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1. Introduction

Traffic matrix reflects the volume of traffic that flows between all pairs of sources and desti-
nations in a network. Its element is referred to as an Origin-Destination (OD) pair (or flow).
And traffic matrix gives network operators a global aspect of how all the traffic in a large-scale
network flows. Thus, with traffic matrix as a key input of traffic engineering and network
management, it is very important for network operators to accurately get the traffic matrix
in a large-scale network. Unfortunately, as commented in (Papagiannaki et al., 2004), direct
measurement of the traffic is not generally practical in the large-scale networks. In 1996, Vardi
firstly introduced network tomography method to research the problem that traffic matrix in
a network is indirectly measured. Since then, many researchers studied the problem and pro-
posed many solutions(Cao et al., 2000; 2001; Juva, 2007; Soule et al., 2005; 2004; Tan & Wang,
2007; Vardi, 1996; Zhang et al., 2003; 2005). Traffic matrix estimation is so far used by network
operators to conduct the network management, network planning, traffic detecting and so
on. However, since traffic matrix estimation holds the highly ill-posed properties (Soule et al.,
2005; 2004; Tan & Wang, 2007; Vardi, 1996; Zhang et al., 2003; 2005) and especially network
traffic is a kind of nonstationary traffic (Cao et al., 2001), this subject is a challenging research
problem.
The statistical inference techniques are first used to estimate traffic matrix over local area net-
work (LAN). Authors in (Cao et al., 2000; Vardi, 1996) exploited the statistical model to model
the OD flows in order to reduce the ill-posed nature of traffic matrix estimation. Zhang et al.
(Zhang et al., 2003; 2005) introduced the gravity model into large-scale IP traffic matrix estima-
tion. By the gravity model, they could obtain the prior information about OD flows and then
successfully conduct the large-scale IP traffic matrix estimation. Nevertheless, as mentioned
in (Juva, 2007; Soule et al., 2005), the statistical inference techniques are sensitive to the prior
information, while the gravity model methods still have the larger estimation errors though
it partially reduces the sensitivity to the prior information. Especially when the assumptions
about OD flows hold, the gravity model methods are found to be more accurate than the sta-
tistical inference techniques, while their estimation accuracy decreases more quickly than that
of the statistical inference techniques when the assumptions are not exactly true. Hence, this
needs to develop a new method to estimate large-scale IP traffic matrix.
This chapter provides the reader with a method that large scale IP traffic matrix is estimated
accurately by, as envisioned by the authors. It begins by explaining the need for using simu-
lated annealing to estimate the traffic matrix, how traffic matrix estimation problem is defined,
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and possible motivation for using Simulated annealing to solve it. Then the chapter examines
how our method is related to, but distinct from, previous work in traffic matrix estimation.
The implementation of our method is discussed, and then simulation results and analysis are
proposed. Finally, we present the important areas of future work and conclude our work to
close the chapter.

1.1 Problem Statement
For a large-scale IP network, assuming there are the n nodes and L links, it will have the
N = n2 OD flows. Each of OD flows and link loads is time series. traffic matrix and link loads
at time t are denotes as x(t) = (x1(t), x2(t), ..., xN(t))T and y(t) = (y1(t), y2(t), ..., yL(t))T

čňrespectively. In a large-scale IP network, traffic matrix x(t) and link loads y(t) are correlated
by the L by N routing matrix A = (Aij)L×N , where Aij is equal 1 if OD flow j traverses link i,
or zero. They follow the below constraints:

y(t) = Ax(t). (1)

Link loads can be attained via the SNMP measurements. Routing matrix can be obtained by
the status and configuration information of the network. Therefore, traffic matrix estimation
is that, given link loads y(t) and routing matrix A, one seeks to obtain a required solution
x(t) satisfied with (1). However, in the large-scale IP network, the number of OD flows is
often by far larger than that of links, i.e. L � N. Eq. (1) denotes a highly under-constrained
linear problem. It has the infinite solution for traffic matrix. Hence, large-scale IP traffic matrix
estimation is a highly ill-posed inverse problem. How to overcome the ill-posed nature in this
problem is the main challenge faced. Network tomography is a good way for this problem
(Cao et al., 2000; Tebaldi & West, 1998; Vardi, 1996; Zhang et al., 2003a).
In a large-scale IP network, traffic matrix and link loads vary with time, and are satisfied with
the above linear relations. Previous studies show that OD flows, namely elements in traffic
matrix, hold strongly daily pattern, and even weekly and monthly pattern. This suggests that
OD flows hold the temporal correlations.

1.2 Motivation and Requirements
So far, simulated annealing method is studied extensively and has many successful solutions
(Bryan et al., 2006; Hung et al., 2008; Tiwari & Cosman, 2008; Thompson & Bilbro, 2005). It is a
non-numerical algorithm which is simple and globally optimal, and is suited well for solving
the large-scale combinatorial optimization problems. However, because of the complexity of
large-scale IP traffic matrix estimation, it is very difficult to use directly simulated annealing
method to estimate it, and even it is not practical. And the solution space of traffic matrix
is a continuous real subspace. Hence, due to the randomicity that conventional simulated
annealing method generates a new solution, it is difficult to find quickly the globally optimal
solution. To solve this problem and attain an accurate estimation of traffic matrix, we consider
sufficiently spatial-temporal correlations of OD flows by using covariance matrix about OD
flows, and combine partial flow measurement. By covariance matrix, one can quickly choose
the direction in which the simulated annealing iterative process advances towards the globally
optimal solution.
We investigate large-scale IP traffic matrix estimation problem and present a novel method
called the simulated annealing and generalized inference (SAGI). Based on the conventional
simulated annealing, we propose a modified simulated annealing process suited for large-
scale IP traffic matrix estimation. By the modified simulated annealing, we describe the traffic

matrix estimation into a simulated annealing process. With the temperature dropping slowly,
the traffic matrix’s estimation gradually approaches to the true value. When temperature
declines to the defined value, the estimation is attained. To obtain the accurate estimation,
a heuristic method is introduced into the simulated annealing process by using covariance
matrix about traffic matrix. Built on this heuristic way, the estimation can be quickly and
accurately determined in the simulated annealing process. However, since traffic matrix esti-
mation is a highly ill-posed problem, the estimation sought by simulated annealing may not
precisely reflect the traffic matrix’s inherent nature. We choose the Euclid and Mahalanobis
distances as the optimal metric. This choice is based on the following reasons: (1) Euclid
distance computes the whole distance of the vector. It deals with the difference between the
elements of the vector in the identical way. (2) Mahalanobis distance can get rid of the distur-
bance of the correlations between the variables; it is not related with the measurement units;
and Mahalanobis distance distinguishes the different characteristics between the variables.
By combining these two different distances, a generalized inference is proposed to overcome
further the traffic matrix’s ill-posed nature. Hence, SAGI can accurately estimate large-scale
IP traffic matrix. We use the real data from the Abilene (http://www.cs.utexas.edu, 2004) and
GÉANT (Uhlig et al., 2006) networks to validate SAGI. Simulation results show that SAGI
exhibits the lower estimation errors and stronger robustness to noise.

2. Related work

Some papers have investigated traffic matrix estimation and proposed some solutions. Vardi
(Vardi, 1996), Cao et al. (Cao et al., 2000), and Tebaldi et al. (Tebaldi & West, 1998) used
the statistical inference method to estimate traffic matrix only over the local area network.
As mentioned in (Soule et al., 2005), these methods are sensitive to the prior, and estimation
errors are larger. Medina et al. (Medina et al., 2002) showed that the basic assumptions based
on the statistical models are not justified, and they also showed that, when their underlying
assumptions are violated, the estimated results are bad. Furthermore, because these methods
need to perform the complex mathematical computation, it takes some time to estimate traffic
matrix. Hence, it is difficult to scale these methods to large-scale networks.
Zhang et al. (Zhang et al., 2003;a) discussed the problem of large-scale IP traffic matrix esti-
mation by introducing the gravity model. Though, as mentioned in (Soule et al., 2005), their
method partially reduced the sensitivity to the prior, it also has the larger errors, because it
only considered the spatial correlations among the OD flows. Nucci et al. (Nucci et al., 2004)
proposed the method that changed the under-constrained problem into the full rank one by
changing the routing and then taking new SNMP measurements under this new routing map.
Similarly, Soul et al. (Soule et al., 2004) presented a heuristic algorithm to compute the rout-
ing needed in order to obtain a full rank problem. Papagiannaki et al. (Papagiannaki et al.,
2004) proposed a data-driven method that depends on measurements alone to obtain traffic
matrix, without using the routing matrix and performing the inference, but based on measur-
ing traffic matrix directly. Lakhina et al. (Lakhina et al., 2004) used the Principal Component
Analysis to solve the traffic matrix estimation problem. Soule et al. (Soule et al., 2004) intro-
duced the Kalman filtering into traffic matrix estimation. However, all the methods need to
establish mathematical model about OD flows and perform the statistical inference, or com-
bine the direct measurement of partial OD flows to infer traffic matrix. Thus, they need the
complex mathematical computations. Different from the above methods, SAGI uses simu-
lated annealing to handle large-scale IP traffic matrix estimation problem. By denoting traffic
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and possible motivation for using Simulated annealing to solve it. Then the chapter examines
how our method is related to, but distinct from, previous work in traffic matrix estimation.
The implementation of our method is discussed, and then simulation results and analysis are
proposed. Finally, we present the important areas of future work and conclude our work to
close the chapter.

1.1 Problem Statement
For a large-scale IP network, assuming there are the n nodes and L links, it will have the
N = n2 OD flows. Each of OD flows and link loads is time series. traffic matrix and link loads
at time t are denotes as x(t) = (x1(t), x2(t), ..., xN(t))T and y(t) = (y1(t), y2(t), ..., yL(t))T

čňrespectively. In a large-scale IP network, traffic matrix x(t) and link loads y(t) are correlated
by the L by N routing matrix A = (Aij)L×N , where Aij is equal 1 if OD flow j traverses link i,
or zero. They follow the below constraints:

y(t) = Ax(t). (1)

Link loads can be attained via the SNMP measurements. Routing matrix can be obtained by
the status and configuration information of the network. Therefore, traffic matrix estimation
is that, given link loads y(t) and routing matrix A, one seeks to obtain a required solution
x(t) satisfied with (1). However, in the large-scale IP network, the number of OD flows is
often by far larger than that of links, i.e. L � N. Eq. (1) denotes a highly under-constrained
linear problem. It has the infinite solution for traffic matrix. Hence, large-scale IP traffic matrix
estimation is a highly ill-posed inverse problem. How to overcome the ill-posed nature in this
problem is the main challenge faced. Network tomography is a good way for this problem
(Cao et al., 2000; Tebaldi & West, 1998; Vardi, 1996; Zhang et al., 2003a).
In a large-scale IP network, traffic matrix and link loads vary with time, and are satisfied with
the above linear relations. Previous studies show that OD flows, namely elements in traffic
matrix, hold strongly daily pattern, and even weekly and monthly pattern. This suggests that
OD flows hold the temporal correlations.

1.2 Motivation and Requirements
So far, simulated annealing method is studied extensively and has many successful solutions
(Bryan et al., 2006; Hung et al., 2008; Tiwari & Cosman, 2008; Thompson & Bilbro, 2005). It is a
non-numerical algorithm which is simple and globally optimal, and is suited well for solving
the large-scale combinatorial optimization problems. However, because of the complexity of
large-scale IP traffic matrix estimation, it is very difficult to use directly simulated annealing
method to estimate it, and even it is not practical. And the solution space of traffic matrix
is a continuous real subspace. Hence, due to the randomicity that conventional simulated
annealing method generates a new solution, it is difficult to find quickly the globally optimal
solution. To solve this problem and attain an accurate estimation of traffic matrix, we consider
sufficiently spatial-temporal correlations of OD flows by using covariance matrix about OD
flows, and combine partial flow measurement. By covariance matrix, one can quickly choose
the direction in which the simulated annealing iterative process advances towards the globally
optimal solution.
We investigate large-scale IP traffic matrix estimation problem and present a novel method
called the simulated annealing and generalized inference (SAGI). Based on the conventional
simulated annealing, we propose a modified simulated annealing process suited for large-
scale IP traffic matrix estimation. By the modified simulated annealing, we describe the traffic

matrix estimation into a simulated annealing process. With the temperature dropping slowly,
the traffic matrix’s estimation gradually approaches to the true value. When temperature
declines to the defined value, the estimation is attained. To obtain the accurate estimation,
a heuristic method is introduced into the simulated annealing process by using covariance
matrix about traffic matrix. Built on this heuristic way, the estimation can be quickly and
accurately determined in the simulated annealing process. However, since traffic matrix esti-
mation is a highly ill-posed problem, the estimation sought by simulated annealing may not
precisely reflect the traffic matrix’s inherent nature. We choose the Euclid and Mahalanobis
distances as the optimal metric. This choice is based on the following reasons: (1) Euclid
distance computes the whole distance of the vector. It deals with the difference between the
elements of the vector in the identical way. (2) Mahalanobis distance can get rid of the distur-
bance of the correlations between the variables; it is not related with the measurement units;
and Mahalanobis distance distinguishes the different characteristics between the variables.
By combining these two different distances, a generalized inference is proposed to overcome
further the traffic matrix’s ill-posed nature. Hence, SAGI can accurately estimate large-scale
IP traffic matrix. We use the real data from the Abilene (http://www.cs.utexas.edu, 2004) and
GÉANT (Uhlig et al., 2006) networks to validate SAGI. Simulation results show that SAGI
exhibits the lower estimation errors and stronger robustness to noise.

2. Related work

Some papers have investigated traffic matrix estimation and proposed some solutions. Vardi
(Vardi, 1996), Cao et al. (Cao et al., 2000), and Tebaldi et al. (Tebaldi & West, 1998) used
the statistical inference method to estimate traffic matrix only over the local area network.
As mentioned in (Soule et al., 2005), these methods are sensitive to the prior, and estimation
errors are larger. Medina et al. (Medina et al., 2002) showed that the basic assumptions based
on the statistical models are not justified, and they also showed that, when their underlying
assumptions are violated, the estimated results are bad. Furthermore, because these methods
need to perform the complex mathematical computation, it takes some time to estimate traffic
matrix. Hence, it is difficult to scale these methods to large-scale networks.
Zhang et al. (Zhang et al., 2003;a) discussed the problem of large-scale IP traffic matrix esti-
mation by introducing the gravity model. Though, as mentioned in (Soule et al., 2005), their
method partially reduced the sensitivity to the prior, it also has the larger errors, because it
only considered the spatial correlations among the OD flows. Nucci et al. (Nucci et al., 2004)
proposed the method that changed the under-constrained problem into the full rank one by
changing the routing and then taking new SNMP measurements under this new routing map.
Similarly, Soul et al. (Soule et al., 2004) presented a heuristic algorithm to compute the rout-
ing needed in order to obtain a full rank problem. Papagiannaki et al. (Papagiannaki et al.,
2004) proposed a data-driven method that depends on measurements alone to obtain traffic
matrix, without using the routing matrix and performing the inference, but based on measur-
ing traffic matrix directly. Lakhina et al. (Lakhina et al., 2004) used the Principal Component
Analysis to solve the traffic matrix estimation problem. Soule et al. (Soule et al., 2004) intro-
duced the Kalman filtering into traffic matrix estimation. However, all the methods need to
establish mathematical model about OD flows and perform the statistical inference, or com-
bine the direct measurement of partial OD flows to infer traffic matrix. Thus, they need the
complex mathematical computations. Different from the above methods, SAGI uses simu-
lated annealing to handle large-scale IP traffic matrix estimation problem. By denoting traffic
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matrix estimation problem into simulated annealing process, we avoid complex mathematical
computation and can attain the accurate estimation results.
Liang et al. (Liang et al., 2006), based on game theory, proposed a fast lightweight approach
to OD flow estimation. Bermolen et al. (Bermolen et al., 2006) derived analytically the Fisher
information matrix under the second moment statistics with the functional mean-variance
relationship and then obtained the Cramer-Rao lower bound for the variance of traffic matrix
estimator. By this bound, they could attain traffic matrix estimation. Juva (Juva, 2007) studied
the sensitivity of the estimation accuracy to those underlying assumptions in the case of the
gravity model based and second moment methods. They showed that if the assumptions
hold, the gravity model based methods are more accurate, or their accuracy declines faster
than that of the second moment methods. However, SAGI does not make any assumption
about OD flows. It only sovle traffic matrix estimation problem with simulated annealing
method. Due to the capacity of simulated annealing to solve the large-scale combinatorial
optimization problems, SAGI is not sensitive to the assumption about OD flows and it is also
robust to noise. Because the modified simulated annealing method is simple and fast, this
makes it suited for handling the problem of the large-scale IP traffic matrix estimations.

3. Implementation

According to the characteristics of traffic matrix, multi-input and multi-output large-scale IP
traffic matrix estimation model based on the modified simulated annealing method is pre-
sented in Figure 1, where y(t) = (y1(t), y2(t), ..., yL(t))T (L is the number of links in a net-
work) is link loads at a particular time t, x_0 = (x̂0

1(t), x̂0
x(t), ..., x̂0

N(t))T (N is the number
of OD flows in a network) the initial value of traffic matrix, x̂ = (x̂1(t), x̂x(t), ..., x̂N(t))T the
estimation of traffic matrix, f cost function, and x_opt, f _min, x_cur, f _cur and x_g denotes
optimal solution, minimum of cost function, current solution, current value of cost function
and new solution in the iterative process of the modified simulated annealing method, respec-
tively, and ”Stop criterion” includes the maximum iteration steps and maximum unchanged
times of cost function at a certain defined temperature. As showed in Figure 1, the model in-
cludes three parts: Initialing, Modified simulated annealing method and IPFP, where Initialing
is used for initialing the variable that Modified simulated annealing method needs, Modified
simulated annealing method for seeking globally optimal solution, and IPFP for satisfying the
estimations of traffic matrix with tomographic constraints.
Generally, simulated annealing method includes generating new solution, computing cost
function difference, ascertaining if new solution is accepted, and updating the iterative pro-
cess. Now, according to the complexity of large-scale IP traffic matrix estimation, simulated
annealing method is modified as follows.

3.1 Cost Function
According to Equation (1), cost function used for simulated annealing method is chosen as:

f (x(t)) = ‖y(t)− Ax(t)‖, (2)

where ‖.‖ is L2 norm. Assume that the kth iterative result is xk(t), and the (k + 1)th iterative
result is xk+1(t). And then cost function difference between the kth result and the (k + 1)th
one is denoted as:

∆ f k+1 = f (xk+1(t))− f (xk(t)), (3)
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Fig. 1. Architecture representation of multi-input and multi-output large-scale IP traffic matrix
estimation model based on the modified simulated annealing method, with the modified sim-
ulated annealing method showed in dotted line frame, IPFP used for adjusting the estimation
of traffic matrix.

3.2 Generating New Solution
By generating randomly new solution, simulated annealing method makes current solution
departing from locally optimal point to globally optimal point. However, the solution space
of traffic matrix is a continuous real subspace. Hence, it is difficult of conventional simulated
annealing method to find quickly the globally optimal solution. And so covariance matrix
about OD flows is introduced to solve this problem.
Firstly, covariance matrix is attained, based on multivariate statistical analysis theory. As-
sume that traffic matrices of S time plots, which are denoted as XS = (x(1), x(2), ..., x(S)), are
known. And then covariance matrix C is represented by the following equation.




U = ∑S
j=1(x(i)− XS),

C = 1
S−1 UUT ,

XS = 1
S ∑S

j=1 x(i).
(4)

Equation (4) shows that main diagonal elements of covariance matrix C represent the tempo-
ral correlations of traffic matrix sample, and other elements represent spatial-temporal cor-
relations. As mentioned above, OD flows hold strongly daily pattern, and even weekly and
monthly pattern, and so covariance matrix C can be used to denote spatial-temporal correla-
tions of traffic matrix. The following simulation results also show this.
According to the characteristics of large-scale IP traffic matrix, new solution in the simulated
annealing process, from the kth iterative result xk(t) to the (k + 1)th iterative result xk+1(t), is
generated as follows.

xk+1(t) = xk(t) + 2 × rand × ∆xk+1, (5)
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matrix estimation problem into simulated annealing process, we avoid complex mathematical
computation and can attain the accurate estimation results.
Liang et al. (Liang et al., 2006), based on game theory, proposed a fast lightweight approach
to OD flow estimation. Bermolen et al. (Bermolen et al., 2006) derived analytically the Fisher
information matrix under the second moment statistics with the functional mean-variance
relationship and then obtained the Cramer-Rao lower bound for the variance of traffic matrix
estimator. By this bound, they could attain traffic matrix estimation. Juva (Juva, 2007) studied
the sensitivity of the estimation accuracy to those underlying assumptions in the case of the
gravity model based and second moment methods. They showed that if the assumptions
hold, the gravity model based methods are more accurate, or their accuracy declines faster
than that of the second moment methods. However, SAGI does not make any assumption
about OD flows. It only sovle traffic matrix estimation problem with simulated annealing
method. Due to the capacity of simulated annealing to solve the large-scale combinatorial
optimization problems, SAGI is not sensitive to the assumption about OD flows and it is also
robust to noise. Because the modified simulated annealing method is simple and fast, this
makes it suited for handling the problem of the large-scale IP traffic matrix estimations.

3. Implementation

According to the characteristics of traffic matrix, multi-input and multi-output large-scale IP
traffic matrix estimation model based on the modified simulated annealing method is pre-
sented in Figure 1, where y(t) = (y1(t), y2(t), ..., yL(t))T (L is the number of links in a net-
work) is link loads at a particular time t, x_0 = (x̂0
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x(t), ..., x̂0

N(t))T (N is the number
of OD flows in a network) the initial value of traffic matrix, x̂ = (x̂1(t), x̂x(t), ..., x̂N(t))T the
estimation of traffic matrix, f cost function, and x_opt, f _min, x_cur, f _cur and x_g denotes
optimal solution, minimum of cost function, current solution, current value of cost function
and new solution in the iterative process of the modified simulated annealing method, respec-
tively, and ”Stop criterion” includes the maximum iteration steps and maximum unchanged
times of cost function at a certain defined temperature. As showed in Figure 1, the model in-
cludes three parts: Initialing, Modified simulated annealing method and IPFP, where Initialing
is used for initialing the variable that Modified simulated annealing method needs, Modified
simulated annealing method for seeking globally optimal solution, and IPFP for satisfying the
estimations of traffic matrix with tomographic constraints.
Generally, simulated annealing method includes generating new solution, computing cost
function difference, ascertaining if new solution is accepted, and updating the iterative pro-
cess. Now, according to the complexity of large-scale IP traffic matrix estimation, simulated
annealing method is modified as follows.

3.1 Cost Function
According to Equation (1), cost function used for simulated annealing method is chosen as:

f (x(t)) = ‖y(t)− Ax(t)‖, (2)

where ‖.‖ is L2 norm. Assume that the kth iterative result is xk(t), and the (k + 1)th iterative
result is xk+1(t). And then cost function difference between the kth result and the (k + 1)th
one is denoted as:

∆ f k+1 = f (xk+1(t))− f (xk(t)), (3)
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Fig. 1. Architecture representation of multi-input and multi-output large-scale IP traffic matrix
estimation model based on the modified simulated annealing method, with the modified sim-
ulated annealing method showed in dotted line frame, IPFP used for adjusting the estimation
of traffic matrix.

3.2 Generating New Solution
By generating randomly new solution, simulated annealing method makes current solution
departing from locally optimal point to globally optimal point. However, the solution space
of traffic matrix is a continuous real subspace. Hence, it is difficult of conventional simulated
annealing method to find quickly the globally optimal solution. And so covariance matrix
about OD flows is introduced to solve this problem.
Firstly, covariance matrix is attained, based on multivariate statistical analysis theory. As-
sume that traffic matrices of S time plots, which are denoted as XS = (x(1), x(2), ..., x(S)), are
known. And then covariance matrix C is represented by the following equation.




U = ∑S
j=1(x(i)− XS),

C = 1
S−1 UUT ,

XS = 1
S ∑S

j=1 x(i).
(4)

Equation (4) shows that main diagonal elements of covariance matrix C represent the tempo-
ral correlations of traffic matrix sample, and other elements represent spatial-temporal cor-
relations. As mentioned above, OD flows hold strongly daily pattern, and even weekly and
monthly pattern, and so covariance matrix C can be used to denote spatial-temporal correla-
tions of traffic matrix. The following simulation results also show this.
According to the characteristics of large-scale IP traffic matrix, new solution in the simulated
annealing process, from the kth iterative result xk(t) to the (k + 1)th iterative result xk+1(t), is
generated as follows.

xk+1(t) = xk(t) + 2 × rand × ∆xk+1, (5)
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where ”rand” is the random number from 0 to 1, and ∆xk+1 is a direction vector in the (k +
1)th iterative process. It is a key problem to ascertain quickly ∆xk+1. The following uses the
optimal method to attain it. To consider sufficiently spatial-temporal correlations of OD flows
and satisfy the estimations of traffic matrix with tomographic constraints, select the objective
function:




min(||y(t)− Axk+1(t)||22 + λ||C × ∆xk+1||22),

s.t. y(t) = Ax(t),
xi(t) ≥ 0, i = 1, 2, ..., N

(6)

where C is the covariance matrix denoted by equation (4), λ a regularization parameter whose
value is generally 0.01 or so.

Set xk+1(t) = xk(t) + ∆xk+1, (7)

Substitute Equation (7) into Equation (6), and get the below objective function:



min(||y(t)− A(xk(t) + ∆xk+1)||22 + λ||C × ∆xk+1||22),

s.t. y(t) = Ax(t),
xi(t) ≥ 0, i = 1, 2, ..., N

(8)

The least square solution of (8) is

∆xk+1 = (AT A + λ × CTC)−1 AT(y(t)− Axk(t)), (9)

According to Equation (5) and (9), get the following new solution in the simulated annealing
process.




xk+1(t) = xk + 2 × rand × ∆xk+1,
∆xk+1 = (AT A + λ × CTC)−1 ATYk,
Yk = (y(t)− Axk(t)).

(10)

3.3 Accepted Criterion
The modified simulated annealing method uses Metroplis criterion to ascertain if new solution
is accepted. Here, Metroplis criterion is denoted by the below equation.

P(xk(t) ⇒ xk+1(t)) =

{
1 ∆ f k+1 ≤ 0,

exp(∆ f k+1

T ), ∆ f k+1 > 0.
(11)

where T is the current temperature value. Equation (11) shows that when ∆ f k+1 ≤ 0, new

solution is accepted with probability value 1, or with probability value exp(∆ f k+1

T ).

3.4 Updating the Iterative Process
As showed in Figure 1, the modified simulated annealing method firstly computes cost func-
tion f (x_0) by the initial value x_0 of traffic matrix, and then generates new solution x_g
in terms of Equation (10). If new solution is accepted, then update x_cur and f _cur, or if
f _cur < f _min, update x_opt and f _min. Now if ”Stop criterion” is not met, update the cor-
responding variables, generate the next new solution and repeat the above process, or drop
temperature, and ascertain if temperature arrives at the defined value. If temperature arrives

at the defined value, update x_sa = x_opt. The two variables in the iterative process, namely
x_opt and f _min, insure that the met optimal solution is not left out. Thus the modified sim-
ulated annealing method holds the memory capability.
Let x0(t), x−opt, and f−min denote the traffic matrix’s prior value, optimal solution, mini-
mum cost function in the iterative process of the simulated annealing, respectively. The traffic
matrix’s prior value is given by the last moment estimation x̂(t − 1). This gives the below
iterative equation:

{
xk+1(t) = xk(t) + 2 × r × ∆xk+1,
x0(t) = x̂(t − 1).

(12)

Eqs. (4), (6), and (12) indicate that the modified simulated annealing has built the spatio-
temporal model about traffic matrix. This model can accurately capture the traffic matrix’s
characteristics. However, as time advances forward, this model may not precisely capture
the traffic matrix’s properties and yields the estimation errors. As mentioned in (Soule et al.,
2005), we use the partial flow measurement to calibrate this model. In addition, to follow
the constraints in Eq. (6), iterative proportional fitting procedure (IPFP) is used to adjust the
estimation obtained.
So far, we have proposed a modified simulated annealing method to attain the traffic matrix’s
estimation. The following Algorithm 1 proposes the complete steps of this method.
Algorithm 1
Step 1. Give the error ε, ratio factor α, initial temperature T0, minimum temperature Tmin,
maximum iterative steps K, maximum unchanged times M of cost function at certain temper-
ature, and initial traffic matrix x0(t). And set temperature T = T0 , iterative step k = 0, and the
variable m = 0. Then compute f (x0(t)) by Eq. (1), and set x−opt = x0(t), f− min = f (x0(t)).
Step 2. Yield random value ”r” from 0 to 1. By Eq. (10), get new solution xk+1(t) and compute
f (xk+1(t)).
Step 3. Compute cost function difference ∆ f k+1 according to Eq. (3). If ∆ f k+1 = 0, set
m = m + 1.
Step 4. Generate random value ”p−rand” from 0 to 1. If ∆ f k+1 ≤ 0 or exp(∆ f k+1

T ) > p−rand,
accept new solution xk+1(t), or discard new solution xk+1(t).
Step 5. If xk+1(t) is accepted and f (xk+1(t)) < f− min, update x−opt = xk+1(t) and f− min =
f (xk+1(t)), or If xk+1(t) is not accepted, xk+1(t) = xk(t).
Step 6. If k < K and m < M, set k = k + 1 and go back to Step 2.
Step 7. Drop temperature to T = αT. if T ≥ Tmin, set k = 0, m = 0, xk(t) = x−opt, and go
back to Step 2.
Step 8. Adjust x−opt with IPFP and obtain the traffic matrix’s estimation x̂s(t).
Step 9. If ||y(t)− Ax̂s(t)||22 < ε, output the result, or directly measure the OD flows and go
back to Step 1.

3.5 Generalized Inference
Since traffic matrix estimation is a highly ill-posed problem, how to seek to obtain a solution
required is significantly difficult. Here we present a generalized inference method to further
overcome the ill-posed nature of this problem. As mentioned in introduction, we choose the
Euclid and Mahalanobis distance as the optimal metric. Thus, the objective function is given
as follows:
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


min(||y(t)− Axk+1(t)||22 + λ||C × ∆xk+1||22),

s.t. y(t) = Ax(t),
xi(t) ≥ 0, i = 1, 2, ..., N

(6)

where C is the covariance matrix denoted by equation (4), λ a regularization parameter whose
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Set xk+1(t) = xk(t) + ∆xk+1, (7)
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


min(||y(t)− A(xk(t) + ∆xk+1)||22 + λ||C × ∆xk+1||22),

s.t. y(t) = Ax(t),
xi(t) ≥ 0, i = 1, 2, ..., N

(8)
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

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solution is accepted with probability value 1, or with probability value exp(∆ f k+1

T ).

3.4 Updating the Iterative Process
As showed in Figure 1, the modified simulated annealing method firstly computes cost func-
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ulated annealing method holds the memory capability.
Let x0(t), x−opt, and f−min denote the traffic matrix’s prior value, optimal solution, mini-
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Eqs. (4), (6), and (12) indicate that the modified simulated annealing has built the spatio-
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characteristics. However, as time advances forward, this model may not precisely capture
the traffic matrix’s properties and yields the estimation errors. As mentioned in (Soule et al.,
2005), we use the partial flow measurement to calibrate this model. In addition, to follow
the constraints in Eq. (6), iterative proportional fitting procedure (IPFP) is used to adjust the
estimation obtained.
So far, we have proposed a modified simulated annealing method to attain the traffic matrix’s
estimation. The following Algorithm 1 proposes the complete steps of this method.
Algorithm 1
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accept new solution xk+1(t), or discard new solution xk+1(t).
Step 5. If xk+1(t) is accepted and f (xk+1(t)) < f− min, update x−opt = xk+1(t) and f− min =
f (xk+1(t)), or If xk+1(t) is not accepted, xk+1(t) = xk(t).
Step 6. If k < K and m < M, set k = k + 1 and go back to Step 2.
Step 7. Drop temperature to T = αT. if T ≥ Tmin, set k = 0, m = 0, xk(t) = x−opt, and go
back to Step 2.
Step 8. Adjust x−opt with IPFP and obtain the traffic matrix’s estimation x̂s(t).
Step 9. If ||y(t)− Ax̂s(t)||22 < ε, output the result, or directly measure the OD flows and go
back to Step 1.

3.5 Generalized Inference
Since traffic matrix estimation is a highly ill-posed problem, how to seek to obtain a solution
required is significantly difficult. Here we present a generalized inference method to further
overcome the ill-posed nature of this problem. As mentioned in introduction, we choose the
Euclid and Mahalanobis distance as the optimal metric. Thus, the objective function is given
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


min((y(t)− Ax(t))TQ−1(y(t)− Ax(t))+
||y(t)− Ax(t)||22 + α||Dx(t)||22) ,

s.t. y(t) = Ax(t),
xi(t) ≥ 0, i = 1, 2, ..., N

(13)

where Q is the covariance matrix of link loads, D denotes a smoothing matrix, and α represents
a regularization parameter with its value being 0.01 or so.

Set x(t) = x0(t) + ∆x(t). (14)

By Eqs. (13)-(14), obtain the least square solution:

∆x(t) = (AT A + ATQ−1 A + αDT D)−1×
(AT + ATQ−1)(y(t)− Ax0(t)).

(15)

Accordingly, attain the following iterative equation:



xv+1(t) = xv(t) + ∆xv+1(t),
∆xv+1(t) = (AT A + ATQ−1 A + αDT D)−1×

(AT + ATQ−1)(y(t)− Axv(t)),
x0(t) = x̂s(t),

(16)

where v represents the iterative step and x̂s(t) is the estimation attained by simulated anneal-
ing. Eqs. (13)-(16) represent the generalized inference process. Algorithm 2 gives an overview
of the generalized inference process proposed.
Algorithm 2
Step 1. Set the errors ε and δ, give iterative steps V, and let v = 0 and x0(t) = x̂s(t).
Step 2. According to Eq. (16), perform the generalized inference process.
Step 3. If ||y(t)− Axv+1(t)||22 ≤ ε or ||xv+1(t)− xv(t)||22
≤ δ or v > V, exit and output the result, or go back Step 2 otherwise.

Up to now, we propose Algorithms 1 and 2 for the simulated annealing process and general-
ized inference, respectively. Below we summarize the complete SAGI method proposed.
Step 1. Obtain the traffic matrix x̂s(t) according to Algorithm 1.
Step 2. By Algorithm 2, attain the optimization solution.
Step 3. Use IPFP to yield a more accurate estimation satisfied with the constraints in Eq. (13).

4. Simulation Results and Analysis

We conduct a series of simulations to validate SAGI, analyzing traffic matrix estimation errors
(spatial relative errors (SREs) and temporal relative errors (TREs)) and robustness. Since To-
moGravity (Zhang et al., 2003; 2005) and 1-Inverse (Tan & Wang, 2007) is reported as the accu-
rate methods of traffic matrix estimation, SAGI will be compared with them. We use, respec-
tively, the ten-day and twenty-one-day real data from the Abilene (http://www.cs.utexas.edu,
2004) and GÉANT (Uhlig et al., 2006) network to simulate the performance of three methods.
The first seven-day and fourteen-day data from the Abilene and GÉANT network are, respec-
tively, used to construct the covariance matrix according to Eq. (4), while the rest are exploited
to test three methods.
The SREs and TREs are denoted as follows:
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Fig. 2. CDF of spatial and temporal relative errors in Abilene.




errsp(n) =
||x̂T(n)−xT(n)||2

||xT(n)||2 ,

errtm(t) =
||x̂N(t)−xN(t)||2

||xN(t)||2 ,
n = 1, 2, ..., N; t = 1, 2, ..., T

(17)

where N and T are the total number of OD flows and measurement moments, respectively;
||.||2 is L2 norm; errsp(n) and errtm(t) denote the SREs and TREs, respectively. To precisely
evaluate the estimation performance of three methods, we examine the cumulative distribu-
tion functions (CDFs) of their SREs and TREs. Figs.1 and 2 plot their CDFs in the Abilene and
GÉANT network, respectively.
From Figs.1 and 2, we can see that the curves of the SREs’ and TREs’ CDFs of TomoGravtiy
and {1}-Inverse are far below those of SAGI, while TomoGravtiy’s and {1}-Inverse’s are close.
Furthermore, In Fig.1a, for SAGI, about 79% of OD flows are tracked with SREs less than
0.8, while less than 74% for TomoGravity and less than 71% for {1}-Inverse. In Fig.2a, for
SAGI, about 86% of OD flows are tracked with SREs less than 0.8, while about 26% for To-
moGravity and about 35% for 1-Inverse. This shows that, in Abilene and GÉANT network,
the spatial estimation errors of SAGI are far lower than those of other two methods, while
those of TomoGravity and {1}-Inverse are close. Analogously, we can also see that, in Fig.1b,
about 97% of measurement moments, for SAGI, can be tracked with TREs less than 0.2, while
30.6% for TomoGravity and 36.4% for {1}-Inverse. In Fig.2b, SAGI can track 94% of measure-
ment moments with TREs less than 10.12%, while TomoGravity with TREs less than 50.28%
and {1}-Inverse with TREs less than 53.67%. This indicates that in Abilene and GÉANT net-
work, the temporal estimation errors of SAGI are far lower than those of other two methods.
However, TomoGravity’s is lower than {1}-Inverse’s in Abilene network, while {1}-Inverse’s
is lower than TomoGravity’s in GÉANT network. Hence, SAGI can more accurately estimate
traffic matrix than TomoGravity and {1}-Inverse.



Simulated Annealing-Based Large-scale IP Traffic Matrix Estimation 107



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Step 1. Obtain the traffic matrix x̂s(t) according to Algorithm 1.
Step 2. By Algorithm 2, attain the optimization solution.
Step 3. Use IPFP to yield a more accurate estimation satisfied with the constraints in Eq. (13).

4. Simulation Results and Analysis
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where N and T are the total number of OD flows and measurement moments, respectively;
||.||2 is L2 norm; errsp(n) and errtm(t) denote the SREs and TREs, respectively. To precisely
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0.8, while less than 74% for TomoGravity and less than 71% for {1}-Inverse. In Fig.2a, for
SAGI, about 86% of OD flows are tracked with SREs less than 0.8, while about 26% for To-
moGravity and about 35% for 1-Inverse. This shows that, in Abilene and GÉANT network,
the spatial estimation errors of SAGI are far lower than those of other two methods, while
those of TomoGravity and {1}-Inverse are close. Analogously, we can also see that, in Fig.1b,
about 97% of measurement moments, for SAGI, can be tracked with TREs less than 0.2, while
30.6% for TomoGravity and 36.4% for {1}-Inverse. In Fig.2b, SAGI can track 94% of measure-
ment moments with TREs less than 10.12%, while TomoGravity with TREs less than 50.28%
and {1}-Inverse with TREs less than 53.67%. This indicates that in Abilene and GÉANT net-
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Fig. 3. CDF of spatial and temporal relative errors in GÉANT.

To evaluate the impact of noise on three methods, we introduce an error term θ(t) to (1) and
attain the equation yn(t) = Ax(t) + θ(t), where θ(t) = yn(t) × η(0, ζ), and η(0, ζ) denotes
a normal distribution with zero mean and standard deviation. We discuss the robustness of
three methods in three cases: ζ = 0.01, ζ = 0.03, and ζ = 0.05. We use the following spatial
root mean squared relative error (SRMSRE) and temporal root mean squared relative error
(TRMSRE) to evaluate the robustness of three methods in the Abilene and GÉANT network.




SRMSRE = 1
N

N
∑

n=1

||x̂T(n)−xT(n)||2
||xT(n)||2 ,

TRMSRE = 1
T

T
∑

t=1

||x̂N(t)−xN(t)||2
||xN(t)||2 .

(18)

Tables 1 and 2 show the impact of noise on three methods in the Abilene and GÁENT network,
respectively. From both tables, we can see that, in three cases: ζ = 0.01, ζ = 0.03, and ζ = 0.05,
the SRMSRE’s and TRMSRE’s changes of SAGI are lower than those of other two methods.
Hence, SAGI is more robust to noise.

5. Future Questions and Research Areas

The previous sections make an investigation for how simulated annealing method is exploited
to solve the large-scale traffic matrix estimation. We now examine major issues of the related
research for future. With the wireless sensor networks and the Internet of things advancing,
IP networks will become more ubiquitous and heterogeneous. Though this chapter exploits
the simulated annealing to be able to make the accurate estimation for traffic matrix, SAGI
method is only validated in the large-scale IP backbone networks. We do not know if this
method is suited for the ubiquitous and heterogeneous networks either. Hence, it is necessary
to validate SAGI method in the ubiquitous and heterogeneous networks.
Additionally, there is an implicit assumption in this chapter that the topology of the IP net-
works keeps up unchanged. In fact, the topology of the networks will change with the envi-

ronment of networks, for example, when the fault of the networks takes place, their topologies
will vary correspondingly. Network topology is related to route matrix. Thus we also consider
if SAGI can still estimate accurately traffic matrix when network topology changes.

Table 1. Impact of noise on three methods in Abilene
Noise Level δ = 0.01 δ = 0.03 δ = 0.05

Link SRMSRE 1.00% 3.01% 5.05%
loads TRMSRE 0.98% 2.97% 4.96%
SAGI SRMSRE 53.10% 53.85% 55.03%

TRMSRE 13.93% 14.22% 14.75%
TomoG SRMSRE 96.79% 99.39% 104.66%

TRMSRE 22.82% 23.48% 24.91%
{1}- SRMSRE 99.61% 101.76% 105.76%

Inverse TRMSRE 22.22% 22.87% 24.09%

Table 2. Impact of noise on three methods in GÉANT
Noise Level δ = 0.01 δ = 0.03 δ = 0.05

Link SRMSRE 0.98% 2.95% 5.00%
loads TRMSRE 0.99% 2.97% 5.02%
SAGI SRMSRE 87.55% 88.30% 89.38%

TRMSRE 29.05% 29.65% 30.85%
TomoG SRMSRE 139.03% 141.34% 144.61%

TRMSRE 42.85% 44.13% 46.51%
{1}- SRMSRE 137.99% 139.89% 143.53%

Inverse TRMSRE 45.85% 47.05% 49.27%

6. Conclusion

This chapter has proposed a new method to estimate large-scale IP traffic matrix. By describ-
ing the traffic matrix estimation into a modified simulated annealing process and using the
generalized inference, we have successfully overcome its ill-posed nature. Simulation results
on both real networks show that SAGI exhibits the lower estimation errors and stronger ro-
bustness to noise. Although traffic matrix estimation is becoming more and more important,
the accurate estimation for it is not becoming increasingly easier. Based on the simulated
annealing method, this chapter manages to attain accurately the large-scale IP traffic matrix
estimation by considering the spatial and temporal correlations.
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To evaluate the impact of noise on three methods, we introduce an error term θ(t) to (1) and
attain the equation yn(t) = Ax(t) + θ(t), where θ(t) = yn(t) × η(0, ζ), and η(0, ζ) denotes
a normal distribution with zero mean and standard deviation. We discuss the robustness of
three methods in three cases: ζ = 0.01, ζ = 0.03, and ζ = 0.05. We use the following spatial
root mean squared relative error (SRMSRE) and temporal root mean squared relative error
(TRMSRE) to evaluate the robustness of three methods in the Abilene and GÉANT network.




SRMSRE = 1
N

N
∑

n=1

||x̂T(n)−xT(n)||2
||xT(n)||2 ,

TRMSRE = 1
T

T
∑

t=1

||x̂N(t)−xN(t)||2
||xN(t)||2 .

(18)

Tables 1 and 2 show the impact of noise on three methods in the Abilene and GÁENT network,
respectively. From both tables, we can see that, in three cases: ζ = 0.01, ζ = 0.03, and ζ = 0.05,
the SRMSRE’s and TRMSRE’s changes of SAGI are lower than those of other two methods.
Hence, SAGI is more robust to noise.

5. Future Questions and Research Areas

The previous sections make an investigation for how simulated annealing method is exploited
to solve the large-scale traffic matrix estimation. We now examine major issues of the related
research for future. With the wireless sensor networks and the Internet of things advancing,
IP networks will become more ubiquitous and heterogeneous. Though this chapter exploits
the simulated annealing to be able to make the accurate estimation for traffic matrix, SAGI
method is only validated in the large-scale IP backbone networks. We do not know if this
method is suited for the ubiquitous and heterogeneous networks either. Hence, it is necessary
to validate SAGI method in the ubiquitous and heterogeneous networks.
Additionally, there is an implicit assumption in this chapter that the topology of the IP net-
works keeps up unchanged. In fact, the topology of the networks will change with the envi-

ronment of networks, for example, when the fault of the networks takes place, their topologies
will vary correspondingly. Network topology is related to route matrix. Thus we also consider
if SAGI can still estimate accurately traffic matrix when network topology changes.

Table 1. Impact of noise on three methods in Abilene
Noise Level δ = 0.01 δ = 0.03 δ = 0.05

Link SRMSRE 1.00% 3.01% 5.05%
loads TRMSRE 0.98% 2.97% 4.96%
SAGI SRMSRE 53.10% 53.85% 55.03%

TRMSRE 13.93% 14.22% 14.75%
TomoG SRMSRE 96.79% 99.39% 104.66%

TRMSRE 22.82% 23.48% 24.91%
{1}- SRMSRE 99.61% 101.76% 105.76%

Inverse TRMSRE 22.22% 22.87% 24.09%

Table 2. Impact of noise on three methods in GÉANT
Noise Level δ = 0.01 δ = 0.03 δ = 0.05

Link SRMSRE 0.98% 2.95% 5.00%
loads TRMSRE 0.99% 2.97% 5.02%
SAGI SRMSRE 87.55% 88.30% 89.38%

TRMSRE 29.05% 29.65% 30.85%
TomoG SRMSRE 139.03% 141.34% 144.61%

TRMSRE 42.85% 44.13% 46.51%
{1}- SRMSRE 137.99% 139.89% 143.53%

Inverse TRMSRE 45.85% 47.05% 49.27%

6. Conclusion

This chapter has proposed a new method to estimate large-scale IP traffic matrix. By describ-
ing the traffic matrix estimation into a modified simulated annealing process and using the
generalized inference, we have successfully overcome its ill-posed nature. Simulation results
on both real networks show that SAGI exhibits the lower estimation errors and stronger ro-
bustness to noise. Although traffic matrix estimation is becoming more and more important,
the accurate estimation for it is not becoming increasingly easier. Based on the simulated
annealing method, this chapter manages to attain accurately the large-scale IP traffic matrix
estimation by considering the spatial and temporal correlations.
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