition of the homomorphism of $\mathcal{F}_{\varepsilon}(G)$ onto $\mathcal{F}_{\varepsilon}(SL_2(\mathbb{C}))$ and the representation π_{-1} of $\mathcal{F}_{\varepsilon}(SL_2(\mathbb{C}))$ in the Hilbert space $\ell^2(\mathbb{N})^{\otimes r}$; and the family of one-dimensional representations \mathcal{T}_t , given by

$$\mathcal{T}_t(a) = t, \mathcal{T}_t(b) = \mathcal{T}_t(c) = 0, \mathcal{T}_t(d) = t^{-1},$$

where $t \in S^1$ and a,b,c,d are give by: Algebra $\mathcal{F}_{\varepsilon}(SL_2(\mathbb{C}))$ is generated by the matrix elements of type $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Hence, by construction the representation $\rho_{\omega,t} = \pi_{s_{i_1}} \otimes \otimes \pi_{s_{i_k}} \otimes \mathcal{T}_t$. Thus, we have

$$\pi_{s_i}: C^*_{\varepsilon}(S^n) \longrightarrow C^*_{\varepsilon}(SL_2(\mathbb{C})) \xrightarrow{\pi_{-1}} \mathcal{L}(\ell^2(\mathbb{N})^{\otimes r}).$$

Now, π_{s_i} is CCR (see, [11]) and so, we have $\pi_{s_i}(C^*_{\varepsilon}(S^n) \cong \mathcal{K}(H_{\omega,t})$. Moreover $\mathcal{T}_t(C^*_{\varepsilon}(S^n)) \cong \mathbb{C}$. Hence,

$$\rho_{\omega,t}(C_{\varepsilon}^{*}(S^{n})) = (\pi_{s_{i_{1}}} \otimes ... \otimes \pi_{s_{i_{k}}} \otimes \mathcal{T}_{t})(C_{\varepsilon}^{*}(S^{n}))
= \pi_{s_{i_{1}}}(C_{\varepsilon}^{*}(S^{n})) \otimes ... \otimes \pi_{s_{i_{k}}}(C_{\varepsilon}^{*}(S^{n})) \otimes \mathcal{T}_{t}(C_{\varepsilon}^{*}(S^{n}))
\cong \mathcal{K}(H_{s_{i_{1}}}) \otimes ... \otimes \mathcal{K}(H_{s_{i_{k}}}) \otimes \mathbb{C}
\cong \mathcal{K}(H_{\omega,t}),$$

where $H_{\omega,t}=H_{s_1}\otimes\otimes H_{s_i}\otimes \mathbb{C}$. Thus, $\rho_{\omega,t}(C^*_{\varepsilon}(S^n))=\mathcal{K}(H_{\omega,t})$. Hence.

$$\bigoplus_{\omega \in W} \int_{S^1}^{\oplus} \rho_{\omega,t}(C_{\varepsilon}^*(S^n)) \cong \bigoplus_{\omega \in W} \int_{S^1}^{\oplus} \mathcal{K}(H_{\omega,t}) dt.$$

Now, recall a result of S. Sakai from [11]: Let A be a commutative C^* -algebra and B be a C^* -algebra. Then, $C_0(\Omega, B) \cong A \otimes B$, where Ω is the spectrum space of A.

Applying this result, for $B = \mathcal{K}(H_{\omega,t}) \cong \mathcal{K}$ and $A = \mathbb{C}(W \times S^1)$ be a commutative C^* -algebra. Thus, we have

$$C_{\varepsilon}^*(S^n) \cong \mathbb{C}(S^1) \oplus \bigoplus_{e \neq \omega \in W} \int_{S^1}^{\oplus} \mathcal{K}(H_{\omega,t}) dt.$$

Now, we first compute the $K_*(C^*_{\varepsilon}(S^n))$ and the $HE_*(C^*_{\varepsilon}(S^n))$ of C^* -algebra of quantum sphere S^n . **Proposition 3.6.**

$$HE_*(C_\varepsilon^*(S^n)) \cong H_{DR}^*(W \times S^1).$$

Proof. We have

$$HE_*(C_{\varepsilon}^*(S^n)) = HE_*(\mathbb{C}(S^1) \oplus \bigoplus_{e \neq \omega \in W} \int_{S^1}^{\oplus} \mathcal{K}(H_{\omega,t})dt)$$

$$= HE_*(\mathbb{C}(S^1) \oplus HE_*(\bigoplus_{e \neq \omega \in W} \int_{S^1}^{\oplus} \mathcal{K}(H_{\omega,t})dt))$$

$$\cong HE_*(\mathbb{C}(W \times S^1) \otimes \mathcal{K} \text{ (by Proposition 1.1)}$$

$$\cong HE_*(\mathbb{C}(W \times S^1)).$$

Since $C(W \times S^1)$ is a commutative *-algebra, by Proposition 1.5 §1, we have

$$HE_*(C^*_{\varepsilon}(S^n)) \cong HE_*(\mathbb{C}(W \times S^1)) \cong H^*_{DR}(W \times S^1).$$

Proposition 3.7.

$$K_*(C_{\varepsilon}^*(S^n)) \cong K^*(W \times S^1).$$

Proof. We have

$$K_{*}(C_{\varepsilon}^{*}(S^{n})) = K_{*}(\mathbb{C}(S^{1}) \oplus \bigoplus_{e \neq \omega \in W} \int_{S^{1}}^{\oplus} \mathcal{K}(H_{\omega,t})dt)$$

$$= K_{*}(\mathbb{C}(S^{1}) \oplus K_{*}(\bigoplus_{e \neq \omega \in W} \int_{S^{1}}^{\oplus} \mathcal{K}(H_{\omega,t})dt))$$

$$\cong K_{*}(\mathbb{C}(W \times S^{1}) \otimes \mathcal{K} \text{ (by Proposition 1.1)}$$

$$\cong K_{*}(\mathbb{C}(W \times S^{1})).$$

In result of Proposition 1.5, §1, we have

$$K_*(\mathbb{C}(W \times S^1)) \cong K_*(W \times S^1).$$

Theorem 3.8. With notation above, the Chern character of C*-algebra of quantum sphere $C*_{\varepsilon}(S^n)$

$$ch_{C^*}: K_*(C *_{\varepsilon} (S^n) \longrightarrow HE_*(C *_{\varepsilon} (S^n))$$

is an isomorphism.

Proof. By Proposition 2.9 and 2.10, we have

$$HE_*(C_{\varepsilon}^*(S^n)) \cong HE_*(\mathbb{C}(W \times S^1)) \cong H_{DR}^*(W \times S^1)),$$

$$K_*(C_{\varepsilon}^*(S^n)) \cong K_*(\mathbb{C}(W \times S^1)) \cong K^*(W \times S^1)).$$

Now, consider the commutative diagram

$$K_{*}(C_{\varepsilon}^{*}(S^{n})) \xrightarrow{ch_{C_{\varepsilon}^{*}}} HE_{*}(C_{\varepsilon}^{*}(S^{n}))$$

$$\cong \downarrow \qquad \qquad \downarrow \cong$$

$$K_{*}(\mathbb{C}(W \times S^{1})) \xrightarrow{ch_{CQ}} HE_{*}(\mathbb{C}(W \times S^{1}))$$

$$\cong \downarrow \qquad \qquad \downarrow \cong$$

$$K^{*}(W \times S^{1}) \xrightarrow{ch} H_{DR}^{*}(W \times S^{1}).$$

Moreover, follwing Watanabe [15], the $ch: K^*(W \times S^1) \otimes \mathbb{C} \longrightarrow H^*_{DR}(W \times S^1)$ is an isomorphism. Thus, $ch_{C^*}: K_*(C *_{\varepsilon} (S^n) \longrightarrow HE_*(C *_{\varepsilon} (S^n))$ is an isomorphism.

Acknowledgment. The author would like to thank Professor Do Ngoc Diep for his guidance and encouragement during this paper.

References

- [1] J. Cuntz, Entice cyclic cohomology of Banach algebra and character of θ -summable Fredhom modules, K-Theory., 1 (1998) 519.
- [2] J. Cuntz, D. Quillen, The X complex of the universal extensions, Preprint Math. Inst. Uni. Heidelbeg, (1993).
- [3] V. Chari, A. Pressley, A guide to quantum groups, Cambridge Uni. Press, (1995).
- [4] D.N. Diep, A.O. Kuku, N.Q. Tho, Non-commutative Chern character of compact Lie group C^* -algebras, K- Theory, 17(2) (1999) 195.
- [5] D.N. Diep, A.O. Kuku, N.Q. Tho, Non-commutative Chern character of compact quantum group, K- Theory, 17(2) (1999), 178.
- [6] D.N. Diep, N.V. Thu, Homotopy ivariance of entire curnt cyclic homology, Vietnam J. of Math, 25(3) (1997) 211.

- [7] D.N. Diep, N.V. Thu, Entire homology of non-commutative de.Rham curents, ICTP, IC/96/214, (1996), 23pp; to apprear in Publication of CFCA, Hanoi City Vietnam National Iniversity (1997).
- [8] M. Khalkhali, On the intive cyclic cohomology of Banach algebras: I. Moita invariance, Mathematisches Inst. Uni. Heidelberg., 54 (1992) 24.
- [9] M. Khalkhali, On the intive cyclic cohomology of Banach algebras: II. Homotopy invariance, Mathematisches Inst. Uni. Heidelberg. 54 (1992) 18.
- [10] J. Pactker, Transformation group C^* -algebra: A selective survey, Contemporary Mathematics., Volume 167 (1994) so trang.
- [11] S. Sakai, C*-algebras and W*-algebras, Spriner-Verlag Berlin. Heidelberg New York, (1971).
- [12] N.V. Thu, Morita invariance of entire current cyclic homology, Vietnam J. Math., 26:2 (1998) 177.
- [13] N.V. Thu, Exactness of entire current cyclic homlogy, Acta Math Vietnamica., (to appear).
- [14] T. Watanabe, Chern character on compact Lie groups of low rank Osaka J. Math., 2 (1985) 463.
- [15] T. Watanabe, On the Chern character of symmetric space related o SU(n), J. Math. Kyoto Uni, 34 (1994) 149.