
Managing Knowledge in Collaborative Software Maintenance Environment 73

Managing Knowledge in Collaborative Software Maintenance
Environment

Mohd Zali Mohd Nor, Rusli Abdullah, Masrah Azrifah Azmi Murad and Mohd Hasan Selamat

x

Managing Knowledge in Collaborative
Software Maintenance Environment

Mohd Zali Mohd Nor, Rusli Abdullah,

 Masrah Azrifah Azmi Murad and Mohd Hasan Selamat
Universiti Putra Malaysia

Malaysia

1. Introduction

In recent years, many organizations consider knowledge management (KM) to be
strategically important to their business. KM is envisaged to contribute to the organizations
in the following manners (KPMG, 2003):

 Bring synergies among different teams, units or departments
 Accelerate innovation and boosting revenues for market development.
 Improve quality in operational and functional processes
 Reduce costs and exposure to business risks

With the above ‘promises’, KM is also enticing to software development and maintenance
organizations, especially in managing software engineering activities. Within software
engineering activities, software maintenance (SM) has yet to receive proper attention
(SWEBOK, 2004). It is a costly process, where previous works (Fjeldstad & Hamlen, 1979;
Lientz et al., 1981; Pigoski, 1997; Schach et al., 2003) estimated SM costs of between 60% to
90% of total software life cycle costs.
In Software Engineering area, KM have been studied mostly on Software Development
environment, but in Software Maintenance (SM) environment, KM has not been widely
used nor studied. Therefore, studies on KM in SM shall be beneficial to the SM communities
to assist them to perform their daily activities .
The motivation to apply KM in SM in driven by the fact that the SM activities are
knowledge-intensive (Rodriguez, 2004a), and depend largely on expertise of the
maintainers. Most of the time, maintainers depend on experience and “hunches” when
making decisions. Some of these expertise are documented as explicit knowledge, but more
are hidden as tacit knowledge due to scarcity of documentation (Viscaino et al., 2003). As
SM organizations grow and becoming more distributed, members shall need to collaborate
and share these individual knowledge. Various artefacts are ‘created’ and shared during the
SM activities. Among them are:

 Problem reports (PR) (a.k.a. incident report, call tickets) – recorded in helpdesk
application, the PR shall remain open and notes are appended until the problem is
resolved, or Maintenance Request (MR) is raised.

6

Knowledge Management74

 MR – A request for maintenance task, either to fix production bug raised via PR,
business enhancement, or perfective and preventive maintenance. Normally MR
shall be registered in a Software Configuration Management (SCM) application.
MR shall be versioned and remain open until the tasks are completed.

 Business Requirement Documents (BRD) (a.k.a. requirement specifications) - For
business changes, a BRD is normally required to explain the current application
and the intended changes

 Software Requirement Documents (SRD) (a.k.a. software specifications) – In
addition to BRD, SRD details out the technical specifications to guide maintainers
on the required changes

 Test Plan – a guideline for QA to perform testing on the MR
 Release Notes – a list of changes made for a specific release or version.
 Known Issues – a list of known issues for high-priority MR that could not be

completed, with the workarounds, if applicable.
In many SM organizations, the above artefacts are kept in SCM, using various ‘containers’
such as MS-Word, MS- Excel, pdf and hence making searching difficult. As such,
maintainers often have to resort to checking the code to derive the knowledge (Das et
al.,2007). Notwithstanding, many other information that are important to maintainers
resides somewhere else. For example, the domain knowledge often resides within users
community, either explicit in form of best practices, policies and procedures, circulars and
others, or implicit, in the mind and experience of the expert users. Are these knowledge
important and pertinent to the other parties? In SM, the answer is a resounding yes. As
expert users and maintainers leave the organization, the implicit knowledge are gone with
them. This is where KM is useful to consolidate all these information together and allow
users and maintainers to contribute, share and store knowledge.
In this chapter, we shall present the followings: review the definitions and concepts of KM,
KMS and SM collaborative environment; propose a KMS framework for collaborative SM
environment; present a Multi Agent System (MAS) tools to support users and maintainers in
knowledge sharing; and an combined ontology to structure the required knowledge to be
used by the MAS tool

2. Knowledge Management

As an overview, knowledge is defined as “a fluid mix of framed experience, values, contextual
information and expert insight that provides a framework for evaluating and incorporating new
experiences and information. It originates and is applied in the mind of knowers. In organizations, it
often becomes embedded not only in documents an repositories but also in organizational routines,
processes, practices and norms.” (Davenport & Prusak, 2000).
Meanwhile, KM, in technical perspective, is defined as the strategies and processes of
identifying, understanding, capturing, sharing, and leveraging knowledge (Abdullah et al.,
2006; Alavi & Leidner, 2000; Davenport & Prusak, 2000; Selamat et al., 2006). For individual
knowledge creation cycle, Nonaka & Takeuchi SECI framework (Nonaka & Takeuchi, 1995),
based on Polanyi’s tacit and explicit knowledge, models the knowledge creation stages of
socialization, internalization, combination and externalization. This SECI model has been
used and synthesized by many others to model the KM for team and organization levels.

The knowledge creation cycle in SM environment and the collaboration technologies used
are depicted in the following Fig. 1.

Tacit to tacit knowledge
via Socialization
SM knowledge are exchanged through
experience sharing, brainstorming,
observation and practice.

Today technologies:
Collaboration tools - teleconferencing,
desktop video conferencing tools, live-
meetings, village wells, synchronous
collaboration

Tacit to explicit knowledge
via Externalization
Articulate tacit knowledge into explicit via
concepts, metaphor, or models. In SM cases,
these could be in form of screenshots of errors,
shadow sessions, emails, conversations

Today technologies:
Email, terminal sessions, chat

Explicit to tacit knowledge
via Internalization
Knowledge is documented or verbalized, to
help maintainers internalize and transfer
knowledge, and also help other maintainers
to ‘re-experience’ bug scenarios.

Today technologies:
Helpdesk and SCM applications are used to
store bug reports and changes. Visualization
tool to read or listen to success stories.

Explicit to explicit knowledge
via Combination
Knowledge are combined, sorted, added ,
exchanged and categorized, via specifications,
SCM entries and error analysis

Today’s technologies:
Collaboration tools - E-mail, GroupWare,
Homepages, consolidates in SCM. Data mining
to sort, and filter information.

Fig. 1. SM Collaboration technologies in Knowledge Creation Cycle- Adapted from Nonaka
& Takeuchi SECI Model

2.1 Knowledge Management Framework
KM frameworks for modeling organization knowledge cycles are useful to understand
strategies and processes of identifying, understanding, capturing, sharing, and leveraging
knowledge within the teams, departmental units and organizations. Among few are
frameworks by Szulanski’s model of knowledge transfer (Szulanski, 1996), APQC’s
organizational KM model (Arthur Anderson and APQC, 1996), Choo’s model of knowing
organization (Choo, 1996), Selamat et al.’s KM framework with feedback loop (Selamat et
al., 2006) and Holsapple and Joshi’s 3-fold collaborative KM framework (Holsapple & Joshi,
2002). This framework synthesizes the knowledge resources from Leonard-Barton, and
Petrach and Sveiby models; KM activities from Nonaka, APQC, Wiig, Van der Spek and
Alavi’s models, and KM influences from Wiig, APQC, Van der Speck, Szulanski and
Leonard-Barton models. The summary of the above frameworks are listed in the following
Table 1:

Managing Knowledge in Collaborative Software Maintenance Environment 75

 MR – A request for maintenance task, either to fix production bug raised via PR,
business enhancement, or perfective and preventive maintenance. Normally MR
shall be registered in a Software Configuration Management (SCM) application.
MR shall be versioned and remain open until the tasks are completed.

 Business Requirement Documents (BRD) (a.k.a. requirement specifications) - For
business changes, a BRD is normally required to explain the current application
and the intended changes

 Software Requirement Documents (SRD) (a.k.a. software specifications) – In
addition to BRD, SRD details out the technical specifications to guide maintainers
on the required changes

 Test Plan – a guideline for QA to perform testing on the MR
 Release Notes – a list of changes made for a specific release or version.
 Known Issues – a list of known issues for high-priority MR that could not be

completed, with the workarounds, if applicable.
In many SM organizations, the above artefacts are kept in SCM, using various ‘containers’
such as MS-Word, MS- Excel, pdf and hence making searching difficult. As such,
maintainers often have to resort to checking the code to derive the knowledge (Das et
al.,2007). Notwithstanding, many other information that are important to maintainers
resides somewhere else. For example, the domain knowledge often resides within users
community, either explicit in form of best practices, policies and procedures, circulars and
others, or implicit, in the mind and experience of the expert users. Are these knowledge
important and pertinent to the other parties? In SM, the answer is a resounding yes. As
expert users and maintainers leave the organization, the implicit knowledge are gone with
them. This is where KM is useful to consolidate all these information together and allow
users and maintainers to contribute, share and store knowledge.
In this chapter, we shall present the followings: review the definitions and concepts of KM,
KMS and SM collaborative environment; propose a KMS framework for collaborative SM
environment; present a Multi Agent System (MAS) tools to support users and maintainers in
knowledge sharing; and an combined ontology to structure the required knowledge to be
used by the MAS tool

2. Knowledge Management

As an overview, knowledge is defined as “a fluid mix of framed experience, values, contextual
information and expert insight that provides a framework for evaluating and incorporating new
experiences and information. It originates and is applied in the mind of knowers. In organizations, it
often becomes embedded not only in documents an repositories but also in organizational routines,
processes, practices and norms.” (Davenport & Prusak, 2000).
Meanwhile, KM, in technical perspective, is defined as the strategies and processes of
identifying, understanding, capturing, sharing, and leveraging knowledge (Abdullah et al.,
2006; Alavi & Leidner, 2000; Davenport & Prusak, 2000; Selamat et al., 2006). For individual
knowledge creation cycle, Nonaka & Takeuchi SECI framework (Nonaka & Takeuchi, 1995),
based on Polanyi’s tacit and explicit knowledge, models the knowledge creation stages of
socialization, internalization, combination and externalization. This SECI model has been
used and synthesized by many others to model the KM for team and organization levels.

The knowledge creation cycle in SM environment and the collaboration technologies used
are depicted in the following Fig. 1.

Tacit to tacit knowledge
via Socialization
SM knowledge are exchanged through
experience sharing, brainstorming,
observation and practice.

Today technologies:
Collaboration tools - teleconferencing,
desktop video conferencing tools, live-
meetings, village wells, synchronous
collaboration

Tacit to explicit knowledge
via Externalization
Articulate tacit knowledge into explicit via
concepts, metaphor, or models. In SM cases,
these could be in form of screenshots of errors,
shadow sessions, emails, conversations

Today technologies:
Email, terminal sessions, chat

Explicit to tacit knowledge
via Internalization
Knowledge is documented or verbalized, to
help maintainers internalize and transfer
knowledge, and also help other maintainers
to ‘re-experience’ bug scenarios.

Today technologies:
Helpdesk and SCM applications are used to
store bug reports and changes. Visualization
tool to read or listen to success stories.

Explicit to explicit knowledge
via Combination
Knowledge are combined, sorted, added ,
exchanged and categorized, via specifications,
SCM entries and error analysis

Today’s technologies:
Collaboration tools - E-mail, GroupWare,
Homepages, consolidates in SCM. Data mining
to sort, and filter information.

Fig. 1. SM Collaboration technologies in Knowledge Creation Cycle- Adapted from Nonaka
& Takeuchi SECI Model

2.1 Knowledge Management Framework
KM frameworks for modeling organization knowledge cycles are useful to understand
strategies and processes of identifying, understanding, capturing, sharing, and leveraging
knowledge within the teams, departmental units and organizations. Among few are
frameworks by Szulanski’s model of knowledge transfer (Szulanski, 1996), APQC’s
organizational KM model (Arthur Anderson and APQC, 1996), Choo’s model of knowing
organization (Choo, 1996), Selamat et al.’s KM framework with feedback loop (Selamat et
al., 2006) and Holsapple and Joshi’s 3-fold collaborative KM framework (Holsapple & Joshi,
2002). This framework synthesizes the knowledge resources from Leonard-Barton, and
Petrach and Sveiby models; KM activities from Nonaka, APQC, Wiig, Van der Spek and
Alavi’s models, and KM influences from Wiig, APQC, Van der Speck, Szulanski and
Leonard-Barton models. The summary of the above frameworks are listed in the following
Table 1:

Knowledge Management76

Dimension/
Framework

Model

KM Activities Strategy Enabler/ Enabling
condition

Activities Process

Wiig (1993)
3 pillars of KM

Creation,
Manifestation,
Use,
Transfer

Pillar 1 - Survey and
categorize, Analyze
knowledge and activities,
Elicit, coding and organize
Pillar 2 - Appraise and
evaluate, Action
Pillar 3 - Synthesize,
Handle, use and control,
Leverage, distribute and
automate

Nonaka &
Takeuchi (1995)
Knowledge
creation

Socialization,
Externalization,
Combination,
Internalization

5-phase model of K-
creation process:
Sharing tacit
knowledge,Concept
creation,Concept
justification,Archetype
building,Cross-levelling

 Intention,
Autonomy,
Creative Chaos,
Redundancy,
Requisite Variety

Szulanski (1996)
Knowledge
Transfer model

Knowledge transfer - Initiation,
Implementation, Ramp-up, Integration

 K-transfer influences -
Characteristics of k-
transfer, k-sources,
recipient, context

APQC (1996)
Organizational
KM model

Share, Create, Identify, Collect, Adapt,
Organize, Apply

 Leadership, Culture,
Technology,
Measurement

Van der Spek &
Spijkervet
(1997)
Four-Cycle KM
stage

 Conceptualize,
Reflect,
Act,
Retrospect

Choo (1998)
The Knowing
Organization

Sense making, K-creation, Decision making

Davenport &
Prusak (2000)
Working
Knowledge

Knowledge generation-Acquisition, Rental,
Dedicated resources, Fusion, Adaptation,
Networks
Knowledge codification and coordination-
Mapping and modeling knowledge,
Capturing tacit knowledge, Codifying
knowledge

Monopolies,
Incompleteness
of information,
Asymmetry of
knowledge,
Localness,
Artificial
scarcity, Trade
barriers

Price system -
reciprocity, repute,
altruism, trust
Knowledge market -
buyer, seller, brokers

Hansen, Nohvia
& Tiernes (1999)
KM Strategy

 Codification,
Personalization

Australia KM
Standards (2001)
Integrated KM
framework

Knowledge process - Sharing, Acquisition,
Creation

Knowledge
alignment -
Context,
Analysis,
Planning

Knowledge
Foundations - Culture,
Technology, Sustaining
systems

Holsapple and
Joshi (2002)
3-fold
collaborative
KM framework

Acquiring,
Selecting,
Internalizing,
Using

 KM Influences -
Resource,
Managerial,Enviroment
al influences
Knowledge Resources -
Participants
knowledge, Culture,

Infrastructure, Purpose,
Strategies

Handzig &
Hasan (2003)
Integrated
Organizational
KM framework

 Enablers - Knowledge
process, Knowledge
stock, External
environment
Organizational factors -
Organizational
environment,
Technological
infrastructure

Table 1. KM Frameworks - Theoretical Construct

2.2 Knowledge Management System Framework
To conceptualize the KM frameworks into a Knowledge Management System (KMS), a
KMS framework shall need to be defined for collaborative SM environment. KMS is defined
as “I.T-based system developed to support and augment the organizational process of knowledge
creation, storage, retrieval, transfer and application” (Alavi & Leidner, 2000). In general, a KMS
framework consists of influential factors of KMS initiatives and their interdependent
relationships and a model of KMS implementation (Foo et al., 2006). However, systems and
technology alone does not create knowledge (Davenport & Prusak, 2000), various other
social “incentives” and organizational strategy and culture are often required to stimulate
use of technology to share knowledge.
In this chapter, we review some of the related KMS frameworks and identified the
components that could be synthesized for knowledge-based collaborative SM framework.

Dimension
Framework Model

Activities &
process Functionality

Technology

Tools Architecture

Meso & Smith
(2000)
Technical
perspective of
KMS architecture

Using, finding, creating, packaging

Know how, know what, know why, Self-
motivated creativity, Personal tacit,
Cultural tacit, Organizational tacit,
regulatory assets

Computer-mediated
collaboration, Electronic task
management, Messaging, Video
conferencing, GDSS, Web
browser, Data Mining, Search
and retrieval, Intelligent Agent,
Document Management

Natarajan &
Shekar (2000)
Dual-KM
Framework

Generation,
storage,
application

Knowledge
enterprise -
OSI 7-layer
model

Hahn &
Subramani (2000)
Framework of
KMS

classifying KMS based on the locus of the
knowledge and the a priori structuring of
contents

Document repository,
Data warehousing,
Yellow pages of experts,
Electronic discussion forum,
collaborative filtering,
Intranets & search engine

Managing Knowledge in Collaborative Software Maintenance Environment 77

Dimension/
Framework

Model

KM Activities Strategy Enabler/ Enabling
condition

Activities Process

Wiig (1993)
3 pillars of KM

Creation,
Manifestation,
Use,
Transfer

Pillar 1 - Survey and
categorize, Analyze
knowledge and activities,
Elicit, coding and organize
Pillar 2 - Appraise and
evaluate, Action
Pillar 3 - Synthesize,
Handle, use and control,
Leverage, distribute and
automate

Nonaka &
Takeuchi (1995)
Knowledge
creation

Socialization,
Externalization,
Combination,
Internalization

5-phase model of K-
creation process:
Sharing tacit
knowledge,Concept
creation,Concept
justification,Archetype
building,Cross-levelling

 Intention,
Autonomy,
Creative Chaos,
Redundancy,
Requisite Variety

Szulanski (1996)
Knowledge
Transfer model

Knowledge transfer - Initiation,
Implementation, Ramp-up, Integration

 K-transfer influences -
Characteristics of k-
transfer, k-sources,
recipient, context

APQC (1996)
Organizational
KM model

Share, Create, Identify, Collect, Adapt,
Organize, Apply

 Leadership, Culture,
Technology,
Measurement

Van der Spek &
Spijkervet
(1997)
Four-Cycle KM
stage

 Conceptualize,
Reflect,
Act,
Retrospect

Choo (1998)
The Knowing
Organization

Sense making, K-creation, Decision making

Davenport &
Prusak (2000)
Working
Knowledge

Knowledge generation-Acquisition, Rental,
Dedicated resources, Fusion, Adaptation,
Networks
Knowledge codification and coordination-
Mapping and modeling knowledge,
Capturing tacit knowledge, Codifying
knowledge

Monopolies,
Incompleteness
of information,
Asymmetry of
knowledge,
Localness,
Artificial
scarcity, Trade
barriers

Price system -
reciprocity, repute,
altruism, trust
Knowledge market -
buyer, seller, brokers

Hansen, Nohvia
& Tiernes (1999)
KM Strategy

 Codification,
Personalization

Australia KM
Standards (2001)
Integrated KM
framework

Knowledge process - Sharing, Acquisition,
Creation

Knowledge
alignment -
Context,
Analysis,
Planning

Knowledge
Foundations - Culture,
Technology, Sustaining
systems

Holsapple and
Joshi (2002)
3-fold
collaborative
KM framework

Acquiring,
Selecting,
Internalizing,
Using

 KM Influences -
Resource,
Managerial,Enviroment
al influences
Knowledge Resources -
Participants
knowledge, Culture,

Infrastructure, Purpose,
Strategies

Handzig &
Hasan (2003)
Integrated
Organizational
KM framework

 Enablers - Knowledge
process, Knowledge
stock, External
environment
Organizational factors -
Organizational
environment,
Technological
infrastructure

Table 1. KM Frameworks - Theoretical Construct

2.2 Knowledge Management System Framework
To conceptualize the KM frameworks into a Knowledge Management System (KMS), a
KMS framework shall need to be defined for collaborative SM environment. KMS is defined
as “I.T-based system developed to support and augment the organizational process of knowledge
creation, storage, retrieval, transfer and application” (Alavi & Leidner, 2000). In general, a KMS
framework consists of influential factors of KMS initiatives and their interdependent
relationships and a model of KMS implementation (Foo et al., 2006). However, systems and
technology alone does not create knowledge (Davenport & Prusak, 2000), various other
social “incentives” and organizational strategy and culture are often required to stimulate
use of technology to share knowledge.
In this chapter, we review some of the related KMS frameworks and identified the
components that could be synthesized for knowledge-based collaborative SM framework.

Dimension
Framework Model

Activities &
process Functionality

Technology

Tools Architecture

Meso & Smith
(2000)
Technical
perspective of
KMS architecture

Using, finding, creating, packaging

Know how, know what, know why, Self-
motivated creativity, Personal tacit,
Cultural tacit, Organizational tacit,
regulatory assets

Computer-mediated
collaboration, Electronic task
management, Messaging, Video
conferencing, GDSS, Web
browser, Data Mining, Search
and retrieval, Intelligent Agent,
Document Management

Natarajan &
Shekar (2000)
Dual-KM
Framework

Generation,
storage,
application

Knowledge
enterprise -
OSI 7-layer
model

Hahn &
Subramani (2000)
Framework of
KMS

classifying KMS based on the locus of the
knowledge and the a priori structuring of
contents

Document repository,
Data warehousing,
Yellow pages of experts,
Electronic discussion forum,
collaborative filtering,
Intranets & search engine

Knowledge Management78

Alavi & Leidner
(2000)
KMS Process
framework

Creation,
Storage,
Retrieval
,Transfer,
Application

Coding and sharing
best practices,
Corporate K-
directories,
Knowledge network

Rao (2005)
8'Cs audit
framework

Connectivity, content,
community, culture,
capacity, cooperation,
commerce, capital

Abdullah et al.
(2008)
Collaborative
KMS framework

Acquisition, store, disseminate, use.
Soft Components - Awareness, Reward,
Motivation, Culture, Strategy, beliefs,
values, experience

Portal, EDMS,
Workflow,
OLAP, Agent

Infrastructure,
technology,
protocol,
repository

Deraman(1998)
KMS model for
SM

Software knowledge, Change Request
knowledge

Rus and Lindval
(2001)
KMS framework
for SE

 3 levels of KM Support in SE -
1st Level: Document mgmt, competence mgmt.
2nd Level: Store organizational memory, design rationale,
SCM.
3rd Level: Packaged knowledge

Dingsoyr &
Conradi (2002)
Knowledge
management
"system"

Method to manage tacit knowledge,
explicit knowledge

Infrastructure, Software
systems, Experience
management system

Rodriguez et al.
(2004b)
KMS in SM

Collecting, distributing knowledge

Active tools,
passive tools

De Souza et al.
(2006)
KM framework in
global software
development

Organizational Focus, Degree of structure,
Knowledge repositories in place

Client-server,
Peer-to-peer (P2P),
Hybrid

Table 2. KMS Frameworks - Theoretical Construct

3. Collaborative Software Maintenance Environment

As an overview, software maintenance (SM) is defined as “The totality of activities required to
provide cost-effective support to software system. Activities are performed during the pre-delivery
stage as well as the post-delivery stage” (IEEE 14764, 2006; SWEBOK, 2004). SM activities are
complex, knowledge-intensive (Rodriguez et al., 2004a), and depend largely on expertise of
the maintainers and expert users, as depicted in Fig. 1. Software maintenance processes and
activities have been largely standardized. Standard organizations such as ISO, IEEE, and
CMMI have detailed the activities to be carried-out by software maintainers (April et al.,
2005; IEEE 14764, 2006). At a very minimum, the activities include process implementation,
problem and modification analysis, modification implementation, maintenance review and
acceptance, migration and software retirements.

Fig. 2. Sources of Knowledge in SM

However, many software maintenance organizations may have their own best-practice
processes and activities to suit the organizational and business practices. Detail activities
may vary depending on the following setups:

 Types of maintenance organizations – such as in-house maintenance, vendor or
outsourced maintenance, or commercial-of-the-shelf (COTS) application
maintenance.

 Team setup – such as similar or separate development and maintenance team.
 Types of software or applications being maintained (Pressman, 2005)
 Maintenance approach or model – For example, those using Waterfall approach

may differ from those using Agile approach.
As a broad example, the SM activities are depicted in Fig. 3 below:

Fig. 3. Sample maintenance activities

Managing Knowledge in Collaborative Software Maintenance Environment 79

Alavi & Leidner
(2000)
KMS Process
framework

Creation,
Storage,
Retrieval
,Transfer,
Application

Coding and sharing
best practices,
Corporate K-
directories,
Knowledge network

Rao (2005)
8'Cs audit
framework

Connectivity, content,
community, culture,
capacity, cooperation,
commerce, capital

Abdullah et al.
(2008)
Collaborative
KMS framework

Acquisition, store, disseminate, use.
Soft Components - Awareness, Reward,
Motivation, Culture, Strategy, beliefs,
values, experience

Portal, EDMS,
Workflow,
OLAP, Agent

Infrastructure,
technology,
protocol,
repository

Deraman(1998)
KMS model for
SM

Software knowledge, Change Request
knowledge

Rus and Lindval
(2001)
KMS framework
for SE

 3 levels of KM Support in SE -
1st Level: Document mgmt, competence mgmt.
2nd Level: Store organizational memory, design rationale,
SCM.
3rd Level: Packaged knowledge

Dingsoyr &
Conradi (2002)
Knowledge
management
"system"

Method to manage tacit knowledge,
explicit knowledge

Infrastructure, Software
systems, Experience
management system

Rodriguez et al.
(2004b)
KMS in SM

Collecting, distributing knowledge

Active tools,
passive tools

De Souza et al.
(2006)
KM framework in
global software
development

Organizational Focus, Degree of structure,
Knowledge repositories in place

Client-server,
Peer-to-peer (P2P),
Hybrid

Table 2. KMS Frameworks - Theoretical Construct

3. Collaborative Software Maintenance Environment

As an overview, software maintenance (SM) is defined as “The totality of activities required to
provide cost-effective support to software system. Activities are performed during the pre-delivery
stage as well as the post-delivery stage” (IEEE 14764, 2006; SWEBOK, 2004). SM activities are
complex, knowledge-intensive (Rodriguez et al., 2004a), and depend largely on expertise of
the maintainers and expert users, as depicted in Fig. 1. Software maintenance processes and
activities have been largely standardized. Standard organizations such as ISO, IEEE, and
CMMI have detailed the activities to be carried-out by software maintainers (April et al.,
2005; IEEE 14764, 2006). At a very minimum, the activities include process implementation,
problem and modification analysis, modification implementation, maintenance review and
acceptance, migration and software retirements.

Fig. 2. Sources of Knowledge in SM

However, many software maintenance organizations may have their own best-practice
processes and activities to suit the organizational and business practices. Detail activities
may vary depending on the following setups:

 Types of maintenance organizations – such as in-house maintenance, vendor or
outsourced maintenance, or commercial-of-the-shelf (COTS) application
maintenance.

 Team setup – such as similar or separate development and maintenance team.
 Types of software or applications being maintained (Pressman, 2005)
 Maintenance approach or model – For example, those using Waterfall approach

may differ from those using Agile approach.
As a broad example, the SM activities are depicted in Fig. 3 below:

Fig. 3. Sample maintenance activities

Knowledge Management80

Meanwhile, the knowledge needed in SM can be summarized as follows (Ghali, 1993;
Rodriguez, 2004a; Rus & Lindvall, 2001):

 Organizational knowledge, such as roles and resources. The parties involved in
software maintenance activities consist of various application users and software
maintainers. The list may include end-user, superuser, maintenance manager,
business analyst, systems analyst, project manager, QA personnel, build manager,
implementation personnel and trainer. Attached to these roles are the area of
expertise.

 Managerial knowledge - such as resource management, task and project tracking
and management.

 Technical knowledge – such as requirement analysis, system analysis, development
tools , testing and implementation. Critical to this is also the knowledge on
supporting groupware and CASE tools such as Software Configuration
Management (SCM), helpdesk and testing tools

 Domain knowledge – knowledge of the products and business processes.
 Knowledge on source of knowledge – where the knowledge resides, such as source

codes, documentation, supporting CASE tools and more importantly, the where
the experts are.

There are various issues associated with the above knowledge, which makes organizing,
storing, sharing and disseminating knowledge difficult. Among the problems are:

 The ‘containers’ could be in different electronic forms, which sometimes need to be
mined and manually extracted. Or worse, in paper form which require more effort
to place it in KMS

 Documentation are most of the time not up-to-date. As mentioned earlier, Earlier
studies indicates around 50% of efforts are spent on this activity and rely more on
source code than any other source of information (Fjeldstad & Hamlen, 1979;
Schach et al.,2003)

 Domain knowledge are becoming more important to software maintainers (Santos,
2005). However, this knowledge are often not available within the software
maintenance CoP, especially in vendor and distributed environment. Changes to
business processes and changes to application affects not only the business users,
but also software maintainers

 Human experts hold most of the tacit knowledge that are not readily available to
others. are the major source of knowledge. However, there are still reservation
toward knowledge sharing. ‘'If getting promotion, or holding your job, or finding a new
one is based on the knowledge you possess - what incentive is there to reveal that knowledge
and share it?' (Wilson, 2002).

 The above problems are further exacerbated in distributed maintenance teams,
where members resides in different location and time-zones. As such, face-to-face
meetings are seldom and tacit knowledge transfer is difficult.

Managing knowledge in this area is therefore critical to ensure that both users and
maintainers can perform SM activities properly and timely, by sharing and obtaining vital
knowledge.

3.1 Knowledge-based Framework for Collaborative Software Maintenance
KMS for SM has been studied late 1980s by Jarke and Rose (1988), who introduced a
prototype KMS to control database software development and maintenance, mainly to
facilitate program comprehension. The KMS is a decision-based approach that facilitates
communication across time and among multiple maintainers and users, thus improving
maintenance support. However, facilitating program comprehension is not enough as SM is
more than just understanding codes and extracting knowledge from codes.
Similarly, Deraman (1998) introduced an KMS model for SM which, albeit very simple,
could provide us with the main essence of SM knowledge – the Software Knowledge,
Change Request Knowledge and their functional interaction. However, these alone, are not
enough for users and maintainers. Newer technologies such as software agents are used to
capture SM process knowledge in researches conducted by Viscaino et al.(2004) and
Rodriguez et al. (2004b). However, no KMS framework for SM was conceptualized by these
studies.
Looking at the wider perspective of software engineering (SE), KMS in SE have been studied
by many, including Santos et al. (2005), Rus and Lindval (2001) and Aurum et al.(2003). Rus
and Lindval described the three main tasks of SE (individual, team and organization) and
identified the three level of KM support for each task. The 1st level includes the core support
for SE activities, document management and competence management. Meanwhile, the 2nd
level incorporates methods to store organizational memory using method such as design
rationale and tools such as source control and SCM. The 3rd KM support level includes
packaged knowledge to support Knowledge definition, acquisition and organization. The
above should describes the KMS framework for SE. However, this model do not consider
the social, physiological and cultural aspects of KM, as identified by the previous other
generic KMS frameworks.
In order to propose a suitable KMS framework for SM,, a review of current KMS framework
for generic KMS, and related SE/SM KMS are conducted. The theoretical constructs for KM
frameworks, KMS frameworks and knowledge components in SM are summarized, and
components suitable for SM KMS framework are identified, as follows:

 Required knowledge, such as organizational knowledge, managerial knowledge,
technical knowledge, enterprise business domain knowledge and knowledge on
source of knowledge, are derived from Ghali (1993), Rus and Lindval (2001) and
Rodriguez et al. (2004a)

 KM Activities are derived from Nonaka and Takeuchi (1995), Holsapple and Joshi
(1998). This includes Acquiring knowledge, Selecting knowledge, using
knowledge, Providing/ Creating knowledge and Storing knowledge.

 SM governance tools are from Rus and Lindval (2001), IEEE 14764 (2006) and Mohd
Nor et al.(2008a). To support these flow of SM information, tools such as Helpdesk,
Software Configuration Management (SCM), Source Control and Project
Management (PM) are crucial to monitor MRs.

 KM Components and Infrastructure are derived from Abdullah et al. (2006), Meso
& Smith (2000) and Rus and Lindval (2001) frameworks. The major components
includes computer-mediated collaboration, Experience Mgmt System, Document
Management, KM portal, EDMS, OLAP, and Middlewares tools.

 Automation and knowledge discovery tools are from Meso and Smith (2000),
Abdullah et al. (2006), Rodriguez et al. (2004b) and new internet tools in the

Managing Knowledge in Collaborative Software Maintenance Environment 81

Meanwhile, the knowledge needed in SM can be summarized as follows (Ghali, 1993;
Rodriguez, 2004a; Rus & Lindvall, 2001):

 Organizational knowledge, such as roles and resources. The parties involved in
software maintenance activities consist of various application users and software
maintainers. The list may include end-user, superuser, maintenance manager,
business analyst, systems analyst, project manager, QA personnel, build manager,
implementation personnel and trainer. Attached to these roles are the area of
expertise.

 Managerial knowledge - such as resource management, task and project tracking
and management.

 Technical knowledge – such as requirement analysis, system analysis, development
tools , testing and implementation. Critical to this is also the knowledge on
supporting groupware and CASE tools such as Software Configuration
Management (SCM), helpdesk and testing tools

 Domain knowledge – knowledge of the products and business processes.
 Knowledge on source of knowledge – where the knowledge resides, such as source

codes, documentation, supporting CASE tools and more importantly, the where
the experts are.

There are various issues associated with the above knowledge, which makes organizing,
storing, sharing and disseminating knowledge difficult. Among the problems are:

 The ‘containers’ could be in different electronic forms, which sometimes need to be
mined and manually extracted. Or worse, in paper form which require more effort
to place it in KMS

 Documentation are most of the time not up-to-date. As mentioned earlier, Earlier
studies indicates around 50% of efforts are spent on this activity and rely more on
source code than any other source of information (Fjeldstad & Hamlen, 1979;
Schach et al.,2003)

 Domain knowledge are becoming more important to software maintainers (Santos,
2005). However, this knowledge are often not available within the software
maintenance CoP, especially in vendor and distributed environment. Changes to
business processes and changes to application affects not only the business users,
but also software maintainers

 Human experts hold most of the tacit knowledge that are not readily available to
others. are the major source of knowledge. However, there are still reservation
toward knowledge sharing. ‘'If getting promotion, or holding your job, or finding a new
one is based on the knowledge you possess - what incentive is there to reveal that knowledge
and share it?' (Wilson, 2002).

 The above problems are further exacerbated in distributed maintenance teams,
where members resides in different location and time-zones. As such, face-to-face
meetings are seldom and tacit knowledge transfer is difficult.

Managing knowledge in this area is therefore critical to ensure that both users and
maintainers can perform SM activities properly and timely, by sharing and obtaining vital
knowledge.

3.1 Knowledge-based Framework for Collaborative Software Maintenance
KMS for SM has been studied late 1980s by Jarke and Rose (1988), who introduced a
prototype KMS to control database software development and maintenance, mainly to
facilitate program comprehension. The KMS is a decision-based approach that facilitates
communication across time and among multiple maintainers and users, thus improving
maintenance support. However, facilitating program comprehension is not enough as SM is
more than just understanding codes and extracting knowledge from codes.
Similarly, Deraman (1998) introduced an KMS model for SM which, albeit very simple,
could provide us with the main essence of SM knowledge – the Software Knowledge,
Change Request Knowledge and their functional interaction. However, these alone, are not
enough for users and maintainers. Newer technologies such as software agents are used to
capture SM process knowledge in researches conducted by Viscaino et al.(2004) and
Rodriguez et al. (2004b). However, no KMS framework for SM was conceptualized by these
studies.
Looking at the wider perspective of software engineering (SE), KMS in SE have been studied
by many, including Santos et al. (2005), Rus and Lindval (2001) and Aurum et al.(2003). Rus
and Lindval described the three main tasks of SE (individual, team and organization) and
identified the three level of KM support for each task. The 1st level includes the core support
for SE activities, document management and competence management. Meanwhile, the 2nd
level incorporates methods to store organizational memory using method such as design
rationale and tools such as source control and SCM. The 3rd KM support level includes
packaged knowledge to support Knowledge definition, acquisition and organization. The
above should describes the KMS framework for SE. However, this model do not consider
the social, physiological and cultural aspects of KM, as identified by the previous other
generic KMS frameworks.
In order to propose a suitable KMS framework for SM,, a review of current KMS framework
for generic KMS, and related SE/SM KMS are conducted. The theoretical constructs for KM
frameworks, KMS frameworks and knowledge components in SM are summarized, and
components suitable for SM KMS framework are identified, as follows:

 Required knowledge, such as organizational knowledge, managerial knowledge,
technical knowledge, enterprise business domain knowledge and knowledge on
source of knowledge, are derived from Ghali (1993), Rus and Lindval (2001) and
Rodriguez et al. (2004a)

 KM Activities are derived from Nonaka and Takeuchi (1995), Holsapple and Joshi
(1998). This includes Acquiring knowledge, Selecting knowledge, using
knowledge, Providing/ Creating knowledge and Storing knowledge.

 SM governance tools are from Rus and Lindval (2001), IEEE 14764 (2006) and Mohd
Nor et al.(2008a). To support these flow of SM information, tools such as Helpdesk,
Software Configuration Management (SCM), Source Control and Project
Management (PM) are crucial to monitor MRs.

 KM Components and Infrastructure are derived from Abdullah et al. (2006), Meso
& Smith (2000) and Rus and Lindval (2001) frameworks. The major components
includes computer-mediated collaboration, Experience Mgmt System, Document
Management, KM portal, EDMS, OLAP, and Middlewares tools.

 Automation and knowledge discovery tools are from Meso and Smith (2000),
Abdullah et al. (2006), Rodriguez et al. (2004b) and new internet tools in the

Knowledge Management82

market. Tools such as GDSS, Intelligent Agents, Data mining/warehouse, Expert
system and Case-Based Reasoning (CBR). Active tools such as RSS are also useful
to get the right knowledge to the right users at the right time.

 KM Influences are derive from Holsapple and Joshi (2002) and Abdullah (2006).
Among these are the managerial influences and strategy, and psychological and
cultural influences.

To summarize the collaborative SM in perspective of People, Process, Technology and
Knowledge Content, the following dimensions are proposed:

Knowledge Dimension Relevance to SM

People Organization Routine, rules, culture
Enterprise Domain knowledge

Team Knowledge on roles, expertise and their location
Individual Technical skills - requirement analysis, systems analysis,

programming, testing and implementation
Managerial skills - MR management, resource planning
Domain expertise

Process Organizational Best practices, culture, strategy, psychological influences
Regulatory Audit, data security
Best Practices SM best practices, Software Configuration Management (SCM)

process, Versioning process
Technol
ogy

SM tools SCM, Version Control, Source Control, Project Management,
Helpdesk tools

KM tools KMS portal, Search engine, Data warehouse, EDMS, OLAP, and
Middlewares tools

Collaboration email, e-group, wikis, SMS, MMS, mobile technologies
Automation &
K- discovery

GDSS, Intelligent Agents, Data mining/warehouse, Expert
system, RSS and Case-Based Reasoning (CBR)

Content Domain knowledge Products, Business rules
Knowledge Map Ontology, yellowpages
Software artifacts

Table 3. People, Process, Technology and Content Model for Knowledge-based
Collaborative SM

Based on the above, the model for knowledge-based collaborative SM framework is
proposed, as per Fig. 4 below:

Fig. 4. Knowledge-based Collaborative SM Framework

3.2 Managing Knowledge in Collaborative SM
To provide for all the above components for knowledge-based collaborative SM system is
the ultimate goal. However, this will require tremendous efforts and overall revamp of the
SM process management tools. In our previous studies, much of the knowledge-based SM
tools are siloed and not integrated to allow seamless knowledge combination, which
hampers knowledge acquisition and sharing. This was further supported by a survey on
managing knowledge of SM process in higher learning institutions (HLI) in Klang Valley,
Malaysia, several major issues were identified as follows (Mohd Nor & Abdullah, 2008b):

 80% of the surveyed SM organization do not use KMS to store knowledge acquired
during the maintenance activities. Hence, this could contribute to problems and
lateness in getting the information from other experts.

 In various aspects of SM activities (helpdesk, planning and analysis and coding
and testing), between 60% to 80% of respondents consider domain knowledge
important to assist them in daily SM activities. However, they admit that the
knowledge generated from these activities are not stored in KMS or other electronic
means, thus making them harder to extract, shared and turned explicit.

 Substantial efforts are spent collaborating with users, experts, SAs, and vendors to
ascertain the problems and requirements. In the survey, 41% and 20% of helpdesk
time are used to collaborate with maintenance team and users, respectively.

Managing Knowledge in Collaborative Software Maintenance Environment 83

market. Tools such as GDSS, Intelligent Agents, Data mining/warehouse, Expert
system and Case-Based Reasoning (CBR). Active tools such as RSS are also useful
to get the right knowledge to the right users at the right time.

 KM Influences are derive from Holsapple and Joshi (2002) and Abdullah (2006).
Among these are the managerial influences and strategy, and psychological and
cultural influences.

To summarize the collaborative SM in perspective of People, Process, Technology and
Knowledge Content, the following dimensions are proposed:

Knowledge Dimension Relevance to SM

People Organization Routine, rules, culture
Enterprise Domain knowledge

Team Knowledge on roles, expertise and their location
Individual Technical skills - requirement analysis, systems analysis,

programming, testing and implementation
Managerial skills - MR management, resource planning
Domain expertise

Process Organizational Best practices, culture, strategy, psychological influences
Regulatory Audit, data security
Best Practices SM best practices, Software Configuration Management (SCM)

process, Versioning process
Technol
ogy

SM tools SCM, Version Control, Source Control, Project Management,
Helpdesk tools

KM tools KMS portal, Search engine, Data warehouse, EDMS, OLAP, and
Middlewares tools

Collaboration email, e-group, wikis, SMS, MMS, mobile technologies
Automation &
K- discovery

GDSS, Intelligent Agents, Data mining/warehouse, Expert
system, RSS and Case-Based Reasoning (CBR)

Content Domain knowledge Products, Business rules
Knowledge Map Ontology, yellowpages
Software artifacts

Table 3. People, Process, Technology and Content Model for Knowledge-based
Collaborative SM

Based on the above, the model for knowledge-based collaborative SM framework is
proposed, as per Fig. 4 below:

Fig. 4. Knowledge-based Collaborative SM Framework

3.2 Managing Knowledge in Collaborative SM
To provide for all the above components for knowledge-based collaborative SM system is
the ultimate goal. However, this will require tremendous efforts and overall revamp of the
SM process management tools. In our previous studies, much of the knowledge-based SM
tools are siloed and not integrated to allow seamless knowledge combination, which
hampers knowledge acquisition and sharing. This was further supported by a survey on
managing knowledge of SM process in higher learning institutions (HLI) in Klang Valley,
Malaysia, several major issues were identified as follows (Mohd Nor & Abdullah, 2008b):

 80% of the surveyed SM organization do not use KMS to store knowledge acquired
during the maintenance activities. Hence, this could contribute to problems and
lateness in getting the information from other experts.

 In various aspects of SM activities (helpdesk, planning and analysis and coding
and testing), between 60% to 80% of respondents consider domain knowledge
important to assist them in daily SM activities. However, they admit that the
knowledge generated from these activities are not stored in KMS or other electronic
means, thus making them harder to extract, shared and turned explicit.

 Substantial efforts are spent collaborating with users, experts, SAs, and vendors to
ascertain the problems and requirements. In the survey, 41% and 20% of helpdesk
time are used to collaborate with maintenance team and users, respectively.

Knowledge Management84

Meanwhile, in the planning and analysis, 22% of the time is spent discussing issues
with users, 20% with colleagues and another 20% with developers. Without a
systematic approach to these information acquisition and sharing, these efforts
shall remain a major issue.

 Overall, in term of the perceived problems, quality of application documentation
and inadequate system support remain as major issues.

One good way of solving the above issues is via automation. According to Davenport and
Prusak (2001), one of the main goal of a KM system is to automate, as much as possible, the
tasks of acquiring, disseminating and storing of knowledge. With all the sources of
knowledge located and traversing in different repositories via different tools, keeping track
of information useful for both users and maintainers could be a nightmare.
In this chapter, we shall introduce an automation mechanism to allow users and maintainers
to acquire, share and use knowledge during software maintenance activities, vis-à-vis the
following functionalities:

 Assist users in reporting errors, by checking for previously related reported errors,
known issues and related enterprise business domain rules. This would help to
reduce unnecessary duplicate errors that Helpdesk personnel need to handle.

 Assist Helpdesk personnel to monitor helpdesk call tickets, create Maintenance
Request (MR) and assign it to the respective maintainers

 Assist Maintainers to check for the earlier reported MRs, Domain business rules
and the domain experts, as well as monitoring the assigned MRs.

 Store the domain and SM knowledge created during maintenance process onto a
repository.

4. Multi-Agent System

The agent-oriented approach is gaining acceptability in supporting maintainers in
automating their daily activities (Dam and Winikoff, 2003; Viscaino et al., 2003; Rodriquez et
al., 2004b). Intelligent software agent is a computer system capable of flexible autonomous
action in some environments. Being flexible means that the agent is reactive (maintains an
ongoing interaction with its environment, and responds to changes), proactive (taking
initiatives) and social (interact with other agents) (Wooldridge,2002). Hence, a MAS is a
system consisting of a number of agents, which interact with each others.
We propose a MAS tool to enable both users and software maintainers to automate some of
the SM activities and capture and share the enterprise business domain knowledge and
automatically link them to the application and SM process information.
Prometheus methodology was used to design the MAS and based on analyses of goals, data
cohesion and agent interaction, the proposed MAS System Overview and architecture are
depicted below in Fig. 5 and Fig. 6, respectively (Mohd Nor et al., 2008c).

Fig

Fig

As
Re
de

g. 5. MAS System

g. 6. Multi-Agent

s a result, six ag
quest Agent, Ma
scribed below:
 User Agen

application
 Domain K

When new
maintainer
with new b

 Helpdesk
tickets bas

ms Overview

 Architecture

gent types are p
aintainer Agent,

nt – represents e
n guides, as well

Knowledge Agent
w knowledge is
rs. When a new
best practices and
Agent – represe

sed on error rep

proposed: User
SM Process Age

each user to file
 as receive MR sta
t – manages the
s added, this ag
 version is appli
d old practices ar
ents the role of h

ported by User A

Agent, Helpdesk
ent and Domain

e complaints, che
atus from other a
domain knowled
gent shall inform
ied, the domain
e deprecated.
helpdesk staff, b

Agent, and assign

k Agent, Mainte
 Knowledge Age

eck best practice
agents.
dge ontology and
m relevant user
knowledge is up

by generating ne
ning them to av

enance
ent, as

es and

d data.
rs and
pdated

ew call
ailable

Managing Knowledge in Collaborative Software Maintenance Environment 85

Meanwhile, in the planning and analysis, 22% of the time is spent discussing issues
with users, 20% with colleagues and another 20% with developers. Without a
systematic approach to these information acquisition and sharing, these efforts
shall remain a major issue.

 Overall, in term of the perceived problems, quality of application documentation
and inadequate system support remain as major issues.

One good way of solving the above issues is via automation. According to Davenport and
Prusak (2001), one of the main goal of a KM system is to automate, as much as possible, the
tasks of acquiring, disseminating and storing of knowledge. With all the sources of
knowledge located and traversing in different repositories via different tools, keeping track
of information useful for both users and maintainers could be a nightmare.
In this chapter, we shall introduce an automation mechanism to allow users and maintainers
to acquire, share and use knowledge during software maintenance activities, vis-à-vis the
following functionalities:

 Assist users in reporting errors, by checking for previously related reported errors,
known issues and related enterprise business domain rules. This would help to
reduce unnecessary duplicate errors that Helpdesk personnel need to handle.

 Assist Helpdesk personnel to monitor helpdesk call tickets, create Maintenance
Request (MR) and assign it to the respective maintainers

 Assist Maintainers to check for the earlier reported MRs, Domain business rules
and the domain experts, as well as monitoring the assigned MRs.

 Store the domain and SM knowledge created during maintenance process onto a
repository.

4. Multi-Agent System

The agent-oriented approach is gaining acceptability in supporting maintainers in
automating their daily activities (Dam and Winikoff, 2003; Viscaino et al., 2003; Rodriquez et
al., 2004b). Intelligent software agent is a computer system capable of flexible autonomous
action in some environments. Being flexible means that the agent is reactive (maintains an
ongoing interaction with its environment, and responds to changes), proactive (taking
initiatives) and social (interact with other agents) (Wooldridge,2002). Hence, a MAS is a
system consisting of a number of agents, which interact with each others.
We propose a MAS tool to enable both users and software maintainers to automate some of
the SM activities and capture and share the enterprise business domain knowledge and
automatically link them to the application and SM process information.
Prometheus methodology was used to design the MAS and based on analyses of goals, data
cohesion and agent interaction, the proposed MAS System Overview and architecture are
depicted below in Fig. 5 and Fig. 6, respectively (Mohd Nor et al., 2008c).

Fig

Fig

As
Re
de

g. 5. MAS System

g. 6. Multi-Agent

s a result, six ag
quest Agent, Ma
scribed below:
 User Agen

application
 Domain K

When new
maintainer
with new b

 Helpdesk
tickets bas

ms Overview

 Architecture

gent types are p
aintainer Agent,

nt – represents e
n guides, as well

Knowledge Agent
w knowledge is
rs. When a new
best practices and
Agent – represe

sed on error rep

proposed: User
SM Process Age

each user to file
 as receive MR sta
t – manages the
s added, this ag
 version is appli
d old practices ar
ents the role of h

ported by User A

Agent, Helpdesk
ent and Domain

e complaints, che
atus from other a
domain knowled
gent shall inform
ied, the domain
e deprecated.
helpdesk staff, b

Agent, and assign

k Agent, Mainte
 Knowledge Age

eck best practice
agents.
dge ontology and
m relevant user
knowledge is up

by generating ne
ning them to av

enance
ent, as

es and

d data.
rs and
pdated

ew call
ailable

Knowledge Management86

helpdesk personnel. If bugs is valid, Helpdesk Agent shall liaise with MR Agent to
create new MR.

 MR Agent – Other than creating new MRs, this agent shall also assist planner to
approve/reject MRs, monitor the progress of MRs and assign MRs to maintainers,
via Maintainer Agent.

 Maintainer Agent – represents maintainers (analysts, programmers and testers) to
monitor MR statuses and assign to maintainer groups for development. This agent
also liaise with Domain Knowledge Agent and SM Knowledge Agent to obtain
knowledge to assist analysts and tester in their works..

 SM Process Agent – For new artifacts and object changed, SM Knowledge Agent
shall update the SM knowledge base, as well as the Domain knowledge. This agent
also monitors the releases and versions, and provides maintainers with the
information requested.

4.1 Combined Enterprise Domain and SM Ontology
The term ontology, in our context, can be best defined as a formal explicit description of
concepts or entities, and their properties, relationships and constraints [Gruninger & Fox,
1995; Noy & McGuinness, 2001). The uses of ontology to support the agent-based tool,
development of ontology is critical in the following ways:

 Agents use ontology to share common terms and to communicate to other agents
(Wooldridge, 2002).

 Agent must understand the environment in which they operate. When agent
retrieves or store the knowledge, it needs to know how the knowledge is
structured. These semantics form the ontology of the knowledge (Yusko, 2005).

Critical to the previously identified MAS agents are the ontologies for domain and SM
process knowledge. The above agents shall use ontology to make sense of the complex
relations between reported errors, MRs, versions and releases, known issues, domain
knowledge and users, experts and maintainers profiles.
Henceforth, we outline a combined ontology which links and extends the enterprise
business domain to SM process ontology and model the combined ontology using Protégé
ontology editor. For SM process ontology, the Ruiz ontology (Ruiz et al., 2004), which was
based on Kitchenham et al. (1999) SM ontology, shall be used as the basis, due to similarity
of the concepts in author’s SM environment. For Domain business ontology, the hierarchical
domain ontology proposed by Kabilan (2007), and business process metadata from Ulrich
(2002) shall be used as the basis for our enterprise business domain ontology. In summary,
the following sub-ontologies are proposed (Mohd Nor et al., 2008d):

 Product subontology – defines the software products that are maintained. These
include the various artifacts (components, modules, versions, documents, etc.)

 Process subontology – includes the explicit processes used to carry out different
activities. These processes defines the methods for problem reporting, problem
identification and various maintenance activities

 Activity subontology – defines the various activities being performed by
maintainers, such as support, managerial, maintenance and testing.

 Organization subontology – specifies the organizational units, the roles and the
personnel involved.

 Enterprise business domain subontology – which includes:
o Domain process type - top most layer which includes the generic high-

level functionality.
o Complex process and basic process – describes hierarchical business

processes. A complex process may have several basic processes.
o Process use – how process uses the application.

The redefined schema for the Activity and Product subontologies are drawn using OWL-Vis
in Protégé ontology editor and are illustrated in Fig. 7 and Fig. 8, respectively. The linkages
between the above SM sub-ontologies and Enterprise business domain sub-ontologies are
depicted in Fig. 9.
Compared to other related SM ontologies, The strength of this ontology lies with the much
needed details on the links between Domain sub-ontology and the SM sub-ontologies. With
this linkage, changes to either Enterprise Domain knowledge or SM artifacts could be
traversed and specific actions could be triggered. Also, the agents could relate the current
reported errors with the previously reported errors via these ontological links.

Fig. 7. Activity Subontology

Fig. 8. Product Subontology

Managing Knowledge in Collaborative Software Maintenance Environment 87

helpdesk personnel. If bugs is valid, Helpdesk Agent shall liaise with MR Agent to
create new MR.

 MR Agent – Other than creating new MRs, this agent shall also assist planner to
approve/reject MRs, monitor the progress of MRs and assign MRs to maintainers,
via Maintainer Agent.

 Maintainer Agent – represents maintainers (analysts, programmers and testers) to
monitor MR statuses and assign to maintainer groups for development. This agent
also liaise with Domain Knowledge Agent and SM Knowledge Agent to obtain
knowledge to assist analysts and tester in their works..

 SM Process Agent – For new artifacts and object changed, SM Knowledge Agent
shall update the SM knowledge base, as well as the Domain knowledge. This agent
also monitors the releases and versions, and provides maintainers with the
information requested.

4.1 Combined Enterprise Domain and SM Ontology
The term ontology, in our context, can be best defined as a formal explicit description of
concepts or entities, and their properties, relationships and constraints [Gruninger & Fox,
1995; Noy & McGuinness, 2001). The uses of ontology to support the agent-based tool,
development of ontology is critical in the following ways:

 Agents use ontology to share common terms and to communicate to other agents
(Wooldridge, 2002).

 Agent must understand the environment in which they operate. When agent
retrieves or store the knowledge, it needs to know how the knowledge is
structured. These semantics form the ontology of the knowledge (Yusko, 2005).

Critical to the previously identified MAS agents are the ontologies for domain and SM
process knowledge. The above agents shall use ontology to make sense of the complex
relations between reported errors, MRs, versions and releases, known issues, domain
knowledge and users, experts and maintainers profiles.
Henceforth, we outline a combined ontology which links and extends the enterprise
business domain to SM process ontology and model the combined ontology using Protégé
ontology editor. For SM process ontology, the Ruiz ontology (Ruiz et al., 2004), which was
based on Kitchenham et al. (1999) SM ontology, shall be used as the basis, due to similarity
of the concepts in author’s SM environment. For Domain business ontology, the hierarchical
domain ontology proposed by Kabilan (2007), and business process metadata from Ulrich
(2002) shall be used as the basis for our enterprise business domain ontology. In summary,
the following sub-ontologies are proposed (Mohd Nor et al., 2008d):

 Product subontology – defines the software products that are maintained. These
include the various artifacts (components, modules, versions, documents, etc.)

 Process subontology – includes the explicit processes used to carry out different
activities. These processes defines the methods for problem reporting, problem
identification and various maintenance activities

 Activity subontology – defines the various activities being performed by
maintainers, such as support, managerial, maintenance and testing.

 Organization subontology – specifies the organizational units, the roles and the
personnel involved.

 Enterprise business domain subontology – which includes:
o Domain process type - top most layer which includes the generic high-

level functionality.
o Complex process and basic process – describes hierarchical business

processes. A complex process may have several basic processes.
o Process use – how process uses the application.

The redefined schema for the Activity and Product subontologies are drawn using OWL-Vis
in Protégé ontology editor and are illustrated in Fig. 7 and Fig. 8, respectively. The linkages
between the above SM sub-ontologies and Enterprise business domain sub-ontologies are
depicted in Fig. 9.
Compared to other related SM ontologies, The strength of this ontology lies with the much
needed details on the links between Domain sub-ontology and the SM sub-ontologies. With
this linkage, changes to either Enterprise Domain knowledge or SM artifacts could be
traversed and specific actions could be triggered. Also, the agents could relate the current
reported errors with the previously reported errors via these ontological links.

Fig. 7. Activity Subontology

Fig. 8. Product Subontology

Knowledge Management88

Fig. 9. Relations between Enterprise Business Domain Subontology and SM Ontology

5. Conclusion

In recent years, many organizations consider knowledge management (KM) to be
strategically important to their business. In general, Knowledge Sharing (KS), Knowledge
Transfer (KT) and Knowledge Management System (KMS) are among the themes to bring
synergies among different teams, units or departments, to accelerate innovation, improve
quality and reduce costs and exposure to business risks. In Software Engineering area, KM
have been studied mostly on Software Development environment, but Software
Maintenance (SM) environment are often neglected. SM environment is complex,
knowledge-driven and highly collaborative and therefore, KM is critical to SM to provides
an environment for creating and sharing knowledge.
One of the major challenges faced by software maintainers is inadequate knowledge to
perform daily activities. Maintainers spent considerable efforts checking codes and
collaborating with other parties to obtain information. In a survey in selected I.T.
departments in higher learning institutions in Malaysia, inadequate enterprise business
domain knowledge are deemed important but are seldom stored in KMS or other electronic
means. Therefore, resolving these issues should be given high priority.
To overcome the problems associated with lack of knowledge in SM environment, we
propose a MAS tool to enable both users and software maintainers to capture and share the
enterprise business domain knowledge and automatically link them to the application and
SM process information. Prometheus methodology is used to design the MAS and as a
result, six agent types are proposed: User Agent, Helpdesk Agent, Maintenance Request
Agent, Maintainer Agent, SM Process Agent and Domain Knowledge Agent. Critical to the
systematic information organization is the ontology for domain and SM process knowledge,
to allow software agents to communicate among each others, and to understand the
information structure when retrieving or storing the knowledge. Henceforth, we outline a

combined ontology which links and extends the enterprise business domain to SM process
ontology and model the combined ontology using Protégé ontology editor.
With this tool, users and maintainers shall benefits from systematic organization of domain
and SM process knowledge, as well as ensuring that changes to either application or domain
business knowledge are corroborated and shared among the business users and
maintainers. The new tool shall also promote automation and integration of systems or
tools to support maintenance processes

6. References

Abdullah, R. (2008). Knowledge Management System in a Collaborative Environment.
University Putra Malaysia Press.

Abdullah, R., Sahibuddin, S., Alias, R., & Selamat, M. H. (2006). Knowledge Management
System Architecture For Organizational

Alavi, M., & Leidner, D. (2000). Knowledge Management Systems: Issues, Challenges, and
Benefits. Communication of AIS, 1.

April, A. (2005). Software Maintenance Maturity Model (SMmm): The Software
Maintenance Process Model. Journal of Software Maintenance and Evolution:
Research and Practice, 17(3).

Arthur Anderson, & APQC. (1996). The Knowledge Management Assessment Tool: External
Benchmarking Version. Arthur Anderson/APQC.

Aurum, A., Jeffery, R., Wohlin, C., & Handzic, M. (2003). Managing Software Engineering
Knowledge. Springer.

Choo, C. (1996). An Integrated Information Model of the Organization: The Knowing
Organization.

Dam, K. H., & Winikoff, M. (2003). Comparing AgentOriented Methodologies. In 5 th
International Workshop on Agent-Oriented Information Systems (AOIS’03).

Das, S., Lutters, W., & Seaman, C. (2007). Understanding Documentation Value in Software
Maintenance. In Proceedings of the 2007 Symposium on Computer human
interaction for the management of information technology.

Davenport, T., & Prusak, L. (2000). Working Knowledge: How Organization Manage What
They Know. Harvard Business School Press.

Deraman, A. (1998). A Framework For Software Maintenance Model Development.
Malaysian Journal of Computer Science, 11(2).

Desouza, K. C., Awazu, Y., & Baloh, P. (2006). Managing Knowledge in Global Software
Development Efforts: Issues and Practices. Software, IEEE, 23(5), 30–37.

Dingsoyr, T., & Conradi, R. (2002). A Survey Of Case Studies Of The Use Of Knowledge
Management In Software Engineering. International Journal of Software
Engineering and Knowledge Engineering, 12(4).

Fjeldstad, R., & Hamlen, W. (1998). Application Program Maintenance Study: Report to Our
Respondents. In Software Engineering- Theory and Practices. Prentice Hall.

Foo, S., Chua, A., & Sharma, R. (2006). Knowledge management Tools and Techniques.
Singapore: Pearson Prentice Hll.

Ghali, N. (1993). Managing Software Development Knowledge: A Conceptually-Oriented
Software Engineering Environment, PhD. Thesis. University of Ottawa, Canada.

Managing Knowledge in Collaborative Software Maintenance Environment 89

Fig. 9. Relations between Enterprise Business Domain Subontology and SM Ontology

5. Conclusion

In recent years, many organizations consider knowledge management (KM) to be
strategically important to their business. In general, Knowledge Sharing (KS), Knowledge
Transfer (KT) and Knowledge Management System (KMS) are among the themes to bring
synergies among different teams, units or departments, to accelerate innovation, improve
quality and reduce costs and exposure to business risks. In Software Engineering area, KM
have been studied mostly on Software Development environment, but Software
Maintenance (SM) environment are often neglected. SM environment is complex,
knowledge-driven and highly collaborative and therefore, KM is critical to SM to provides
an environment for creating and sharing knowledge.
One of the major challenges faced by software maintainers is inadequate knowledge to
perform daily activities. Maintainers spent considerable efforts checking codes and
collaborating with other parties to obtain information. In a survey in selected I.T.
departments in higher learning institutions in Malaysia, inadequate enterprise business
domain knowledge are deemed important but are seldom stored in KMS or other electronic
means. Therefore, resolving these issues should be given high priority.
To overcome the problems associated with lack of knowledge in SM environment, we
propose a MAS tool to enable both users and software maintainers to capture and share the
enterprise business domain knowledge and automatically link them to the application and
SM process information. Prometheus methodology is used to design the MAS and as a
result, six agent types are proposed: User Agent, Helpdesk Agent, Maintenance Request
Agent, Maintainer Agent, SM Process Agent and Domain Knowledge Agent. Critical to the
systematic information organization is the ontology for domain and SM process knowledge,
to allow software agents to communicate among each others, and to understand the
information structure when retrieving or storing the knowledge. Henceforth, we outline a

combined ontology which links and extends the enterprise business domain to SM process
ontology and model the combined ontology using Protégé ontology editor.
With this tool, users and maintainers shall benefits from systematic organization of domain
and SM process knowledge, as well as ensuring that changes to either application or domain
business knowledge are corroborated and shared among the business users and
maintainers. The new tool shall also promote automation and integration of systems or
tools to support maintenance processes

6. References

Abdullah, R. (2008). Knowledge Management System in a Collaborative Environment.
University Putra Malaysia Press.

Abdullah, R., Sahibuddin, S., Alias, R., & Selamat, M. H. (2006). Knowledge Management
System Architecture For Organizational

Alavi, M., & Leidner, D. (2000). Knowledge Management Systems: Issues, Challenges, and
Benefits. Communication of AIS, 1.

April, A. (2005). Software Maintenance Maturity Model (SMmm): The Software
Maintenance Process Model. Journal of Software Maintenance and Evolution:
Research and Practice, 17(3).

Arthur Anderson, & APQC. (1996). The Knowledge Management Assessment Tool: External
Benchmarking Version. Arthur Anderson/APQC.

Aurum, A., Jeffery, R., Wohlin, C., & Handzic, M. (2003). Managing Software Engineering
Knowledge. Springer.

Choo, C. (1996). An Integrated Information Model of the Organization: The Knowing
Organization.

Dam, K. H., & Winikoff, M. (2003). Comparing AgentOriented Methodologies. In 5 th
International Workshop on Agent-Oriented Information Systems (AOIS’03).

Das, S., Lutters, W., & Seaman, C. (2007). Understanding Documentation Value in Software
Maintenance. In Proceedings of the 2007 Symposium on Computer human
interaction for the management of information technology.

Davenport, T., & Prusak, L. (2000). Working Knowledge: How Organization Manage What
They Know. Harvard Business School Press.

Deraman, A. (1998). A Framework For Software Maintenance Model Development.
Malaysian Journal of Computer Science, 11(2).

Desouza, K. C., Awazu, Y., & Baloh, P. (2006). Managing Knowledge in Global Software
Development Efforts: Issues and Practices. Software, IEEE, 23(5), 30–37.

Dingsoyr, T., & Conradi, R. (2002). A Survey Of Case Studies Of The Use Of Knowledge
Management In Software Engineering. International Journal of Software
Engineering and Knowledge Engineering, 12(4).

Fjeldstad, R., & Hamlen, W. (1998). Application Program Maintenance Study: Report to Our
Respondents. In Software Engineering- Theory and Practices. Prentice Hall.

Foo, S., Chua, A., & Sharma, R. (2006). Knowledge management Tools and Techniques.
Singapore: Pearson Prentice Hll.

Ghali, N. (1993). Managing Software Development Knowledge: A Conceptually-Oriented
Software Engineering Environment, PhD. Thesis. University of Ottawa, Canada.

Knowledge Management90

Handzic, M. and Hasan, H. (2003), “The Search for an Integrated KM Framework”, chapter 1
in Hasan H. and Handzic M. (eds.), Australian Studies. in Knowledge
Management, UOW Press, Wollongong

Australia KM Standard (2001), Framework. In Australian Studies in Knowledge
Management. UOW Press. Retrieved January 14, 2009, from
http://www.worldscibooks.com/.

Hahn, J., & Subramani, M. (n.d.). A Framework Of Knowledge Management Systems: Issues
And Challenges For Theory And Practice.

Hansen, M., Nohria, N., & Tierney, T. (1999). What's Your Strategy For Managing
Knowledge? Harvard Business Review.

Hosapple, C., & Joshi, K. (2002). Understanding KM Solutions: The Evolution of
Frameworks in Theory and Practice. In Knowledge Management Systems: Theory
and Practice. Thomson Learning.

IEEE 14764 (2006). IEEE 14764-2006, Standard for Software Engineering - Software Life
Cycle Process – Maintenance. The Institute of Electrical and Electronics Engineers,
Inc.

Jarke, M., & Rose, T. (1988). Managing Knowledge about Information System Evolution. In
Proceedings of the 1988 ACM SIGMOD International Conference.

Kabilan, V. (2007). Ontology for InformationSystems (O4IS) Design Methodology:
Conceptualizing, Designing and Representing Domain Ontologies. PhD Thesis, The
Royal Institute of Technology, Sweden.

Kitchenham, B., Travassos, G., Mayrhauser, A., Niessink, F., Schneidewind, N., Singer, J., et
al. (1999). Towards an ontology of software maintenance. Journal of Software
Maintenance: Research and Practice, 11(6).

KPMG. (n.d.). KPMG European KM Survey 2003. Retrieved from
www.knowledgeboard.com.

KPMG. (n.d.). KPMG Knowledge Management Research Report 2000. Retrieved from
www.knowledgeboard.com.

Lientz, B., & Swanson, E. (1981). Characteristics of Application Software Maintenance.
Communications of the ACM, 24(11).

Meso, P., & Smith, R. (2000). A Resource-Based View Of Organizational Knowledge
Management Systems. Journal of Knowledge Management, 4(3).

Mohd Nor, M. Z., & Abdullah, R. (2008a). A Technical Perspective of Knowledge
Management in Collaborative Software Maintenance Environment. In Knowledge
Management International Conference (KMICE).

Mohd Nor, M. Z., & Abdullah, R. (2008b). Survey on Software Maintenance Profile and
Knowledge Requirement in Public Higher Learning Institutions. In Accepted for
3rd International Symposium on Information Technology Conference (ITSIM) .

Mohd Nor, M. Z., Abdullah, R., Selamat, M. H., & Ghazali, M. (2008c). Agent-based Tool To
Support Collaborative KMS In Software Maintenance Process Environment.
Proceeding of International Conference on Industrial Engineering and Engineering
Management (IEEM) 2008.

Mohd Nor, M. Z., Abdullah, R., Selamat, M. H., & Ghazali, M. (2008d). Combining Business
Domain and Software Maintenance Process Ontology, Proceeding of Malaysian
Software Engineering Conference (MySEC) 2008.

Natarajan, G., & Shekar, S. (2001). Knowledge Management: Enable Business Growth.
McGraw-Hill.

Nonaka, I., & Takeuchi, H. (1995). The Knowledge-Creating Company. New York: Oxford
University Press, Inc.

Pigoski, T. (1997). Practical Software Maintenance:Best Practices for Managing your
Software Investment. John Wiley & Sons.

Pressman, R. (2005). Software Engineering: A Practical Approach (6th ed.). McGraw Hill.
Rodriquez, O., Martinez, A., Favela, J., Viscaino, A., & Piattini, M. (2004a). Understanding

and Supporting Knowledge Flows in a Community of Software Developers.
Lecture Notes in Computer Science, 2198.

Rodriquez, O., Martinez, A., Favela, J., Viscaino, A., & Piattini, M. (2004b). How to Manage
Knowledge in the Software Maintenance Process. Lecture Notes in Computer
Science, 3096.

Ruiz, F., Viscaino, A., Piattini, M., & Garcia, F. (2004). An Ontology for The Management of
Software Maintenance Projects. International Journal of Software Engineering and
Knowledge Engineering.

Rus, I., & Lindvall, M. (2001). Knowledge Management in Software Engineering. IEEE
Software, 19(3).

Santos, G., Vilela, K., Montoni, M., & Rocha, A. (2005). Knowledge Management in a
Software Development Environment to Suport Software Process Deployment.
Lecture Notes in Computer Science, 3782.

Schach, S., Jin, B., Yu, L., Heller, G., & Offutt, J. (2003). Determining the Distribution of
Maintenance Categories: Survey versus Measurement. Journal of Empirical
Software Engineering, 8.

Selamat, M., Abdullah, R., & Paul, C. (2006). Knowledge Management System Architecture
For Organizational Learning With Collaborative Environment. International
Journal of Computer Science and Network Security, 6(8a).

SWEBOK. (2004). Software Maintenance. In Guide to the Software Engineering Body of
Knowledge (SWEBOK). The Institute of Electrical and Electronics Engineers, Inc.

Szulanski, G. (1996). Exploring Internal Stickiness: Impediments to the Transfer of Best
Practice Within The Firm. Strategic Management Journal, 17.

Ulrich, F. (2002). A Multi-Layer Architecture for Knowledge Management Systems. In
Knowledge Management Systems: Theory and Practice (pp. 97-111). Thomson
Learning.

Van Der Speck, R., & Spijkervert, A. (1997). Knowledge Management: Dealing Intelligently
with Knowledge. In Knowledge Management and its Integrative Elements. CRC
Press.

Viscaino, A., Soto, J., & Piattini, M. (2003). Supporting Software Maintenance in Web
Repository through a Multi-Agent System. Lecture Notes in Computer Science,
2663.

Vizcaíno, A., Soto, J., & Piattini, M. (2004). Supporting Knowledge Reuse During the
Software Maintenance Process through Agents. Proceedings of the 6th International
Conference on Enterprise Information Systems (ICEIS).

Wiig, K. (1993). Knowledge Management Foundation. Schema Press.
Wilson, T. (2002). The nonsense of knowledge management. Journal of Information

Research, 8(1).

Managing Knowledge in Collaborative Software Maintenance Environment 91

Handzic, M. and Hasan, H. (2003), “The Search for an Integrated KM Framework”, chapter 1
in Hasan H. and Handzic M. (eds.), Australian Studies. in Knowledge
Management, UOW Press, Wollongong

Australia KM Standard (2001), Framework. In Australian Studies in Knowledge
Management. UOW Press. Retrieved January 14, 2009, from
http://www.worldscibooks.com/.

Hahn, J., & Subramani, M. (n.d.). A Framework Of Knowledge Management Systems: Issues
And Challenges For Theory And Practice.

Hansen, M., Nohria, N., & Tierney, T. (1999). What's Your Strategy For Managing
Knowledge? Harvard Business Review.

Hosapple, C., & Joshi, K. (2002). Understanding KM Solutions: The Evolution of
Frameworks in Theory and Practice. In Knowledge Management Systems: Theory
and Practice. Thomson Learning.

IEEE 14764 (2006). IEEE 14764-2006, Standard for Software Engineering - Software Life
Cycle Process – Maintenance. The Institute of Electrical and Electronics Engineers,
Inc.

Jarke, M., & Rose, T. (1988). Managing Knowledge about Information System Evolution. In
Proceedings of the 1988 ACM SIGMOD International Conference.

Kabilan, V. (2007). Ontology for InformationSystems (O4IS) Design Methodology:
Conceptualizing, Designing and Representing Domain Ontologies. PhD Thesis, The
Royal Institute of Technology, Sweden.

Kitchenham, B., Travassos, G., Mayrhauser, A., Niessink, F., Schneidewind, N., Singer, J., et
al. (1999). Towards an ontology of software maintenance. Journal of Software
Maintenance: Research and Practice, 11(6).

KPMG. (n.d.). KPMG European KM Survey 2003. Retrieved from
www.knowledgeboard.com.

KPMG. (n.d.). KPMG Knowledge Management Research Report 2000. Retrieved from
www.knowledgeboard.com.

Lientz, B., & Swanson, E. (1981). Characteristics of Application Software Maintenance.
Communications of the ACM, 24(11).

Meso, P., & Smith, R. (2000). A Resource-Based View Of Organizational Knowledge
Management Systems. Journal of Knowledge Management, 4(3).

Mohd Nor, M. Z., & Abdullah, R. (2008a). A Technical Perspective of Knowledge
Management in Collaborative Software Maintenance Environment. In Knowledge
Management International Conference (KMICE).

Mohd Nor, M. Z., & Abdullah, R. (2008b). Survey on Software Maintenance Profile and
Knowledge Requirement in Public Higher Learning Institutions. In Accepted for
3rd International Symposium on Information Technology Conference (ITSIM) .

Mohd Nor, M. Z., Abdullah, R., Selamat, M. H., & Ghazali, M. (2008c). Agent-based Tool To
Support Collaborative KMS In Software Maintenance Process Environment.
Proceeding of International Conference on Industrial Engineering and Engineering
Management (IEEM) 2008.

Mohd Nor, M. Z., Abdullah, R., Selamat, M. H., & Ghazali, M. (2008d). Combining Business
Domain and Software Maintenance Process Ontology, Proceeding of Malaysian
Software Engineering Conference (MySEC) 2008.

Natarajan, G., & Shekar, S. (2001). Knowledge Management: Enable Business Growth.
McGraw-Hill.

Nonaka, I., & Takeuchi, H. (1995). The Knowledge-Creating Company. New York: Oxford
University Press, Inc.

Pigoski, T. (1997). Practical Software Maintenance:Best Practices for Managing your
Software Investment. John Wiley & Sons.

Pressman, R. (2005). Software Engineering: A Practical Approach (6th ed.). McGraw Hill.
Rodriquez, O., Martinez, A., Favela, J., Viscaino, A., & Piattini, M. (2004a). Understanding

and Supporting Knowledge Flows in a Community of Software Developers.
Lecture Notes in Computer Science, 2198.

Rodriquez, O., Martinez, A., Favela, J., Viscaino, A., & Piattini, M. (2004b). How to Manage
Knowledge in the Software Maintenance Process. Lecture Notes in Computer
Science, 3096.

Ruiz, F., Viscaino, A., Piattini, M., & Garcia, F. (2004). An Ontology for The Management of
Software Maintenance Projects. International Journal of Software Engineering and
Knowledge Engineering.

Rus, I., & Lindvall, M. (2001). Knowledge Management in Software Engineering. IEEE
Software, 19(3).

Santos, G., Vilela, K., Montoni, M., & Rocha, A. (2005). Knowledge Management in a
Software Development Environment to Suport Software Process Deployment.
Lecture Notes in Computer Science, 3782.

Schach, S., Jin, B., Yu, L., Heller, G., & Offutt, J. (2003). Determining the Distribution of
Maintenance Categories: Survey versus Measurement. Journal of Empirical
Software Engineering, 8.

Selamat, M., Abdullah, R., & Paul, C. (2006). Knowledge Management System Architecture
For Organizational Learning With Collaborative Environment. International
Journal of Computer Science and Network Security, 6(8a).

SWEBOK. (2004). Software Maintenance. In Guide to the Software Engineering Body of
Knowledge (SWEBOK). The Institute of Electrical and Electronics Engineers, Inc.

Szulanski, G. (1996). Exploring Internal Stickiness: Impediments to the Transfer of Best
Practice Within The Firm. Strategic Management Journal, 17.

Ulrich, F. (2002). A Multi-Layer Architecture for Knowledge Management Systems. In
Knowledge Management Systems: Theory and Practice (pp. 97-111). Thomson
Learning.

Van Der Speck, R., & Spijkervert, A. (1997). Knowledge Management: Dealing Intelligently
with Knowledge. In Knowledge Management and its Integrative Elements. CRC
Press.

Viscaino, A., Soto, J., & Piattini, M. (2003). Supporting Software Maintenance in Web
Repository through a Multi-Agent System. Lecture Notes in Computer Science,
2663.

Vizcaíno, A., Soto, J., & Piattini, M. (2004). Supporting Knowledge Reuse During the
Software Maintenance Process through Agents. Proceedings of the 6th International
Conference on Enterprise Information Systems (ICEIS).

Wiig, K. (1993). Knowledge Management Foundation. Schema Press.
Wilson, T. (2002). The nonsense of knowledge management. Journal of Information

Research, 8(1).

Knowledge Management92

Wooldridge, M. (2002). An Introduction to Multiagent Systems. John Wiley and Sons.
Yusko, J. (2005). The Knowledge Collective: A Multi-Layer, Multi-Agent Framework for

Information Management in an Intelligent Knowledge Base. PhD. Thesis, Illinois
Institute of Technology.

