
VNU Journal of Science, Mathematics - Physics 26 (2010) 213-221

213

Active schedules and a new hybrid genetic algorithm
for the job shop scheduling problem

Nguyen Huu Mui*, Vu Dinh Hoa
Department of Information Technology, Hanoi University of Education, 136 Xuan Thuy, Hanoi Vietnam

Received 10 October 2010

Abstract. Active schedules and a new genetic algorithm for solving job shop scheduling problem
are presented in this paper. In the proposed method, a chromosome representation of the problem
is natural numbers, the GT algorithm is used to generate a set of active solutions, the mutation is
implemented on the all machines concurrently. Especially, we propose a new crossover operator
that combines the uniform crossover operator with GT algorithm and is implemented on 3 parents.
The approach was tested on a set of benchmark programs and compared with other approaches.
The computation results validated the effectiveness of the proposed algorithm.

Keywords: Jobshop, Scheduling, Schedule, Genetic Algorithm.

1. Introduction

 Research in scheduling theory has evolved over the past fifty years and has been the subject of
much significant literature with techniques ranging from unrefined dispatching rules to highly
sophisticated parallel branch and bound algorithms and bottleneck based heuristics. Not surprisingly,
approaches have been formulated from a diverse spectrum of researchers ranging from management
scientists to production workers. However with the advent of new methodologies, such as neural
networks and evolutionary computation, researchers from fields such as biology, genetics and
neurophysiology have also become regular contributors to scheduling theory emphasising the
multidisciplinary nature of this field.

 The job shop scheduling problem - JSP is well known as one of the most difficult NP-hard
ordering problems. In fact, we only know of few polynomially solvable cases of the JSP. Most JSP are
NP-hard [1]. There have been some approaches for solving the JSP. For example, the branch and
bound approach the shifting bottle-neck approach, the simulated annealing approach, Genetic
Algorithm-GA methods etc. Recently, many researchers have used hybrid methods to solve JSP such
as Chaoyong Zhang et al. [2], Lee Hui Peng et al. [3], M. Chandrasekaran [4], F. Guerriero [5], Rui
Zhang et al. [6], etc. If JSP has been interested so much, it was because the importance of JSP both in
theory and practice. This paper propose a new genetic algorithm for solving job shop scheduling
problem.

* Corresponding author: E-mail: muithu@yahoo.com

mailto:muithu@yahoo.com

N.H. Mui, V.D. Hoa / VNU Journal of Science, Mathematics - Physics 26 (2010) 2137-221 214

2. Problem description

The JSP can be described as following:
A set of n jobs {Ji}1≤j≤n which is to be on a set of machines {Mj}1≤j≤m. The problem can be

characterized as:
1. Each job must be processed on each machine in the order given in a pre-defined technological

sequence of machines.
2. Each machine can process only one job at a time.
3. The operation of job Ji is processed on machine Mj is called the operation Oij.
4. The processing time of Oij is denoted pij.
5. The starting time and completion time of an operation Oij is denoted as sij and cij.
6. The time required to complete all the jobs is called the makespan, which is denoted as Cmax. By

definition, Cmax = max{cij}1≤i≤n,1≤j≤m.

3. Active schedules [5] and GT algorithm [7]

Schedules can be classified into one of following three types of schedules:
• Semi-active schedule: These feasible schedules are obtained by sequencing operations as early

as possible. In a semi-active schedule, no operation can be started earlier without altering the
processing sequences.

• Active schedule: These feasible schedules are schedules in which no operation could be started
earlier without delaying some other operation or breaking a precedence constraint. Active schedules
are also semi-active schedules. An optimal schedule is always active, so the search space can be safely
limited to the set of all active schedules.

• Non-delay schedule: These feasible schedules are schedules in which no machine is kept idle
when it could start processing some operation. Non-delay schedules are necessarily active and hence
also necessarily semi-active.

 Semi-active

 Active

 Non-Delay

Fig. 1. Types of Schedules.

The JSP is given by the job sequence matrix {Tik} and processing time matrix {pik}. An active
schedule can be generated by using the GT algorithm proposed by Giffler & Thompson [7]. The
algorithm is described as following:

1. Initialize G as a set of operations that are first in the technological sequence (the first column of
the matrix {Tik}, i.e. G = {

111To ,
212To ,...,

1nnTo }. For each operation O ∈G, ES (O) := 0 and EC(O)
:= p(O).

N.H. Mui, V.D. Hoa / VNU Journal of Science, Mathematics - Physics 26 (2010) 2137-221 215

2. Find the earliest complete operation O*j ∈ G. A subset of G that consists of operations
processed on machine Mj is denoted Gj (by 2.1) .

3. Calculate the conflict set C[Mj, k] ⊂ Gj, where k -1 is the number operations already scheduled
on Mj (by 2.2).

4. Select one of the operations in C[Mj, k] randomly. Let the selected operation be Oi*j.
5. Schedule Oi*j as kth operation on Mj; i.e. Sjk := i*, with its starting and completion times equal to

ES(Oi*j) & EC(Oi*j): s(Oi*j) = ES (Oi*j); c(Oi*j) = EC(Oi*j).
6. For all operations Oij ∈Gj \ {Oi*j}:
 - Update ES(Oij) as: ES (Oij) := max{ES(Oij), EC(Oi*j)}.
 - Update EC(Oij) as: EC(Oij) := ES (Oij) + p(Oij).
7. Remove Oi*j from G, and add an operation Ois that is the next to Oi*j in the technological

sequence of Ji to G if such Ois exits. i.e., if j = Tik and k < m, then s := Tik+1 and G := (G\{Oi*j} ∪ {Ois}.
Calculate ES(Ois) and EC(Ois) as:

 - ES (Ois) := max{EC(Oi*j), EC(PM(Ois))}.
 - EC(Ois) := ES (Ois) + p(Ois).
8. Repeat from step 1 to step 7 until all operations are scheduled.
9. Output the solution matrix {Sjk}as the active schedule obtained with set of starting and

completion times {s(Oij)} and {c(Oij)}, where i =Sjk.

4. The proposed genetic algorithm

4.1 Solution coding

We suppose there are n jobs are given to be processed on m machines. The number of operations
of job Ji is denoted job[i] (job[i] ≤ m, with every i). The sum of operations has to process of the all

jobs are L = ∑
=

n

i
ijob

1

][. We code operations of J1 from 1 to job[1], of J2 from job[1] + 1 to job[1] +

job[2],…, of Jn from job[1] + job[2] + ... + job[n-1] +1 to L. Thus, one solution is one certain
permutation of the natural numeral chain {1, 2, 3, ..., L} satisfy of the problem constraints.

By definition, Cmax = max{cij}1≤i≤n,1≤j≤m.

Table 1. The JSP with 3 jobs and 3 machines

Job Machine (processing time)
1 1 (3) 2 (3) 3 (3)
2 1 (2) 3 (3) 2 (4)
3 2 (3) 1 (2) 3 (1)

The problem is equivalently represented by the job sequence matrix {Tik} and processing time
matrix {pik}as following:

1 2 3 3 3 3
1 3 2 2 3 4
2 1 3 3 2 1

ik ikT p

For example, the problem with 3 jobs and 3 machines given in Table 1. Operations are coded by
natural numbers as in Table 2.

N.H. Mui, V.D. Hoa / VNU Journal of Science, Mathematics - Physics 26 (2010) 2137-221 216

Table 2. The operations are coded by natural numbers

Jobs Operation coding
J1 1 2 3
J2 4 5 6
J3 7 8 9

1 2 3 4 5 6 7 8 9
1 4 8 7 6 2 5 3 9

 J1 J2 J3 J3 J2 J1 J2 J1 J3

 M1 M2 M3

Fig. 2. A valid solution for the problem job shop 3 × 3.

 Explanation: According to {Tjk}, operations 1, 4, 8 are processed on machine 1. Thus, codes
on the M1 are one certain permutation of the chain {1, 4, 8}. Similarly, codes on the M2 are one certain
permutation of the chain {2, 6, 7}, codes on the M3 are one certain permutation of the chain {3, 5, 9}.
A valid solution for the problem may be as Figure 2. This solution can be showed by a solution matrix
Sjk. Where, Sjk = i, means that kth operation on machine Mj is job Ji.

1 2 3
3 2 1
2 1 3

jkS

4. 2 Generating a set initial solutions

 JSP represented by the technological sequence matrix {Tik}, and the processing time matrix
{pik}. A initial active schedule for the problem can be generated by using the GT algorithm [6]
presented in the section 3.

4.3 Construct fitting function

The fitting function is represented as following:
Fitness = M – Cmax, there Cmax is makespan of the solution, M is parameter given for change min

problem to max problem (because genetic algorithm only applies immediately for max problem).

4.4 Genetic operators

a) Selection operator
According to Darwin’s evolution theory the best ones should survive and create new offspring.

There are many methods to select the best chromosomes. In this paper, we use the “ Roulette Wheel
Selection”. Parents are selected according to their fitness. The better the chromosomes are, the more
chances to be selected they have.

b) Mutation operator
• Random selection of one operation (ope1) of parent. Define the machine (Mope1) which

performs the operation that has just been selected and define the position (pos1) of this operation in
the parent.

N.H. Mui, V.D. Hoa / VNU Journal of Science, Mathematics - Physics 26 (2010) 2137-221 217

• Random selection one operation (ope2) of parent. Define the machine (Mope2) which performs
the operation has just been selected and define the position (pos2) of this operation.

• If Mope1 = Mope2 then implement mutation.The getting result is child chromosome. On the other
hand, the parent chromosome is kept intact.

• For all operations of the child chromosome, update its starting and completion times.
Example, the parent is selected for mutation as following:

1 2 3 4 5 6 7 8 9
1 4 8 7 6 2 5 3 9

 J1 J2 J3 J3 J2 J1 J2 J1 J3
 M1 M2 M3
 ope2 ope1

Fig. 3. The parent chromosome for insert mutation.

+ For example: ope1 = 2 ---> Mope1 = 2 and pos1 = 6.
+ ope2 = 7 ---> Mope2 = 2 and pos2 = 4.
+ Mope1 = Mope2 ---> insert operation 2 in to position 4. We have child:

1 2 3 4 5 6 7 8 9
1 4 8 2 7 6 5 3 9

 J1 J2 J3 J1 J3 J2 J2 J1 J3
 M1 M2 M3

Fig. 4. The child chromosome after insert mutation.

The mutation operator is implemented on the all machines, then the random selection is
implememted m times.

c) Crossover operator

1

2

3

2 3 1 22 33111
3 2 1 333 2222111 makespan 15
2 3 1 2223 1111

3 3 3 1112233 1 2 3
2 3 2 33311 2222 3 1 2
1 1 1 2223111 2 3 1

1 3 2 1113322 makespan 12
3 1 2 333111 2222 makespan 16
3 1 2 3111222

1 2 3 1112233
3 1 2 333111 2222 makespan 16
1 2 3 111223

ji

p

H p

p

p

Fig. 5. The uniform crossover use GT algoriths with 3 parents.

N.H. Mui, V.D. Hoa / VNU Journal of Science, Mathematics - Physics 26 (2010) 2137-221 218

A scheduling problem represented by {Tik}, the technological sequence matrix, and {pik}, the
processing time matrix. The crossover operator combines the uniform crossover with GT algorithm
and is implemented on 3 parents p1, p2 and p3. This parents are showed by correlative solution matrixs
S1 = {S1

jk}, S2 = {S2
jk}

 and S3 = {S3
jk}. Genes of offspring p = {Sjk} are ones from each parent. The

crossover operator can be described as:
1 2 3 4 5 6 7 8 9

4 8 1 7 2 6 5 9 3
 J2 J3 J1 J3 J1 J2 J2 J3 J1
 M1 M2 M3

1 2 3 4 5 6 7 8 9
1 8 4 7 2 6 9 3 5

 J1 J3 J2 J3 J1 J2 J3 J1 J2

 M1 M2 M3

1 2 3 4 5 6 7 8 9
1 4 8 7 2 6 3 5 9

 J1 J2 J3 J3 J1 J2 J1 J2 J3

 M1 M2 M3

3 3 3 2 2 2 1 1 1
1 4 8 7 2 6 5 9 3

 J1 J2 J3 J3 J1 J2 J2 J3 J1

 M1 M2 M3

Fig. 6. The parents for crossover and the child chromosome after crossover.

1. Initialize G as a set of operations that are first in the technological sequence, i.e., G =
{

111To ,
212To ,...,

1nnTo }. For each operation O G, ES (O) := 0 and EC(O) := p(O).

2. Find the earliest completable operation O*j ∈ G. A subset of G that consists of operations
processed on machine Mj is denoted as Gj.

3. Calculate the conflict set C[Mj, k] ⊂ Gj, where k - 1 is the number of operations already
scheduled on Mj.

4. Select on of the parents {p1, p2, p3} as p according to the value of Hji, p :=
ijHp and Sp = ijHs .

For earch Oij ∈ C[Mj, k] with job number i, there exists an index l such that Sjl = i. Let lm be the
smallest index number among them, i.e., lm = min {l / Sjl = i and Oij ∈ C[Mj, k]} and let r := Sjlm. This
results in selecting an operation Orj ∈ C[Mj, k] that has been scheduled in p earliest among the
members of C[Mj, k].

5. Schedule Orj as the kth operation on Mj; i.e. Sjk := r, with its starting and completion times equal
to ES(Orj) and EC(Orj) respectively: s(Orj) = ES(Orj); c(Orj) = EC(Orj).

p1

p

p3

p2

⊂

∈

N.H. Mui, V.D. Hoa / VNU Journal of Science, Mathematics - Physics 26 (2010) 2137-221 219

6. For all Oij∈ Gj \ {Orj} update:
 - ES(Oij) as: ES (Oij) := max{ES(Oij), EC(Orj)}.
 - EC(Oij) as: EC(Oij) := ES (Oij) + p(Oij).
7. Remove Orj from G (and therefore from Gj), and add operation Ors that is the next to Orj in the

technological sequence to G if such Ors exists; i.e., if j = Tik and k < m, then s := Ti,k+1 and G :=
(G\{Orj} {Ors}.

Calculate ES(Ors) and EC(Ors) as:
 - ES (Ors) := max{EC(Orj), EC(PM(Ors))}.
 - EC(Ors) := ES (Ors) + p(Ors).
8. Repeat from step 1 to step 7 until all operations are scheduled.
9. Output the solution matrix {Sjk} as the active schedule obtained with the set of starting and

completion times {s(Oij)} and {c(Oij)} respectively, where i = Sjk. Figure 8 shows an example of the
uniform crossover operator with GT algorithm and is implemented on 3 parents p1, p2 and p3 with an
inheritance matrix Hji.

The parents for crossover and the child chromosome after crossover are showed by picture as
Figure 6.

4.5 Evolutional algorithm

The evolutional algorithm for the job shop problem is described as following:
 Procedure GA_JSP
 Begin
 t = 0
 Initialize P(t) {using GT algorithm}
 Evaluate P(t)
 While not termination condition do
 Begin
 Build intermediate solution set P'(t):
 - Perform the mutation operator for P(t), we get P1(t)

 - Perform the crossover operator for P(t), we get P2(t)
 - P'(t) = P(t) ∪ P1(t) ∪ P2(t)

 Evaluate P'(t)
 t = t + 1

 Select P(t) from P'(t-1)
 Evaluate P(t)
 If Eval(P(t - 1)) ≥ Eval(P(t)) then t = t - 1
 End
 End

5. Experimental results

 Based on the proposed method, we implemented a program to find an optimal schedule for the
JSP. The program ran on the PC with Core 2 Dual CPU and is applied to Muth and Thompson’s
benchmark problems. The results as in Table 3. Among the research works applied GA to the JSP,

∪

N.H. Mui, V.D. Hoa / VNU Journal of Science, Mathematics - Physics 26 (2010) 2137-221 220

Methods proposed by Yamada are counted as one of the best methods until now. Thus, for the sake of
comparison we is chosen the GA and GT/GA methods of Yamada [8] in Table 4 and Table 5.

Table 3. Experimental results of the proposed method

Problems Population
Size

Generation
number

Crossover
rate (pc)

Mutation
rate (pm)

 result

Real optimal
 result

mt06 (6 × 6) 50 200 0.5 0.05 55 55
mt10 (10 × 10) 500 200 0.8 0.05 930 930
mt20 (20 × 5) 500 200 0.8 0.05 1185 1165

Table 4. Experimental results of the SGA method of Yamada

Problems Population
size

Generation
number

Crossover
rate (pc)

Mutation
rate (pm)

result

Real optimal
 result

mt06 100 200 0.9 0.01 55 55
mt10 1000 200 0.9 0.01 965 930
mt20 2000 200 0.9 0.01 1215 1165

Table 5. Experimental results of the GA/GT method of Yamada

Problems Population
size

Generation
number

Crossover
rate (pc)

Mutation
rate (pm)

result

Real optimal
 result

mt066 100 200 0.9 0.01 55 55
mt10 1000 200 0.9 0.01 930 930
mt20 2000 200 0.9 0.01 1184 1165

6. Conclusion

In this paper we presented of active schedules and proposed a new genetic algorithm for the JSP.
In the proposed method, we sensibly combined of the results of the predecessors with our new
propositions. We proposed a genetic algorithm for the JSP with a new crossover operator. Base on
proposed method, we implemented a program to find an optimal schedule for the JSP. The program
ran with inputs are the mt benchmark problems and provided good results. The program gave the real
optimal solution with small and medium-sized testing problems. However, for the large-sized testing
problems as mt20, the proposed method has not found an optimal solution. In the future, we will try to
find new genetic operators more suitable for the JSP.

References

[1] P. Lopez, F. Roubellat, Production Scheduling, ISTE Ltd, 2008.
[2] Chaoyong Zhang, Yunqing Rao, Peigen Li, ZaiLin Guan, An very fast TS/SA algorithm for the job shop

scheduling problem, Computers and Operations Research 35(1) (2007) 282.
[3] Lee Hui Peng, Sutinah Salim, A Modified Giffer and Thompson Genetic Algorithm on the job shop scheduling

problem, MATEMATIKA (University Teknology Malaysia) 22(2) (2006) 91.

N.H. Mui, V.D. Hoa / VNU Journal of Science, Mathematics - Physics 26 (2010) 2137-221 221

[4] M. Chandrasekaran, P. Asokan, S. Kumanan, T. Balamurugan, S. Nickolas, Solving job shop scheduling problems
using artificial immune system, International Journal Advanced Manufacturing Technology, 31 (2006) 580.

[5] F. Guerriero, Hybrid Rollout Approaches for the Job Shop Scheduling Problem, Jounal Optimization Theory and
Applications, 139 (2008) 419.

[6] Rui Zhang, Cheng Wu, A hybrid approach to large-scale job shop scheduling, Application Intelligence, 32 (2010)
47.

[7] B. Giffler, G.L. Thompson, Algorithms for Solving Production Scheduling Problems, Operations Research, 8(4)
(1960) 487.

[8] T. Yamada, Studies on Metaheuristics for Jobshop and Flowshop scheduling problems, Kyoto University, Kyoto -
Japan (2003).

