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Series representation of random mappings and their extension

Dang Hung Thang*, Tran Manh Cuong

Department of Mathematics, Vietnam National University, 334 NguyenTrai Str., Hanoi, Vietham

Received 28 February 2009

Abstract. In this paper, we introduce a method of extending the domain of a random mapping
admitting the series expansion. This method is based on the convergence of certain random
series. Some conditions under which a random mapping can be extended to apply to all X -
valued random variables will be presented.
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1. Series representation of random mappings

Let X,Y be separable metric spaces. By a random mapping from X into Y we mean a rule
® that assigns to each element * € X a unique Y - valued random variable ®x. Equivalently, it is a
mapping ® : 2 x X — Y such that for each fixed x € X, the map ®(.,2z): Q — Y is measurable.

In this point of view, two mappings ®; : O X X — Y, &3 : ) x X — Y define the same
random mapping if for each « € X

O (z,w) = Oy(x,w) as.

Noting that the exceptional set can depend on x. In this case, we say that the random mapping @5 is
a modification of the random mapping ®;.

Definition 1.1 A random mapping ¢ from X into Y is said to admit the series expansion if there
exists a sequence (f,,) of deterministic measurable mappings from X into Y (rep. from X into R)
and a sequence («,) of real-valued random variables (rep. Y-valued r.v.’s) such that

oD
dx — E Qp [,
n=1

where the series converges in L .
In the case the sequence (ay,) are independent we say that & admits an independent series
expansion.
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Proposition 1.2 Let ® be a random operator from X into Y and suppose that X is a Banach space
with the Shauder basis e = (e,,)5° | and the conjugate basis e* = (e},)°° |. Then ® admits the series
expansion.

Recall that, a random mapping ® is called a random operator if it is linear and stochastically

continuous, 1.e.
CID()\lgcl + )\2%‘2) = AN ®x + Ao®ao, a.s. Ve, 29 € X, A, A3 € R,

and

p-lim,_,, ®x = dxy.

Note that the exceptional set may depend on A1, Ao, x1, Ts.
Proof. For each & € X, we have

[o. 9]
x = Z(m, e’ )en.
n=1
Since @ is linear and stochastically continuous, we get
[o. 9]

bx = Z(m, er) e,

n=1

where the series converges in L) .
Put oy, = ey, fn(x) = (x,¢e)). (o) is a sequence of Y-valued and (f,,) of deterministic
measurable mappings from X into Y. We have

[o. 9]
by = Z Qp [,
n=1
O
A random mapping ® from X into Y is called a symmetric Gaussian random mapping if for
cach k € N and for each finite sequence (x;,y)¥ , of X x Y* the R¥ - valued random variable
{(®x;, y*)}r_, is symmetric and Gaussian.
Theorem 1.3 Let ® be a symmetric stochastically continuous Gaussian random mapping. Then ©
admits an independent series expansion

oo
Qx = g A, [,
n=1

where («,) is a sequence of real-valued Gaussian i.i.d random variables and f, : X — Y is
continuous (so is measurable).

Proof. Let [®] denote the closed subspace of L2(€2) spanned by random variables {(®z, y*), z €
X,y* € Y*}. Then [®] is a separable Hilbert space and every element of [®] is a symmetric Gaussian
random variable. Let (o) is an orthonormal basis of [®]. Since the sequence (c,) is orthogonal,
symmetric and Gaussian, it is a sequence of real-valued Gaussian 1.i.d random variables. Now for each
n, we define a mapping f, : X — Y by

fnx[)an(w)@x(w)dp(w). (1)
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Here the Bochner (1) exists because by Cauchy inequality

/ o, (@) () |dP(w) < {B]|Pa]*}"/>. (2)

Fix @ € X. For cach y* € Y*, (Px, y*) € [®] is expanded in the basis (a;,) in the form

(Ba, y*) §:I< CI)gc Ly ) and P(w )> @
S ([ awwearo).)

n=1
0

- Z(Oénfnxy y*>
n=1
where the series converges in Ly(€2) so it is convergent in probability. Since the sequence (v, f,z) is
a sequence of symmetric independent Y - valued r.v.’s, by the Ito - Nisio theorem, we conclude that

o0
by = Z Qnfnx  as.
Finally, fixing n, we show that f,, is continuous. Let (zz) C X such that limg 2 = =. From (2) we
have
[ frk — fo|? < Bl|@a), — daf*.
By the assumption p—lim ®x; = ®x and the fact that in [®] all the convergence in L,(Q2), (p > 0)
are equivalent, we have liinEHCI)gck — ®z||* = 0. Therefore, limg, foxr = fr. O

Next, we shall be interested in possible extensions of Theorem 1.3 to the case of symmetric
stable random mappings.

Let @ be a random mapping from X into Y. & is said to be a symmetric p-stable random mapping
(SpS random mapping in short) if the real process {(Px, y*)} defined on X x Y* is symmetric p -
stable. In this case, for each « € X, ®x is a Y-valued SpS random variable.

Let [®] denote the closed subspace of Lo(€2) spanned by random variables {(®z, y*),x €
X,y* € Y*}. If € € [®] then & is SpS so the ch.f. of £ is of the form exp{—c|¢[P}, where ¢ = ¢(€) is
a non-negative number depending on £. The length of ¢ denoted by ||£||« is defined by

€]l = {e(€)}™.
It is known that (see [1]).
Lemma
i) The correspondence & — ||&||« is an F-norm on |®| and in fact is a norm in the case p > 1.
ii) [®] is a linear subspace of each L.(2),0 < r < p and all topologies L.(2), 0 < r < p
coincide with the topology induced by ||&||« - norm on [®)].
iii) The F - space [®] can be isometrically embedded into some L,(S, A, ).

Theorem 1.4 Let O be SpS stochastically continuous random mapping and suppose that |®| is isometric
to l,. Then ® admits an independent series expansion

[o. 9]
Px = Z Qp [,
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where («v,) is a sequence of real-valued SpS i.i.d random variables and [, : X — Y is continuous
(so it is measurable).
Proof. Let I be an isometry from [®] onto [, and J = /. Put

an = J(en),
I (P2, y%)) = B(2,y") € L.

At first, we shall show that () is a sequence of real-valued SpS i.i.d random variables. Indeed, the
joint ch.f. f(t1, 1o, ...,1,) of the random variable (aq, asg, ..., ) is equal to

ft1,ta, .. ty) = Eexp {iZtkak} = Fexp {iZth(ek)}
k=1 k=1
J (Ztkek)
k=1

~ ey {u (zt)} ~exp {—

n P n
exp{— Ztkek }GXP{—Z|tk|p}
k=1 k=1
as desired.

For each (z,y*) € X x Y*, we have

)

hence
(P, y*) = Z nbn(2,y7%), (3)

where b, (2, y*) is the n-th coordinate of B(x, y*) € I, and the series (3) converges in the norm ||. ||«
so converges in probability.
Fix n. We show that there exists a mapping f, : X — Y such that for each x € X, y* € Y*

Fix z € X . Since the mapping y* — (Pz, y*) is linear so the mapping y* — B(x, y*) is linear which
implies the mapping b, : y* — b,(x,y*) from Y* into R is linear. In addition, the ch.f. of ®x is
7(Y*,Y)- continuous on Y*, where 7(Y™*,Y") is the topology of uniform convergence on compact scts
of Y, and it is equal to

Ho(y") = exp{—|[(®z, y") [} = exp{—||B(x,y")|I"}

Consequently, b, : Y* — R is linear and 7(Y™*,Y)- continuous on Y*. Since the dual space of Y*
under the topology 7(Y*,Y) is Y we conclude that there exists a unique element denoted by f,,« such
that

be(y*) = (fr,y™) = bu(2,y") = (far, y7).
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Now, the equality (3) becomes

(P, y*) Zoznnwy
oD

Z O fr, y

n=1

The rest of proof is carried out similarly as in the proof of Theorem 1.3.
Finally, fixing 7, we show that f,, is continuous. Let (xx) be a sequence of X such that
liin xr = x. By the assumption p-lim &z = &z, we have

[o. 9]
Dy — P = Zozj(fjxk — fjx).
j=1
Since p < 2 by Corrolary 7.3.6 in [2], we get
[o. 9]
| fteie = Fuel? < | fjek — fll? < OLE| by — a7

Jj=1

where » < p and the constant C' > 0 depends only on , p. From 2. of Lemma we obtain limg{ | ®x—
%II’”}”’” = 0. Hence, limy, f,xr = f,x as desired. 0

2. The extension of random mappings admitting series expansion

Let @ be a random mapping from X into Y admitting the series expansion
[o. 9]
bx = Z Qn fr, <4>
n=1

where (f,,) is a sequence of deterministic measurable mappings from X into Y (rep. from X into R)
and (o) is a sequence of real - valued random variable (rep. Y - valued r.v.). The series converges
in L} .

Denote by D(®) the set of all X - valued r.v. u such that the series

n=1

converges in probability. Here f,u(w) = f,, (u(w)) is a random variable because f,, is measurable.
Clearly, X C D(®) C L.

Definition 2.1 D(®) is called the domain of extension of ®. If u € D(P) then the sum (5) is denoted

by ®u and it is understood as the action of ® on the random variable .

Theorem 2.2 If w is a countably - valued r.v.

oD
U= E 1g;2;,
=1
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where (E;, i = 1,2, ...) is a countable partition of Q and x; € X, then u € D(®) and
oD
du = Z 1g, Q.
i=1
Proof. Put Z, = > oy fiuwand Z = >, 15,Pa;. We have to show that
lim P(||Z, — Z|| > t) = 0.

Since w € B, = Z(w) = Oy, Z,(w) = > a; fixg s0
i=1

o0
P(Zy = Z| > t) =Y P %0 — Z|| > t, Ey)

—_

) =
k
N
SZP(
k

=1

n

Z a; iz — Py

=1

oD
> t) + P(Ey)
E=N-+1

For cach k£ = 1,2, .., N we have

lirllnP(H Z a; fixg — Pag|| > 1) = 0.
i=1

Let n — oo and then N — oo, we get lim,, P(||Z,, — Z|| > t) = 0. O

For each random mapping ® admitting the representation (4), let F(a) denote the o-algebra
generated by the family {a,,}. A random variable « € L is said to be independent of ® if F(u) and
F (o) are independent.
Theorem 2.3 Suppose that u is independent of ®, then u € D(®).

Proof. Lett > 0. By the independence of u and the sequence («,) we have

()1

where 1 1s the distribution of u. Because for cach « € X

n

Z a; fiu

i=m

n

Z a; fix)

i=m

> t) du(x),

By the dominated convergence theorem, we infer that
n
=m

Therefore, the series
o0
E a; fiu
i=1

converges in LY ie. u € D(P). O
Theorem 2.4 Let © be a random mapping from X into Y admitting the series expansion of the form
(4). Suppose that E|lag|P < C for all k, where p > 1 and q is the conjugate number of p (i.e.
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I/p+1/q=1). Foru € L§ to belong to D(®), a sufficient condition is

> AB| frul| 37 < oo, (6)
k
Proof. Put
ri(q) = {B| fiu] 7374,
Applying the Holder inequality, we get

| arfeu|| <Y Elowl |l frull
k=m k=m
< Y ABlowP Y PLE fiu] 7}
k=m
§CZrk(q)—>O as m,n — oc.
k=m
[e.°]
Hence, the series Y g fru converges in L%/ SO converges in L%/. O
k=1
Corrolary 2.5 Suppose that ® is a symmetric stochastically continuous Gaussian random mapping

and if
Y AENfrw)|Fe < o0
k

Jor some q > 1 then u € D(P).

3. When a random mapping can be extended to the entire space L3<

Let @ be a random operator from X into Y and suppose that X is a separable Banach space
with the Shauder basis e = (e,,)7° ; and the conjugate basis e¢* = (e})>° ;. By Proposition 1.2, ®
admits the series expansion.

o

bx = Z(m, er)De,,.

n=1
Theorem 3.1
i) If ® is a bounded random operator then D(®) = LX and ®u does not depend on the basis
(en).
ii) Conversely, if D(®) = L then ® must be a bounded random operator:
Recall that (see|3]) a random operator ® is said to be bounded if there exists a real-valued
random variable k(w) such that for each x € X

[Pa(w)l| < k)] as.
Noting that the exceptional set may depend on x.
Proof: 1) Since ® is bounded, by Theorem 3.1 [3] there exists a mapping
T:Q0— L(X,Y)
such that for each x € X
Sz(w) = T(w)x a.s.
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As a consequence, there is a set D with P(D) = 1 such that for each w € D and for all » we have
e, (w) = T(w)ey,.

Hence, for cach w € D

Y (uw), en)Pen(w) =Y (uw), e)T(w)en
=T(w) (Z(U(w)y ei)en) = T(w)(u(w)).

Therefore, the series >, (u, e))Pe,, converges a.s. so converges in probability. Consequently,
u € D(P) and Pu(w) = T(w)(u(w)) does not depend on the basis e = (e,,).
i1) Put

O,u = Z(u, e )Pe,.

=1

Then ®,, is a linear continuous mapping from L into L} . By the assumption lim,, ®,u = du for
all w € L. Hence, by the Banach-Steinhaus theorem ® is again a linear continuous mapping from
L into LY . In addition, we have

O(u) = Z 1g,Pa;
i=1

for u = > 1g,a; where (F;,¢ = 1,...,n) is a partition of 2 and «; € X. By Theorem 5.3 [3] we

concludelthlat ® is bounded. O
Theorem 3.2 Let ® be a random operator admitting the series expansion of the form (4), where (a,)
is a sequence of real-valued random variables and (f,) is a sequence of continuous linear mappings
from X into Y. Then

i) If ® is bounded then D(®) = L.

ii) Conversely, if D(®) = L then ® must be bounded.

Proofii) Since @ is bounded, by Theorem 3.1 [3] there exists a mapping

T:Q0— L(X,Y)

such that for each x € X
Sz(w) = T(w)x a.s.

For this reason, there is a set D with P(D) = 1 such that for cach w € D and for all k& we have

Dep(w) = Z an(w) frer = T(w)er.
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As a consequence, for each w € D

Z (W) fpu(w) = Z ozn(w)fn(z < u(w), e > ex)
n n k
= Z an<w> Z < U’(w): ez > fnek
n k
- Z < U’(w): ez > Zan<w>fnek
k n

= Z < u(w),ef > T(w)ex
k

=T(w) (Z < u(w),ef > ek)
k
= T(w)(u(w)).

i1) Put
d,u = Z a; fiu.
i=1

Then ®,, is a linear continuous mapping from L into L) . By the assumption lim,, ®,u = ®u for
all w € L. Hence, by the Banach - Steinhaus theorem @ is again a linear continuous mapping from
L into LY . In addition, for u = > 1g@; where (E;,i = 1,...,n) is a partition of  and z; € X,
we have

O(u) = Z o fru
k=1

o n

n oD
= Z oy, Z 1g; frx; = Z g, Z o i
k=1 -1 k=1

=1
n
=1

By Theorem 5.3 [3] we conclude that @ is bounded. O
Theorem 3.3 Let X be a compact metric space and ® be a random mapping from X into Y admiting
the series expansion of the form (4), where («,) is a sequence of real-valued symmetric independent
random variables and (f,) is a sequence of continuous mappings from X into'Y.

i) If ® has a continuous modification then every u € LiX belongs to D(®) i.e. D(®) = L.

ii) The converse is not true i.e. there exists a random mapping ® from X into Y admiting
the series expansion of the form (4), where («,) is a sequence of real-valued symmetric independent
random variables and (f,,) is a sequence of continuous mappings from X into'Y such that D(®) = L
but ® has not a continuous modification.

Proof. 1et V = C(X,Y) be the set of all continuous mappings from X into Y. It is known
that V' is a separable Banach space under the supremum norm

If1lv = sup [ f(@)]-
z€X



246  D.H. Thang, TM. Cuong / VNU Journal of Science, Mathematics - Physics 25 (2009) 237-248

For each pair (z, y*) € X x Y* the mapping z @ y* : V — R given by

(z@y")(f) = (f(=),y")
is clearly an element of V*. Let ' = {(z ® y*), (z,y*) € X x Y*}. It is easy to check that T is a
separating subset of V*. Let U(z, w) be a continuous modification of ®. Define a mapping T : 2 — V
by
T(w) =2 — ¥U(z,w).

We show that 7" is measurable i.c T is a V-valued random variable. Indeed, for each (x @ y*) € T
the mapping w — (T'(w), 2z @ y*) = (T(w)z, y*) = (V(z,w),y*) = (Pz(w),y*) a.s. is measurable.
Since V' is separable and ' is a separating subset of V'*, the claims follows from the theorem 1.1 in
(4D

Note that for each w the mapping x — «,(w) f,2 is an element of V. Hence o, f,, is a V-valued
r.v. Now for each (@ ® y*) € ' we have

(T(w),x@y") = (T(w)z,y*) = (Pa(w), y")

o

Z W) fn®,y*) = ) (W) fr, 2 @Y%) as.

=1 n=

Since (v, f,) is a sequence of V-valued symmetric independent r.v.’s in view of Ito - Nisio theorem
[e.°]

we conclude that the series Y a,(w) f,, converges a.s. to T" in the norm of V. This implies that there
n—1
exists a set [ of probability one such that for each w € D,z € X, we have

) = Zozn ) fn.

Consequently, for « € L we have

- i (W) [l Z o (W) fyu(w) Yw € D
n—1

ie. the series ) 7 | o, (w) fru(w) converges a.s.
i1)The following example shows that the converse is not true.
Example. 1et X = [0;1],Y = R. Consider the sequence (&,) of real-valued independent r.v.’s given
by
1
P (571 - O) =1-=

1
P(fn:_n):P<5n:n):W7 2’

Then (&,) are real-valued symmetric independent r.v.’s and
1
Let (a,) be sequence of positive numbers defined by
1
Vnlogyn

and put o, = a,,&,. Then («,) are real-valued symmetric independent r.v.’s and

Ay —

E(c,) = 0, Elay| = 22 Blay|* = a2,
7
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Let (f,,) be the sequence of functions f,, : [0; 1] — R defined by
Jn(t) = cos 2mndt.

Clearly, f,, are continuous. Consider the random function ® : [0; 1] — R given by

=3 @) ful): ()
We have

ZE|oznfn )| < ZE|ozn| = Z— < o0

[e.°]
since Z 5 < 00, Z azl=3% nll 5— < oo. This implies the series (7) converges a.s. Moreover, for
=1 n=1

each real - valued random variable © we have

ZE|oznfn |<ZE|ozn|—Z—<oo
n=1

This implies the series

Z O‘nﬁl(“)

converges a.s. Hence D(®) = Lo(R).

Next, we shall show that ®(¢) is an unbounded function. To this end, we use the following
result from ([5]) (Theorem 7 and Exersise 3 p. 231).

Consider the random series

Z anfn t € [O 1]

* =

where (&,) are independent and symmetric r.v.’s with E|&,, 1. (a,) are positive real numbers such

that >~ a2 < oo and f,,(t) = cos27mnt. Put

S; — E ai

2i<p<2itl

1/2

Then if > s; = oo then ®(¢)(w) is not a bounded function on [0; 1] a.s.
=0

T
Now we come back to our example. We have

1/2
2 i 1/2 1
S; = Z a;, (2 aQZH) -=——
2i§n<2i+1 \/§<Z + 1)
[e.°]
which implies that > s; = co. Therefore, for almost sure w, ®(¢)(w) is not bounded a.s. so is not
i=0

continuous on [0; 1] a.s
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