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1. Introduction

In the last decade, there have been extensive works on studying of robustness measures, where

one of the most powerful ideas is the concept of the stability radii, introduced by Hinrichsen and

Pritchard [1]. The stability radius is defined as the smallest (in norm) complex or real perturbations

destabilizing the system. In [2], if x
′

= Ax is the nominal system they assume that the perturbed

system can be represented in the form

x
′

= (A + BDC)x, (1)

where D is an unknown disturbance matrix and B, C are known scaling matrices defining the \struc-

ture" of the perturbation. The complex stability radius is given by
[

max
t∈iR

‖C(tI − A)−1B‖

]−1

. (2)

If the nominal system is the difference equation xn+1 = Axn in [3] they assume that the perturbed

system can be represented in the form

xn+1 = (A + BDC)xn. (3)

Then, the complex stability radius is given by
[

max
ω∈C:|ω|=1

‖C(ωI − A)−1B‖

]−1

. (4)
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Earlier results for time-varying systems can be found, e.g., in [4, 5]. The most successful attempt

for finding a formula of the stability radius was an elegant result given by Jacob [5]. Using this result,

the notion and formula of the stability radius were extended to linear time-invariant differential-algebraic

systems [6, 7]; and to linear time-varying differential and difference-algebraic systems [8, 9].

On the other hand, the theory of the analysis on time scales, which has been received a lot of

attention, was introduced by Stefan Hilger in his Ph.D thesis in 1988 (supervised by Bernd Aulbach)

[10] in order to unify the continuous and discrete analyses. By using the notation of the analysis on

time scale, the equations (1) and (3) can be rewritten under the unified form

x∆ = (A + BDC)x, (5)

where ∆ is the differentiable operator on a time scale T (see the notions in the section 2).
Naturally, the question arises whether, by using the theory of analysis on time scale, we can

express the formulas (2) and (4) in a unified form. The purpose of this paper is to answer this question.

The difficulty we are faced when dealing with this problem is that although A, B, C are constant

matrices but the structure of a time scale is, perhaps, rather complicated and the system (5) in fact is

an time-varying system. Moreover, so far there exist some concepts of the exponential stability which

have not got a unification of point of view. In [11], author used the classical exponent function to

define the asymptotical stability meanwhile the exponent function on time scale has been used in [12].

The first obtained result of this paper is to show that two these definitions are equivalent. To establish

a unification formula for computing stability radii of the system (1) and (3) which is at the same time

an extention to (5), we follow the way in [12] to define the so-called domain of the exponential stability

of a time scale. By the definition of this domain, the problem of stability radius for the equation (5)

deduces to one similar to the autonomous case where we know how to solve it as in [13].

This paper is organized as follows. In the section 2, we summarize some preliminary results on

time scales. Section 3 gives a definition of the stability domain for a time scale and find out some its

properties. The last section deals with the formula of the stability radius for (5).

2. Preliminaries

A time scale is a nonempty closed subset of the real numbers R, and we usually denote it by
the symbol T. The most popular examples are T = R and T = Z. We assume throughout that a time
scale T has the topology that inherits from the standard topology of the real numbers. We define the
forward jump operator and the backward jump operator σ, ρ : T → T by σ(t) = inf{s ∈ T : s > t}
(supplemented by inf ∅ = sup T) and ρ(t) = sup{s ∈ T : s < t} (supplemented by sup ∅ = inf T).
The graininess µ : T → R+∪{0} is given by µ(t) = σ(t)−t. A point t ∈ T is said to be right-dense if

σ(t) = t, right-scattered if σ(t) > t, left-dense if ρ(t) = t, left-scattered if ρ(t) < t, and isolated if t

is right-scattered and left-scattered. For every a, b ∈ T, by [a, b], we mean the set {t ∈ T : a 6 t 6 b}.
For our purpose, we will assume that the time scale T is unbounded above, i.e., sup T = ∞. Let f

be a function defined on T. We say that f is delta differentiable (or simply: differentiable) at t ∈ T
provided there exists a number, namely f∆(t), such that for all ε > 0 there is a neighborhood V around

t with |f(σ(t))− f(s) − f∆(t)(σ(t)− s)| 6 ε|σ(t) − s| for all s ∈V. If f is differentiable for every

t ∈ T , then f is said to be differentiable on T. If T = R then delta derivative is f
′

(t) from continuous

calculus; if T = Z then the delta derivative is the forward difference, ∆f , from discrete calculus. A
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function f : T → R is called regulated provided its right-sided limits (finite) at all right-dense points

in T and its left-sided limits exist (finite) at all left-dense points in T. A function f defined on T is
rd-continuous if it is continuous at every right-dense point and if the left-sided limit exists at every

left-dense point. The set of all rd-continuous function from T to R is denoted by Crd(T, R). A function

f from T to R is regressive (resp. positively regressive) if 1 + µ(t)f(t) 6= 0 (resp. 1 + µ(t)f(t) > 0)

for every t ∈ T. We denote R (resp. R+) the set of regressive functions (resp. positively regressive)

from T to R. The space of rd-continuous, regressive functions from T to R is denoted by CrdR(T, R)

and, CrdR+(T, R) := {f ∈ CrdR(T, R) : 1 + µ(t)f(t) > 0 for all t ∈ T}. The circle addition

⊕ is defined by (p ⊕ q)(t) = p(t) + q(t) + µ(t)p(t)q(t). For p ∈ R, the inverse element is given

by (	p)(t) = − p(t)
1+µ(t)p(t) and if we define circle subtraction 	 by (p 	 q)(t) = (p ⊕ (	q))(t) then

(p 	 q)(t) = p(t)−q(t)
1+µ(t)q(t) .

Let s ∈ T and let (A(t))t>s be a d × d rd-continuous function. The initial value problem

x∆ = A(t)x, x(s) = x0 (6)

has a unique solution x(t, s) defined on t > s. For any s ∈ T, the unique matrix-valued solution,
namely ΦA(t, s), of the initial value problem X∆ = A(t)X, X(s) = I , is called the Cauchy operator

of (6). It is seen that ΦA(t, s) = ΦA(t, τ)ΦA(τ, s) for all t > τ > s.

When d = 1, for any rd-continuous function q(·), the solution of the dynamic equation x∆ =

q(t)x, with the initial condition x(s) = 1 defined a so-called exponential function (defined on the time

scale T if q(·) is regressive; defined only t > s if q(·) is non-regressive). We denote this exponential
function by eq(t, s). We list some necessary properties that we will use later.

Theorem 2.1. Assume p, q : T → R are rd-continuous, then the followings hold

i) e0(t, s) = 1 and ep(t, t) = 1,

ii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s),

iii) ep(t, s)ep(s, r) = ep(t, r),

iv) ep(t, s)eq(t, s) = ep⊕q(t, s),

v)
ep(t,s)
eq(t,s) = ep	q(t, s) if q is regressive,

vi) If p ∈ R+ then ep(t, s) > 0 for all t, s ∈ T,

vii)
∫ b
a p(s)ep(c, σ(s))∆s = ep(c, a)− ep(c, b) for all a, b, c ∈ T,

viii) If p ∈ R+ and p(t) 6 q(t) for all t > s then ep(t, s) 6 eq(t, s) for all t > s.

Proof. See [14], [15] and [16].

The following relation is called the constant variation formula.

Theorem 2.2. [See [17], Definition 5.2 and Theorem 6.4] If the right-hand side of two equations

x∆ = A(t)x and x∆ = A(t)x+f(t, x) is rd-continuous, then the solution of the initial value problem

x∆ = A(t)x + f(t, x), x(t0) = x0 is given by

x(t) = ΦA(t, t0)x0 +

t
∫

t0

ΦA(t, σ(s))f(s, x(s))∆s, t > t0.
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Lemma 2.3. [Gronwall's Inequality]. Let u, a, b ∈ Crd(T, R), b(t) > 0 for all t ∈ T. The inequality

u(t) 6 a(t) +

t
∫

t0

b(s)u(s) ∆s for all t > t0

implies

u(t) 6 a(t) +

t
∫

t0

a(s)b(s)eb(t, σ(s)) ∆s for all t > t0.

Corollary 2.4.

1. If u ∈ Crd(T, R), b(t) ≡ L > 0 and u(t) 6 a(t) + L
t
∫

t0

u(s) ∆s for all t > t0 implies

u(t) 6 a(t) + L
t
∫

t0

eL(t, σ(s))a(s) ∆s for all t > t0.

2. If u, b ∈ Crd(T, R), b(t) > 0 for all t ∈ T and u(t) 6 u0 +
t
∫

t0

b(s)u(s) ∆s for all t > t0 then

u(t) 6 u0eb(t, t0) for all t > t0.

To prove the Gronwall's inequality and corollaries, we can find in [14]. For more information

on the analysis on time scales, we can refer to [17, 18, 19, 20] .

3. Exponential Stability of Dynamic Equations on Time Scales

Denote T+ = [t0,∞) ∩ T. We consider the dynamic equation on the time scale T

x∆ = f(t, x), (7)

where f : T × Rd → Rd to be a continuous function and f(t, 0) = 0.

For the existence, uniqueness and extendibility of solution of initial value problem (7) we can

refer to [15]. On exponential stability of dynamic equations on time scales, we often use one of two

following definitions.

Let x(t) = x(t, τ, x0) be a solution of (7) with the initial condition x(τ) = x0, τ > t0, where

x0 ∈ Rd.

Definition 3.1. [See S. Hilger [10, 17], J. J. DaCunha [11], ...] The solution x ≡ 0 of the dynamic

equation (7) is said to be exponentially stable if there exists a positive constant α with −α ∈ R+

such that for every τ ∈ T+ there exists a N = N (τ) > 1, the solution of (7) with the initial condition

x(τ) = x0 satisfies ‖x(t; τ, x0)‖ 6 N‖x0‖e−α(t, τ), for all t > τ, t ∈ T+.

Definition 3.2. [See C. P�otzsche, S. Siegmund, F. Wirth [12],...] The solution x ≡ 0 of (7) is

called exponentially stable if there exists a constant α > 0 such that for every τ ∈ T+ there exists

a N = N (τ) > 1, the solution of (7) with the initial condition x(τ) = x0 satisfies ‖x(t; τ, x0)‖ 6

N‖x0‖e
−α(t−τ ), for all t > τ, t ∈ T+.

If the constant N can be chosen independent from τ ∈ T+ then the solution x ≡ 0 of (7) is

called uniformly exponentially stable.
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Note that when applying Definition , the condition −α ∈ R+ is equivalent to µ(t) 6 1
α . This

means that we are working on time scales with bounded graininess.

Beside these definitions, we can find other exponentially stable definitions in [21] and [22].

Theorem 3.3. Two definitions and are equivalent on time scales with bounded graininess.

Proof. If −α ∈ R+, t > τ then e−α(t, τ) = exp
{ t
∫

τ
lim

u↘µ(s)

ln |1−αu|
u ∆s

}

where

lim
u↘µ(s)

ln |1− αu|

u
=

{

−α if µ(s) = 0,
ln(1−αµ(s))

µ(s) if µ(s) > 0.

So

lim
u↘µ(s)

ln |1− αu|

u
6 −α, for all s ∈ T.

Therefore, e−α(t, τ) 6 e−α(t−τ ) for all α > 0,−α ∈ R+ and t > τ . Hence, the stability due to

Definition implies the one due to Definition .

Conversely, with α > 0 we put

ᾱ(t) = lim
s↘µ(t)

e−αs − 1

s
=

{

−α if µ(t) = 0,
e−αµ(t)−1

µ(t)
if µ(t) > 0.

It is obvious that ᾱ(·) ∈ R+ and eᾱ(·)(t, τ) = e−α(t−τ ). Let M := supt∈T+ µ(t). If M = 0, i.e.,

µ(t) = 0 for all t ∈ T, then ᾱ(t) ≡ −α. When M > 0 we consider the function y = e−αu−1
u

with 0 < u 6 M . It is easy to see that this function is increasing. In both two cases we have

ᾱ(t) 6 β := lim
s↘M

e−αs−1
s for all t ∈ T+.

Therefore, eᾱ(·)(t, τ) = e−α(t−τ ) 6 eβ(t, τ), for all t > τ . By noting that −β > 0 and β ∈ R+

we conclude that Definition implies Definition . The proof is complete.

By virtue of Theorem , in this paper we shall use only Definition to consider the exponential

stability.

We now consider the condition of exponential stability for linear time-invariant equations

x∆ = Ax, (8)

where A ∈ Kd×d (K = R or K = C). We denote σ(A) = {λ ∈ C, λ is an eigenvalue of A}.

Theorem 3.4. The trivial solution x ≡ 0 of the equation (8) is uniformly exponentially stable if and

only if for every λ ∈ σ(A), the scalar equation x∆ = λx is uniformly exponentially stable.

Proof.

“ =⇒ ” Assume that the trivial solution x ≡ 0 of the equation (8) is uniformly exponentially stable

and λ ∈ σ(A) with its corresponding eigenvector v ∈ Cd \ {0}. It is easy to see that eλ(t, τ)v

is a solution of the equation (8). Therefore, there are N > 1 and α > 0,−α ∈ R+ such that

|eλ(t, τ)v| 6 Ne−α(t, τ)‖v‖, t > τ . Hence, |eλ(t, τ)| 6 Ne−α(t, τ), t > τ .

“ ⇐= ” Let (ΦA(t, τ))t>τ be the Cauchy operator of the equation (8). We consider the Jordan form

of the matrix A

S−1AS =







J1 0
. . .

0 Jn






,
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where Ji ∈ Cdi×di is a Jordan block

Ji :=











λi 1 0 · · · 0
λi 1 · · · 0

. . .
...

λi











,

and λi ∈ σ(A), d1 + d2 + ... + dn = d, 1 6 i 6 n 6 d.

Since

ΦA(t, τ) = S







ΦJ1(t, τ)
. . .

ΦJn(t, τ)






S−1,

it suffices to prove the reverse relation with

A =











λ 1 0 · · · 0
λ 1 · · · 0

. . .
...

0 λ











,

where the equation x∆ = λx is uniformly exponentially stable. Let x = (xx1, x2, ..., xd). The equation

x∆ = Ax can be rewritten as follows


















x∆
1 = λx1 + x2

x∆
2 = λx2 + x3

· · · · · · · · · · · ·

x∆
d = λxd,

(9)

with the initial conditions xk(τ) = x0
k, k = 1, · · · , d. The assumption that the equation x∆ = λx is

uniformly exponentially stable implies |eλ(t, τ)| 6 Ne−α(t, τ), with N, α > 0,−α ∈ R+ and t > τ .

The last equation of (9) gives xd = eλ(t, τ)x0
d. So

|xd(t)| = |eλ(t, τ)x0
d| 6 N |x0

d|e−α(t, τ) 6 N‖x0‖e−α(t, τ), for all t > τ .

By the constant variation formula, we have the representation,

xd−1(t) = eλ(t, τ)x0
d−1 +

t
∫

τ

eλ(t, σ(s))eλ(s, τ)x0
d∆s

Therefore,

|xd−1(t)| 6 Ne−α(t, τ)|x0
d−1| +

∫ t

τ

N 2e−α(t, σ(s))e−α(s, τ)|x0
d|∆s

6 N |x0
d−1|e−α(t, τ) + N 2|x0

d|

∫ t

τ

e− 2α
3

(t, σ(s))e− 2α
3

(s, τ)∆s

= N |x0
d−1|e−α(t, τ) + N 2|x0

d|

∫ t

τ

1

(1 − 2α
3 µ(s))

e− 2α
3

(t, s)e− 2α
3

(s, τ)∆s

6 N |x0
d−1|e−α

3
(t, τ) + N 2|x0

d|e− 2α
3

(t, τ)

∫ t

τ

∆s

1 − 2α
3 µ(s)

.
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Since −α ∈ R+, we have 1−αµ(s) > 0 which is equivalent to 1− 2α
3 µ(s) > 1

3 for all s ∈ T. Hence,

|xd−1(t)| 6 N |x0
d−1|e−α

3
(t, τ) + 3N 2|x0

d|(t − τ)e− 2α
3

(t, τ).

Further, from the relation (−α
3 )⊕(−α

3 )(t) = −2α
3 +(−2α

3 )2µ(t) > −2α
3 , it follows that e−α

3
(t, τ).e−α

3
(t, τ)

= e(−α
3
)⊕(−α

3
)(t, τ) > e− 2α

3
(t, τ). On the other hand, e−α

3
(t, τ) 6 exp (−α(t−τ )

3 ) for any t > τ .

Therefore, (t − τ)e−α
3
(t, τ) 6 (t − τ) exp (−α(t−τ )

3 ) 6
3 exp (−1)

α . Thus,

|xd−1(t)| 6 K1‖x0‖e−α
3
(t, τ),

where K1 = N + 3N2 exp (−1)
α .

Continuing this way, we can find K > 0 and β > 0 with β ∈ R+ such that

‖x‖ 6 K‖x0‖e−β(t, τ), for all t > τ .

The theorem is proved.

Remark 3.5. It is easy to give an example where on the time scale T, the scalar dynamic equation
x∆ = λx is exponentially stable but it is not exponentially uniformly stale. Indeed, denote ((a, b)) =

{n ∈ N : a < n < b}. Consider the time scale

T =
⋃

n

[22n, 22n+1]
⋃

n

((22n+1, 22n+2)).

Let λ = −2 and τ ∈ T, says 2m 6 τ < 2m+1. We can choose α = −1 and N = 2m+1 to obtain

|eλ(t, τ)| 6 Ne−1(t, τ). However, we can not choose N to be independent from τ .

4. The domain of exponential stability of a time scale

We denote

S = {λ ∈ C, the scalar equation x∆ = λx is uniformly exponentially stable}.

The set S is called the domain of exponential stability of the time scale T. By the definition,
if λ ∈ S, there exist α > 0,−α ∈ R+ and N > 1 such that |eλ(t, τ)| 6 Ne−α(t, τ) for all t > τ .

Theorem 4.1. S is an open set in C.
Proof.

Let λ ∈ S. There are α > 0,−α ∈ R+ andN > 1 such that |eλ(t, τ)| 6 Ne−α(t, τ) for all t >

τ and assume that µ ∈ C, |µ − λ| < ε, where 0 < ε < α
N . We consider the equation x∆ = µx =

λx + (µ − λ)x with the initial condition x(τ) = x0.

By the formula of constant variation, we obtain

x(t) = eλ(t, τ)x0 +

∫ t

τ
eλ(t, σ(s))(µ− λ)x(s)∆s.

This implies

|x(t)| 6 N |x0|e−α(t, τ) +

∫ t

τ
Nεe−α(t, σ(s))|x(s)|∆s

= N |x0|e−α(t, τ) +

∫ t

τ

Nε

1 − αµ(s)
e−α(t, s)|x(s)|∆s,
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or
|x(t)|

e−α(t, τ)
6 N |x0| +

∫ t

τ

Nε

1 − αµ(s)

|x(s)|

e−α(s, τ)
∆s.

Applying the Gronwall's inequality, we have

|x(t)|

e−α(t, τ)
6 N |x0|e Nε

1−αµ(·)
(t, τ),

or

|x(t)| 6 N |x0|e−α⊕ Nε
1−αµ(·)

(t, τ) = N |x0|e−(α−Nε)(t, τ) for all t > τ.

It is obvious that α−Nε > 0 and −(α−Nε) ∈ R+). This relation says that {µ ∈ C : |µ−λ| < ε} ⊂ S,

i.e., S is an open set in C. The proof is complete.
Example 4.2.

1. When T = R then S = {λ ∈ C,<λ < 0}.

2. When T = hZ (h > 0) then S = {λ ∈ C, |1 + λh| < 1}.

3. When T =
⋃∞

k=0[2k, 2k + 1] then S = {λ ∈ C,<λ + ln |1 + λ| < 0}.

Indeed, if λ = −1 then for all T ∈ T there exists t ∈ T, t > T such that 1 + λµ(t) = 0, this

implies x(σ(t)) = 0. Therefore, in this case the equation x∆ = λx is (uniformly) exponentially stable.

Now assume λ 6= −1. When 2m = s < t = 2n we have |eλ(t, s)| = e<λ(n−m)|1 + λ|n−m =

e(<λ+ln |1+λ|)(n−m). Thus, λ ∈ S if and only if <λ + ln |1 + λ| < 0. If s, t ∈ T such that 2m 6

s 6 2m + 1 and 2n 6 t 6 2n + 1. Since, |eλ(t, s)| = |eλ(2m+1−s)eλ(2n, 2m + 2)eλ(t−2n)(1 + λ)| 6

Ne(<λ+ln |1+λ|)/2(t, s) we have the proof.

4. Similarly, if T =
⋃∞

k=0[k, k + α], α ∈ (0, 1) then S = {λ ∈ C, α<λ + ln |1 + (1 − α)λ| <

0}, where we use the convention ln 0 = −∞.

5. Stability radius of linear dynamic equations with constant coefficients on time scales

Assume that the nominal equation

x∆ = Ax (10)

is uniformly exponentially stable, where A ∈ Kd×d (K = R or K = C).
Consider the perturbed equation

x∆ = Ax + D∆Ex, (11)

with D ∈ Kd×l , E ∈ Kq×d, and ∆ ∈ Kl×q is an unknown time-invariant linear parameter disturbance.

Denote N = {∆ ∈ Kl×q , σ(A + D∆E) * S}.

Definition 5.1. The structured stability radius of the dynamic equation (10) is defined by

r(A; D; E) := inf{‖∆‖ the solution of (11) is not uniformly exponentially stable}.

By the assumption on (10) and due to Theorem , we have σ(A) ⊆ S and

r(A; D; E) = inf{‖∆‖ : ∆ ∈ N} = sup{r > 0, σ(A + D∆E) ⊆ S ∀ ∆ ∈ Kl×q , ‖∆‖ 6 r}.

Let λ ∈ ρ(A) := C \ σ(A), we define

rλ(A; D; E) := sup{r > 0, λ ∈ ρ(A + D∆E) for all ∆ ∈ Kl×q with ‖∆‖ 6 r}.
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For a subset Ω ⊆ ρ(A), we define

rΩ(A; D; E) := sup{r > 0, Ω ⊆ ρ(A + D∆E) for all ∆ ∈ Kl×q with ‖∆‖ 6 r}.

Theorem 5.2. [See [13]] For all λ ∈ ρ(A) we have rλ(A; D; E) =
1

‖E(λI − A)−1D‖
, where I is

the identity matrix.

Corollary 5.3. [See [13]] If Ω ⊆ ρ(A) then rΩ(A; D; E) = inf
λ∈Ω

1

‖E(λI − A)−1D‖
.

Applying this result with Ω = {S = C \ S we have,

Theorem 5.4.

r(A; D; E) = rΩ(A; D; E) = inf
λ∈{S

1

‖E(λI − A)−1D‖

Denote G(λ) := E(λI − A)−1D. By virtue of the properties lim
λ→∞

G(λ) = 0 and {S to be

closed, we see that ‖G(λ)‖ reaches its maximum value on {S. Moreover, since the function G(λ) is

analytic, the maximum value of ‖G(λ)‖ over {S can be achieved on the boundary ∂{S = ∂S. Thus,

Theorem 5.5.

r(A; D; E) = rΩ(A; D; E) =
{

max
λ∈∂S

‖G(λ)‖
}−1

We now construct a destabilizing perturbation whose norm is equal r(A; D; E). Since ‖G(λ)‖
reaches its maximum value on {S, by the theorem , there exists a λ0 ∈ ∂S such that r(A; D; E) =

‖G(λ0)‖−1.

Let u ∈ Cl satisfying ‖G(λ0)u‖ = ‖G(λ0)‖, ‖u‖ = 1. Applying the Hahn-Banach theorem,

there exists a linear functional y∗ defined on Kq such that y∗(G(λ0)u) = ‖G(λ0)u‖ = ‖G(λ0)‖ and
‖y∗‖ = 1. Putting ∆ := ‖G(λ0)‖

−1uy∗ we get

‖∆‖ 6 ‖G(λ0)‖
−1‖u‖‖y∗‖ = ‖G(λ0)‖

−1.

From

∆G(λ0)u = ‖G(λ0)‖
−1uy∗G(λ0)u = u,

we have

‖∆‖ > ‖G(λ0)‖
−1.

Combining these inequalities we obtain

‖∆‖ = ‖G(λ0)‖
−1.

Furthermore, let x = (λ0I − A)−1Du and from

(λ0I − A − D∆E)x = (λ0I − A)(λ0I − A)−1Du − D‖G(λ0)‖
−1uy∗E(λ0I − A)−1Du

= Du − D‖G(λ0)‖
−1uy∗G(λ0)u = 0,

it follows that λ0 ∈ σ(A + D∆E) ∩ {S. This means ∆ ∈ N and it is a destabilizing perturbation.

Example 5.6. Let T =
⋃∞

k=0[k, k + 1
3 ] and

A =

(

0 −2
1 −3

)

; D =

(

1 1
1 0

)

and E =

(

0 2
1 −1

)

.

We have the domain of exponential stability of this time scale is

S = {λ ∈ C,
1

3
<λ + ln |1 +

2

3
λ| < 0}.
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Fig. 1. The domain of stability.

It is easy to see that σ(A) = {−1,−2} ⊆ S. The boundary of S is the set ∂S = {λ ∈
C, 1

3<λ + ln |1 + 2
3λ| = 0} and

G(λ) =

(

2(λ+1)
λ2+3λ+2

2
λ2+3λ+2

0 λ+2
λ2+3λ+2

)

.

With the maximum norm of R2, i.e., ‖(x, y)‖ = max{|x|, |y|} we have

‖G(λ)‖ = max
{ 2|λ + 1|+ 2

|λ2 + 3λ + 2|
,

|λ + 2|

|λ2 + 3λ + 2|

}

=
2(|λ + 1|+ 1)

|λ2 + 3λ + 2|

=
2

|λ + 2|

(

1 +
1

|λ + 1|

)

.

Put λ = x + yi. From λ ∈ ∂S we have (2x + 3)2 + 4y2 = 9e−
2
3
x and x 6 0.

Then

‖G(λ)‖ = F (x) :=
2

√

9
4e−

2
3
x + x + 7

4



1 +
1

√

9
4e−

2
3
x − x − 5

4



 6 2 = F (0) for all x 6 0.

Therefore max
λ∈∂S

‖G(λ)‖ = ‖G(0)‖ = 2 and r(A; D; E) = 1
2 .

With the vector u = (1, 1) it yields

‖G(0)u‖ = ‖G(0)‖ = 2

Take the functional y∗ = (1, 0), we have y∗(G(0)u) = ‖G(0)u‖ = ‖G(0)‖ = 2 and ‖y∗‖ = 1. Let

∆ = ‖G(0)‖−1uy∗ =

(

1
2 0
1
2 0

)

.

We see that σ(A + D∆E) = {0,−2} * S which implies ∆ ∈ N and r(A; D; E) = 1
2 = ‖∆‖.

6. Conclusion

In this paper we have considered the exponential stability and given a formula for the stability

radius of time-invarying linear dynamic equations with linear disturbance on time scales by giving

the domain of exponential stability and showing the existence of a "bad" perturbation whose norm is
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equal to the stability radius. In the theory of stability radii, the investigation whenever the real stability

radius and complex one are equal is very important. Since the structure of the stability set is rather

complicated, so far we have to leave it as open question.
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