
Simulated Annealing for Control of Adaptive Optics System 275

Simulated Annealing for Control of Adaptive Optics System

Huizhen Yang and Xingyang Li

x 
 

Simulated Annealing for Control  
of Adaptive Optics System 

 
Huizhen Yang1 and Xinyang Li2 

1Huaihai Institute of Technology,  
2Institute of Optics and Electronics, Chinese Academy of Science 

China 

 
1. Introduction to adaptive optics system     

Many optical systems, such as imaging systems or laser communication systems, suffer 
performance degradation due to distortions in the optical wave-front. An optical wave 
propagates through an optically inhomogeneous medium such as the atmosphere, 
differences in the index of refraction along the propagation path cause variations in the 
speed of light propagation, which lead to phase distortions. Adaptive Optics (AO) 
techniques are often used to compensate these static or dynamic aberrations of a light beam 
after propagation through a distorting medium (Hardy, 1998). Although originally 
proposed for astronomical telescopes in 1953 (Babcock, 1953), adaptive optics did not 
become a reality until the 1970s, when it was developed for national defence applications, 
specifically laser beam compensation and satellite imaging. It consists of using an active 
optical element such as a deformable mirror to correct the instantaneous wavefront 
distortions. These are measured by a device called a wavefront sensor which delivers the 
signals necessary to drive the correcting element. The first adaptive optics system able to 
sharpen two-dimensional images was built at Itek by Hardy and his co-workers (Hardy et al, 
1977).  
AO provides a means to perform real-time correction of aberrations imposed on light waves 
as they travel from the source to the imaging system. While AO has its roots the field of 
astronomy it is currently used in a wide variety of medical, military and industrial 
applications. The papers by Milonniand (Milonni, 1999) and Parenti (Parenti, 1992) provide 
an excellent introduction to the use of AO in Astronomy. A comprehensive review of the 
medical and industrial applications of AO can be found in the technology tracking report by 
Greenaway and Burnett (Greenaway, & Burnett,  2004). 
The most common conventional adaptive optics systems (Fig. 1) is implemented with a 
wave-front corrector to correct the distorted wave-front, a wave-front sensor to measure the 
aberrations present in the incoming beam, and a feedback control algorithm to link these 
two elements in real time. Although the technique based on rapid wave-front measurement 
has been found useful in astronomical applications, this approach to the control problem is 
much difficult to be used in situations where wave-front distortions can not be measured 

15



Simulated Annealing, Theory with Applications276

 

directly, for example in atmospheric laser communications or anisoplanatic imaging 
conditions.  
 

 
Fig. 1. Block diagram of conventional adaptive optics systems. 
 
When a performance metric can be defined, stochastic optimization methods provide an 
alternative approach to the control problem that does not require the use of any a prior 
knowledge of a system model(Muller & Buffington, 1974). A common strategy used by 
model-free optimization techniques in adaptive optics systems (Fig.2) is to consider the 
performance metric as a function of the control parameters and then use certain 
optimization algorithm to improve the performance metric, which means that a wave-front 
sensor is no longer necessary. More and more researchers on adaptive optics system control 
are attaching importance to this kind of control technique because of its simpleness in 
system architecture and adaptability to the complicated conditions. 
 

 
Fig. 2. Block diagram of adaptive optics systems without a wave-front sensor. 
 
An appropriate optimization control algorithm is the key to correcting distorted wave-fronts 
successfully for this kind of adaptive optics system. Because most systems are multi-channel 
and real time systems, the control algorithm must meet the following requirements: rapid 
convergence so that the adaptive optics systems can keep up with changes of distorted 
wave-fronts, high correction capability for wave-front aberrations, and being carried out 
easily. The optical problem can be mapped onto a model for crystal roughening that served 
as a motivation to implement the Simulated Annealing algorithm (SA). In other words, SA is 
an optimization algorithm designed to find the extremum of a certain cost function, which 
can be regarded as the energy of the system and will be called hence forth the energy 

 

function. The energy function is also called as the system performance metric in application 
of adaptive optics. 

 
2. Simulated Annealing 

Simulated annealing (Kirkpatrick et al 1983) is based on the physical annealing process by which 
a solid is heated to a temperature close to its melting point, after which it is allowed to cool 
slowly so as to relieve internal stresses and non-uniformites. The aim is to achieve a structure 
with long-range order that is as close as possible to the ground-state configuration. Presenting an 
optimization technique, SA can: (a) process cost functions possessing quite arbitrary degrees of 
nonlinearities , discontinuities, and stochasticity; (b) process quite arbitrary boundary conditions 
and constraints imposed on these cost functions; (c) be implemented quite easily with the degree 
of coding quite minimal relative to other nonlinear optimization algorithms; (d) statistically 
guarantee finding an optimal solution. 
Generally, SA algorithm consists of three functional relationships per iteration: probability 
density of state-space of control parameters to create perturbation vector ( ) ( ){ }k k

lu u   ; 

acceptance probability ( ) ( ) ( )exp( / )k k kp J T   to adjudge whether the new solution is accepted, 
which is also called as the Metropolis criterion (Metropolis etal 1953); and schedule of 
“annealing” in annealing-time steps ( )kT . In this text, we use the standard simulated annealing. 
In order to investigate correction ability of the simulated annealing for adaptive optics system, 
we compare it with some other stochastic parallel optimization algorithms, such as Stochastic 
Parallel Gradient Descent (SPGD)(Vorontsov & Carhart, 1997), Genetic Algorithm 
(GA)(Goldberg, 1989), and Algorithm Of Pattern Extraction (Alopex)(Harth & Tzanakou, 1974 ). 
These algorithms optimize control parameters in a parallel way, which can accelerate the 
convergence of algorithms, and have some stochastic specialty, which can help the algorithm 
escape away from local extremums to some extent. The main advantage of these stochastic 
parallel optimization algorithms over traditional adaptive optics correction algorithms is that 
wavefront sensing is no longer required. The reduction in complexity, cost, and size is extremely 
beneficial. Even though the absence of a wavefront sensor makes the algorithm less efficient, 
advantages from increased speed, parallelism, and simplicity make it attractive in certain 
applications. These algorithms are both model-free as well as independent of the deformable 
mirror characteristics. This independence, as well as being a simple straightforward algorithm to 
implementation, allows a great deal of latitude in system design. The reason why we compare 
these algorithms with the simulated annealing is that these algorithms has ever been used to 
control the adaptive optics system and obtained some valuable research results, such as GA 
(Yang et al 2007), Alopex (Zakynthinaki & Saridakis, 2003), SA(Zommer et al 2006 ), SPGD 
(Vorontsov & Carhart, 2000).  

 
3. The model of AO system with the simulated annealing 

3.1 AO System Model 
The AO system model is shown in Fig. 3, where ( )r is the distorted wavefront, ( )u r is the 
compensation phase, ( ) ( ) ( )r r u r   is the residual phase, J is the performance metric 
and 1 2 61{ , ,... }u u u u is the control signal of actuators of 61-element deformable mirror. 



Simulated Annealing for Control of Adaptive Optics System 277

 

directly, for example in atmospheric laser communications or anisoplanatic imaging 
conditions.  
 

 
Fig. 1. Block diagram of conventional adaptive optics systems. 
 
When a performance metric can be defined, stochastic optimization methods provide an 
alternative approach to the control problem that does not require the use of any a prior 
knowledge of a system model(Muller & Buffington, 1974). A common strategy used by 
model-free optimization techniques in adaptive optics systems (Fig.2) is to consider the 
performance metric as a function of the control parameters and then use certain 
optimization algorithm to improve the performance metric, which means that a wave-front 
sensor is no longer necessary. More and more researchers on adaptive optics system control 
are attaching importance to this kind of control technique because of its simpleness in 
system architecture and adaptability to the complicated conditions. 
 

 
Fig. 2. Block diagram of adaptive optics systems without a wave-front sensor. 
 
An appropriate optimization control algorithm is the key to correcting distorted wave-fronts 
successfully for this kind of adaptive optics system. Because most systems are multi-channel 
and real time systems, the control algorithm must meet the following requirements: rapid 
convergence so that the adaptive optics systems can keep up with changes of distorted 
wave-fronts, high correction capability for wave-front aberrations, and being carried out 
easily. The optical problem can be mapped onto a model for crystal roughening that served 
as a motivation to implement the Simulated Annealing algorithm (SA). In other words, SA is 
an optimization algorithm designed to find the extremum of a certain cost function, which 
can be regarded as the energy of the system and will be called hence forth the energy 

 

function. The energy function is also called as the system performance metric in application 
of adaptive optics. 

 
2. Simulated Annealing 

Simulated annealing (Kirkpatrick et al 1983) is based on the physical annealing process by which 
a solid is heated to a temperature close to its melting point, after which it is allowed to cool 
slowly so as to relieve internal stresses and non-uniformites. The aim is to achieve a structure 
with long-range order that is as close as possible to the ground-state configuration. Presenting an 
optimization technique, SA can: (a) process cost functions possessing quite arbitrary degrees of 
nonlinearities , discontinuities, and stochasticity; (b) process quite arbitrary boundary conditions 
and constraints imposed on these cost functions; (c) be implemented quite easily with the degree 
of coding quite minimal relative to other nonlinear optimization algorithms; (d) statistically 
guarantee finding an optimal solution. 
Generally, SA algorithm consists of three functional relationships per iteration: probability 
density of state-space of control parameters to create perturbation vector ( ) ( ){ }k k

lu u   ; 

acceptance probability ( ) ( ) ( )exp( / )k k kp J T   to adjudge whether the new solution is accepted, 
which is also called as the Metropolis criterion (Metropolis etal 1953); and schedule of 
“annealing” in annealing-time steps ( )kT . In this text, we use the standard simulated annealing. 
In order to investigate correction ability of the simulated annealing for adaptive optics system, 
we compare it with some other stochastic parallel optimization algorithms, such as Stochastic 
Parallel Gradient Descent (SPGD)(Vorontsov & Carhart, 1997), Genetic Algorithm 
(GA)(Goldberg, 1989), and Algorithm Of Pattern Extraction (Alopex)(Harth & Tzanakou, 1974 ). 
These algorithms optimize control parameters in a parallel way, which can accelerate the 
convergence of algorithms, and have some stochastic specialty, which can help the algorithm 
escape away from local extremums to some extent. The main advantage of these stochastic 
parallel optimization algorithms over traditional adaptive optics correction algorithms is that 
wavefront sensing is no longer required. The reduction in complexity, cost, and size is extremely 
beneficial. Even though the absence of a wavefront sensor makes the algorithm less efficient, 
advantages from increased speed, parallelism, and simplicity make it attractive in certain 
applications. These algorithms are both model-free as well as independent of the deformable 
mirror characteristics. This independence, as well as being a simple straightforward algorithm to 
implementation, allows a great deal of latitude in system design. The reason why we compare 
these algorithms with the simulated annealing is that these algorithms has ever been used to 
control the adaptive optics system and obtained some valuable research results, such as GA 
(Yang et al 2007), Alopex (Zakynthinaki & Saridakis, 2003), SA(Zommer et al 2006 ), SPGD 
(Vorontsov & Carhart, 2000).  

 
3. The model of AO system with the simulated annealing 

3.1 AO System Model 
The AO system model is shown in Fig. 3, where ( )r is the distorted wavefront, ( )u r is the 
compensation phase, ( ) ( ) ( )r r u r   is the residual phase, J is the performance metric 
and 1 2 61{ , ,... }u u u u is the control signal of actuators of 61-element deformable mirror. 



Simulated Annealing, Theory with Applications278

 

( )r and ( )u r are continuous functions ( { , }r x y is a vector in the plane orthogonal to the 
optical axes). The AO system mainly includes a 61-element deformable mirror to correct the 
wave-front aberrations ( )r , an imaging system to record the focal spot, a performance 
metric analyzer to calculate the system performance metric J  from the data of focal spot, the 
simulated annealing algorithm to produce control signals 1 2 61{ , ,... }u u u u   for the 61-
element deformable mirror according to changes of the performance metric J . 
 

 
Fig. 3. Block diagram of simulation. 

 
3.2 Specifications of 61-element deformable mirror 
The phase compensation ( )u r , introduced by the deformable mirror, can be combined 
linearly with response functions of actuators: 
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Where ju is the control signal and ( )jS r is the response function of the 'j th actuator. On the 
basis of real measurements, we know the response function of 61-element deformable 
mirror actuators is Gaussian distribution approximately (Jiang & etal 1991):  
 

 2 2( ) ( , ) exp{ln [ ( ) ( ) / ] }j j j jS r S x y x x y y d       (2) 

 
Where ( , )j jx y  is the location of the 'j th actuator,  is the coupling value between actuators 

and is set to 0.08, d is the distance between actuators, and  is the Gaussian index and is set 
to 2. Fig. 4 gives the location distribution of 61-element deformable mirror actuators. The 
circled line in the figure denotes the effective aperture and the layout of all actuators is 
triangular. 

 

 
Fig. 4. Distribution of actuators location of 61-element deformable mirror. 

 
3.3 Atmospheric turbulence conditions 
We use the method proposed by N. Roddier, which makes use of a Zernike expansion of 
randomly weighted Karhunen-Loeve functions, to simulate atmospherically distorted 
wavefronts (Roddier, 1990). Considering that the low-order aberrations (tilts, defocus, 
astigmatism, etc) have the most significant impact on image quality, we use the first 104 
Zernike polynomial orders. Different phase screens generated according to this method are 
not correlated to each other and represent the Kolmogorov spectrum. The phase screens are 
defined over 128 128  pixels which is also the grid of the wave-front corrector and don’t 
include the tip/tilt aberrations. The tip/tilt aberrations are usually controlled by another 
control loop and are considered as being removed completely in our simulation.  
Atmospheric turbulence strength for a receiver system with aperture size D can be 
characterized by the following two parameters: the ratio 0/D r and the averaged Strehl Ratio 
(SR) of phase fluctuations, where 0r is the turbulence coherence length and SR is defined as 
the ratio of the maximum intensities of the aberrated point spread function and the 
diffraction-limited point spread function. Phase screens of different atmospheric turbulence 
strength can be obtained through changing 0r in the simulation program. The correction 
capability of the AO system based on simulated annealing is analyzed when 0/D r  is 10 and 
corresponding averaged SR is about 0.1. 

 
3.4 Considerations for the performance metric J  
Possible measures of energy spread in the focal plane that can be used as the energy 
function of simulated annealing J are: 
(1). The Strehl ratio(SR): 
 max( ( )) / max( ( ))dlSR I r I r ,  (3) 
 
where ( )I r is the intensity distribution of focal plane with the turbulence and ( )dlI r is the 
diffraction-limited laser intensity distribution achievable in the absence of the turbulence. 
This quantity is not difficult to measure on the focal plane. It does not seem to be very 
informative because it does not account for the whole intensity distribution. We use the SR 
as the reference of correction capability in the text. 
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(2). The encircled energy (EE): 
 ( )EE I r dr


    (4) 

 
where  is a region with a laser hot spot where maximum energy is to be collected. This 
metric also does not necessarily take into account the whole intensity distribution. In 
addition, it depends on the choice of area  . 
(3). Image sharpness ( mnIS ) used in various active imaging applications: 
 

 2( )| | , ( ) 0, 1,.....
m n

mn m n

I rIS dr m n
x y


  

     (5) 

 
This quantity is relatively simple to measure, and is intuitively appealing since smaller 
tighter intensity distributions have wider spatial frequency spectrum and, therefore, larger 
sharpness. 
(4). The mean radius (MR): 
 

 
2 2

2 2

| | ( ) ( )
,

( ) ( )

r r I r d r rI r d r
MR r

I r d r I r d r


  

 
  (6) 

 
where r is the intensity distribution centroid. MR can be easily measured either by a single 
photodetector with a special mask attached to it or by postprocessing a matrix detector 
output. This measure appears to be the most attractive one for it gives straightforward 
mathematical meaning to the idea of energy spread, it is nonparametric, and it accounts for 
the whole intensity distribution. 
For imaging applications metrics 1-3 are proven (Muller & Buffington, 1974) to attain their 
global maxima for the diffraction-limited image. It is clear that the global minimum of the 
MR metric corresponds to the smallest energy spread. It is also possible to invent other 
functions, including vector functions, as well as to create compound cost functions with 
additional penalty terms. All these possibilities deserve thorough investigation. However, 
only the MR metric is used in our simulations. 
The relationship between the performance metric J and control parameters{ }ju is  
 
 [ ( )] [ ( ) ( )]J J r J r u r      (7) 
 

1 2 61( , ,... )J J u u u  can be considered as the non-linear function of 61 control signals 
because the ( )r  keeps unchanged during a relatively short time. In real applications, we 
can get the performance metric data from the photoelectric detector, for example from a 
CCD or a pinhole, and then define different performance metrics based on different 
applications.  

 

 

3.5 Descriptions of other stochastic parallel optimization algorithms 
(1). SPGD (Vorontsov & Carhart, 2000) control is a “hill-climbing” technique implemented 
by the direct optimization of a system performance metric applied through an active optical 
component. Control is based on the maximization (or, with equal complexity minimization) 
of a system performance metric by small adjustments in actuator displacement in the mirror 
array.  SPGD requires small random perturbations 1 2 61{ , ,... }u u u u     with fixed 
amplitude | |ju   and random signs with equal probabilities for Pr( ) 0.5ju      
(Spall, 1992), to be applied to all 61 deformable mirror control channels simultaneously. 
Then for a given single random u , the control signals are updated with the rule: 
 
 ( 1) ( ) ( ) ( )k k k ku u u J       (8) 
 
where  is a gain coefficient which scales the size of the control parameters. Note that non-
Bernoulli perturbations are also allowed in the algorithm, but one must be careful that the 
mathematical conditions (Spall, 1992) are satisfied.  
SPGD follows the rule during the iteration of algorithm: 
 
   ( ) ( ) ( )k k kJ J J      (9) 
 
where  ( ) ( ) ( )( )k k kJ J u u      (10.a) 
 
  ( ) ( ) ( )( )k k kJ J u u      (10.b) 
 
From the introduction to SPGD, we know there are only two parameters to be adjusted in 
algorithm: one is perturbation amplitude and the other is gain coefficient  .  
(2). GA is a kind of evolutionary computation, which represents a class of stochastic search 
and optimization algorithms that use a Darwinian evolutionary model, adopts the concept 
of survival of the fittest in evolution to find the best solution to some multivariable problem, 
and includes mainly three kinds of operation in every generation: selection, crossover and 
mutation. GA works with a population of candidate solutions and randomly alters the 
solutions over a sequence of generations according to evolutionary operations of 
competitive selection, mutation and crossover. The fitness of each population element to 
survive into the next generation is determined by a selection scheme based on evaluating 
the performance metric function for each element of the population. The selection scheme is 
such that the most favourable elements of the population tend to survive into the next 
generation while the unfavourable elements tend to perish. 
The control vector { }ju was considered as the individual to be evolved and the performance 
metric is called as fitness function. After the initial population is made according to the 
roulette selection principle, excellent individuals are selected from the population with a 
ratio sr . Then new individuals are obtained by randomly crossing the chromosomes of the 
old individuals with a probability of cP . Finally, some chromosome positions of individuals 
are mutated randomly with a mutation rate of mP for introducing a new individual. By going 
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through above process, GA will gradually find the optimum mirror shape that can yield the 
best fitness. Parameter sr , cP and mP are set at 0.2, 0.65 and 0.65 accord to the corresponding 
reference value (Chen, etal 1996). The population size N and the number of evolving 
generation L are needed to adjust. 
(3). Alopex is a stochastic correlative learning algorithm which updates the control 
parameters by making use of correlation between the variations of control parameters and 
the variations of performance metric without needing (or explicitly estimating) any 
derivative information. Since its introduction for mapping visual receptive fields (Harth & 
Tzanakou, 1974), it has subsequently been modified and used in many applications such as 
models of visual perception, pattern recognition, and adaptive control, learning in neural 
networks, and learning decision trees. Empirically, the Alopex algorithm has been shown to 
be robust and effective in many applications.  
We used a two timescale version Alopex, called as 2t-Alopex (Roland, etal 2002). The control 
signals are updated according to the rules:      
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( )kT in equation (12) is a “temperature” parameter updated everyM iterations(for a suitably 
chosenM ) using the following annealing schedule: 
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Where   and  are step-size parameters such that ( )o  . There are at least two 
parameters to be adjusted:   and  . 

 
4. Results and Analysis 

We perform the adaptation process over 100 phase realizations. The averaged evolution 
curves, the standard deviation evolution curves of the metric and corresponding SR 
evolution curves are the recorded simulation results.  

 
4.1 Selection of different algorithm parameters 
Every algorithm has its rational limit of parameters for a given application. We select the 
most optimal parameters of every algorithm through large numbers of simulation tests 
when 0/D r is 10. 

 

In SA, the adjustment coefficient and the cooling rate are main factors for convergence 
rate and correction effect and we set  was 0.15 and  was 0.98. The key parameters of 
Alopex are step-size parameters and , and we set  was 0.03 and was 0.55. 
The amplitude and the gain coefficient  are two main factors which affect convergence 
rate and correction capability of SPGD. For a fixed , there exists an optimal range for . 
Too small  will cause too slow convergence rate, while too big  will make the algorithm 
trap into local extrumums and the evolution curve of performance metric appears dither. 
We find the effective range of is within 0.01-1.5 for SPGD. We fixed the same at 0.2 for 
SPGD, r is set at 5 
After probability parameters sr , cP and mP in GA are established on the basis of experience, 
the convergence rate is affected by the population size N  and the number of evolution 
generation L . For the same correction effect, L will be fewer if N is bigger, while the 
algorithm will need more times of evolution when N is smaller. If GA not only converge 
rapidly but also has good correction effect, it’s necessary to balance N and L . We set N at 
100 and L at 500 in simulation. 

 
4.2 Adaptation process 
In order to converge completely, we set the iteration number of algorithms respectively. SA 
is set at 4000 times, GA 500 generations, Alopex 4000 times and SPGD 1500 times. The 
averaged evolution curves, the standard deviation (SD) evolution curves of the metric MR 
over 100 phase realizations and corresponding averaged SR evolution curves are given in 
Fig. 5, Fig. 6, Fig. 7 and Fig. 8, in which the value of MR is normalize by that of diffraction-
limited focal plane and the standard deviation(SD) is calculated as follows: 
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Fig. 5 to Fig. 8 show simulation results when SA, GA, SPGD and Alopex are use to control 
the AO system respectively. Averaged curves of MR are given in Fig. 5(a) to Fig. 8(a), in 
which averaged evolution curves are normalized to be 1 in the optimal case.  Corresponding 
standard deviation curves over 100 different phase realizations and averaged SR curves are 
presented in Fig. 5(b) to Fig. 8(b) and Fig. 5(c) to Fig. 8(c).  All MR curves have converged 
after complete iterations in Fig. 5(a) to Fig. 8(a).  From Fig. 5(b) to Fig. 8(b), we can see that 
SA, GA and Alopex have relatively smaller standard deviations than SPGD, which shows 
that SA, GA and Alopex have stronger adaptability to different turbulence realizations than 
SPGD. The averaged SR’s of these four different control algorithms are very close to each 
other in Fig. 5(c) to Fig. 8(c), which indicates SA, GA, SPGD and Alopex have almost equal 
correction ability under 0/ 10D r  . 
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algorithm will need more times of evolution when N is smaller. If GA not only converge 
rapidly but also has good correction effect, it’s necessary to balance N and L . We set N at 
100 and L at 500 in simulation. 

 
4.2 Adaptation process 
In order to converge completely, we set the iteration number of algorithms respectively. SA 
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over 100 phase realizations and corresponding averaged SR evolution curves are given in 
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Fig. 5 to Fig. 8 show simulation results when SA, GA, SPGD and Alopex are use to control 
the AO system respectively. Averaged curves of MR are given in Fig. 5(a) to Fig. 8(a), in 
which averaged evolution curves are normalized to be 1 in the optimal case.  Corresponding 
standard deviation curves over 100 different phase realizations and averaged SR curves are 
presented in Fig. 5(b) to Fig. 8(b) and Fig. 5(c) to Fig. 8(c).  All MR curves have converged 
after complete iterations in Fig. 5(a) to Fig. 8(a).  From Fig. 5(b) to Fig. 8(b), we can see that 
SA, GA and Alopex have relatively smaller standard deviations than SPGD, which shows 
that SA, GA and Alopex have stronger adaptability to different turbulence realizations than 
SPGD. The averaged SR’s of these four different control algorithms are very close to each 
other in Fig. 5(c) to Fig. 8(c), which indicates SA, GA, SPGD and Alopex have almost equal 
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                        (a)                                                      (b)                                                     (c) 
Fig. 5. Adaptation process of adaptive optics system when SA is used as the control 
algorithm. (a): averaged curves of MR, (b): the standard deviation curve of MR over 100 
different phase realizations and (c): averaged SR curves during 4000 iterations.  
 

  
                             (a)                                                  (b)                                              (c) 
Fig. 6. Adaptation process of adaptive optics system when GA is used as the control 
algorithm. (a): averaged curves of MR, (b): the standard deviation curve of MR over 100 
different phase realizations and (c): averaged SR curves during 500 generations. 
 

 
                            (a)                                              (b)                                                   (c) 
Fig. 7. Adaptation process of adaptive optics system when SPGD is used as the control 
algorithm. (a): averaged curves of MR, (b): the standard deviation curve of MR over 100 
different phase realizations and (c): averaged SR curves(c) during 2000 iterations. 

 

 

 
                      (a)                                             (b)                                                          (c) 

Fig. 8. Adaptation process of adaptive optics system when Alopex is used as the control 
algorithm. (a): averaged curves of MR, (b): the standard deviation curve of MR over 100 
different phase realizations and (c): averaged SR curves during 4000 iterations. 
 
Fig. 9 gives the averaged focal spot when SA, GA, SPGD and Alopex are use as the control 
algorithm of the AO system respectively. For purposes of comparison, we also fit the 61-
element deformable mirror figure to the phase screens using least squares to obtain the best 
correction achievable with the given 61-element DM. 
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Fig. 7. Adaptation process of adaptive optics system when SPGD is used as the control 
algorithm. (a): averaged curves of MR, (b): the standard deviation curve of MR over 100 
different phase realizations and (c): averaged SR curves(c) during 2000 iterations. 
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Fig. 8. Adaptation process of adaptive optics system when Alopex is used as the control 
algorithm. (a): averaged curves of MR, (b): the standard deviation curve of MR over 100 
different phase realizations and (c): averaged SR curves during 4000 iterations. 
 
Fig. 9 gives the averaged focal spot when SA, GA, SPGD and Alopex are use as the control 
algorithm of the AO system respectively. For purposes of comparison, we also fit the 61-
element deformable mirror figure to the phase screens using least squares to obtain the best 
correction achievable with the given 61-element DM. 
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                      (e)                                                    (f) 

Fig. 9. Comparison of focal spots before correction (a) and after correction with SA (c), with 
GA (d),  with SPGD (e) and with Alopex (f) ; (b) is the averaged focal spot of the residual 
wave-front with the least squares fitting. 
 
From Fig. 9, we can get these four different algorithms have strong ability to atmospheric 
turbulence when 0/D r is 10. Compared with the least squares fitting, they almost obtain the 
best correction achievable for the 61-element DM. 

 
4.3 Analysis of averaged convergence speed 
The convergence speed is an important criterion on which the algorithm can be applied to real-
time adaptive optics system. Fig. 5 (a) to Fig. 8(a) give the averaged curves of MR over 100 
different phase realizations. The abscissa in Fig. 5(a) to Fig. 8(a) is the iteration number of 
algorithm for SA, SPGD and Alopex and the number of evolution generation for GA. It seems 
that GA has the rapidest speed from the averaged curves of MR because of its fewer evolution 
generation. This result is not true because the number of small perturbations sent to the system 
per iteration is different for different algorithms. From the introduction to the basic idea of 
several algorithms in section 3.5, we know that SA and Alopex need one perturbation per 
iteration; SPGD needs two perturbations per iteration and GA needs 100 perturbations per 
generation. Note that the number of perturbation in GA bears on the number of the population 
size. To reduce the number of perturbation, one can choose a relative small population size but 
the convergence of system will need more generations. The related analysis can refer to section 
4.1. We use the number of small perturbations not the number of iteration or generation to 
estimate the averaged convergence speed of different algorithms. 
Consulting results in Fig. 5(a) to Fig. 8(a) and above analysis, we make use of the number of 
small perturbations needed by achieving the 80% of the range of MR during the adaptation 
process under control of different algorithms. Corresponding data are in Table 1.  
 

 Value of 80% MR Range Iterations or Generations Perturbations 
SA 0.54 767 767 
GA 0.548 143 143*100=14300 
SPGD 0.524 464 464*2=928 
Alopex 0.532 1609 1609 

Table 1. Comparison of the number of small perturbations sent to the system when the adaptive 
optics system achieves the 80% of the range of MR during the adaptation process under control 
of different algorithms. 

 

The value of MR is 0.54 for SA, 0.548 for GA, 0.524 for SPGD and 0.532 for Alopex 
respectively in Table 1. These data show the range of MR of different algorithms are close to 
each other because their start value of MR is the same. The number of iterations or 
generations is 767 for SA, 143 for GA, 464 for SPGD and 1609 for Alopex but the number of 
small perturbation is 767 for SA, 14300 for GA, 928 for SPGD and 1609 for Alopex 
respectively. These data show GA is the slowest algorithm and the number of pertubations 
is almost as 20 times as that of SA, 15 times as SPGD and 9 times as Alopex, while SA is the 
fastest algorithm becauese of its the fewest perturbations. The advantage of GA is that it is 
far more likely that the global extremum will be found, as the data shown in second column 
in Table 1; the disadvantage is that if often takes a long time to converge. Above simulation 
results express relative differences of these algorithms in convergence rate, which can offer 
us some references in choosing stochastic parallel optimization algorithm for real 
applications. 

 
4.4 Zernike order and wavefront of the same single frame phase screen 
Fig. 10 gives Zernike coefficients 3-104 decomposed from the same phase screen when SA, 
GA, SPGD and Alopex are used as control algorithm of adaptive optics system respectively. 
Corresponding wavefronts are shown in Fig. 11. 
 

 
                                    (a)                                                                                (b) 

 
                                   (c)                                                                                   (d) 
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                                 (e)                                                                                    (f) 
Fig. 10. Comparison of Zernike coefficients 3-104 before correction (a) and after correction 
with SA (c), GA (d), SPGD (e) and Alopex (f) ; (b) is the Zernike coefficients of the residual 
wave-front with the least squares fitting. 
 
We also fit the DM figure to the phase screen using least squares to obtain the best 
correction achievable with the given 61-element DM. The fitting results are also shown in 
Fig. 10 and Fig. 11. The unit in Fig. 10 is rad and wavelength  in colour bar of Fig. 11. 
 

 
                                    (a)                                                                (b) 

 
                                  (c)                                                                     (d) 

 

 
                                 (e)                                                                     (f)   
Fig. 11. Comparison of wavefronts before correction (a) and after correction with SA (c), GA 
(d), SPGD (e) and Alopex (f); (b) is the residual wave-front with the least squares fitting. The 
unit of colour bar is wavelength  . 
 
From Fig. 10 and Fig. 11, we can obtain that these four different algorithms have strong 
ability to atmospheric turbulence when 0/D r is 10. Compared with the least squares fitting, 
they almost obtain the best correction achievable for the 61-element DM. 

 
5. Conclusion  

We presented basic principles of Simulated Annealing, Genetic Algorithm, Stochastic 
Parallel Gradient Descent, and Algorithm of pattern extraction in control application of 
adaptive optics system. Based on above stochastic parallel optimization algorithms, we 
simulated an adaptive optics system with a 61-element deformable mirror and compared 
these algorithms in convergence speed, correction capability.  
From section 4.2 and 4.4, we can get these four different algorithms have strong ability to 
atmospheric turbulence when 0/D r is 10. Compared with the least squares fitting, they 
almost obtain the best correction achievable for the 61-element DM. The correction effect of 
GA is litter better than other algorithms and SA is the secondly better algorithm. But SA, GA 
and Alopex have stronger adaptability to different turbulence realizations than SPGD 
because of its relatively big standard deviation. 
From section 4.3, we can conclude SA is the fastest and GA is the slowest in these 
algorithms. The number of perturbation by GA is almost as 20 times as that of SA, 15 times 
as SPGD and 9 times as Alopex. GA begins with a population of candidate solutions 
(individuals) and evolves towards better solutions through techniques inspired by 
evolutionary biology (such as natural selection or mutation). Perhaps the main problem of 
GA is the time cost of it. The algorithm may converge, and it may be a guaranteed global 
extremum, however, if this requires excessive a mounts of computer equipment or if it takes 
an unreasonable length of time to provide the solution, then it will not be suitable. But if the 
real-time is not required by adaptive optics system in some special application fields, GA is 
the best choice.  
In real applications, after the deformable mirror is established, the correction time of AO 
system is mainly affected by the read-out and computation time of performance metric, 
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Parallel Gradient Descent, and Algorithm of pattern extraction in control application of 
adaptive optics system. Based on above stochastic parallel optimization algorithms, we 
simulated an adaptive optics system with a 61-element deformable mirror and compared 
these algorithms in convergence speed, correction capability.  
From section 4.2 and 4.4, we can get these four different algorithms have strong ability to 
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GA is litter better than other algorithms and SA is the secondly better algorithm. But SA, GA 
and Alopex have stronger adaptability to different turbulence realizations than SPGD 
because of its relatively big standard deviation. 
From section 4.3, we can conclude SA is the fastest and GA is the slowest in these 
algorithms. The number of perturbation by GA is almost as 20 times as that of SA, 15 times 
as SPGD and 9 times as Alopex. GA begins with a population of candidate solutions 
(individuals) and evolves towards better solutions through techniques inspired by 
evolutionary biology (such as natural selection or mutation). Perhaps the main problem of 
GA is the time cost of it. The algorithm may converge, and it may be a guaranteed global 
extremum, however, if this requires excessive a mounts of computer equipment or if it takes 
an unreasonable length of time to provide the solution, then it will not be suitable. But if the 
real-time is not required by adaptive optics system in some special application fields, GA is 
the best choice.  
In real applications, after the deformable mirror is established, the correction time of AO 
system is mainly affected by the read-out and computation time of performance metric, 
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which occupies the most part time of control algorithm. This point is the same in both 
simulation test and real AO systems. Above simulation results express relative differences 
of these algorithms in convergence rate, which can offer us some references in choosing 
stochastic parallel optimization algorithm for specific applications. 
In conclusion, we can get that each algorithm has its advantages and disadvantages from 
above simulation results and discussions. For static or slowly changing wavefront 
aberrations, these algorithms all have high correction ability. For dynamic wavefront 
aberrations, convergence rates of these algorithms are slow relative to the change rate of 
atmosphere turbulence. They can be applied to real-time wavefront correction if being 
combined with high speed photo-detector, high speed data processing and high response 
frequency wave-front corrector. More research is necessary to this problem. Such as, how 
about these algorithms applied to much stronger turbulence conditions and much more 
elements deformable mirror or other kinds of wavefront corrector?  
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which occupies the most part time of control algorithm. This point is the same in both 
simulation test and real AO systems. Above simulation results express relative differences 
of these algorithms in convergence rate, which can offer us some references in choosing 
stochastic parallel optimization algorithm for specific applications. 
In conclusion, we can get that each algorithm has its advantages and disadvantages from 
above simulation results and discussions. For static or slowly changing wavefront 
aberrations, these algorithms all have high correction ability. For dynamic wavefront 
aberrations, convergence rates of these algorithms are slow relative to the change rate of 
atmosphere turbulence. They can be applied to real-time wavefront correction if being 
combined with high speed photo-detector, high speed data processing and high response 
frequency wave-front corrector. More research is necessary to this problem. Such as, how 
about these algorithms applied to much stronger turbulence conditions and much more 
elements deformable mirror or other kinds of wavefront corrector?  
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