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Theories of Fluctuations and Dissipation 

 
5.1 Introduction 
In the previous chapters, we see that the hydrodynamic dispersion is in fact a result of 
solute particles moving along a decreasing pressure gradient and encountering the solid 
surfaces of a porous medium. The pressure gradient provides the driving force which 
translates into kinetic energy, and the porous medium acts as the dissipater of the kinetic 
energy; any such energy dissipation associated with small molecules generates fluctuations 
among molecules. Looking at a molecular-level picture, the dissolved solute particles in 
water travelling through the porous medium slow down nearing a surface and then increase 
in velocity once the molecules get scattered after the impact with solid surface. Refining this 
picture a bit more, we see that the velocity boundary layers along the solid surfaces are 
helping this process. Not all the molecules hit solid surfaces either; some of these would be 
subjected to micro-level local pressure gradients and move away from the surfaces. A 
physical ensemble of these solute molecules would depict behaviours that are measurable 
using appropriate extensive variables. (Extensive variables depend on the extent of the 
system of molecules. i.e., the number of molecules, concentrations, kinetic energy etc., where 
as intensive variables do not change with size of the system, i.e., pressure, temperature, 
entropy etc.) These measurable quantities at macroscopic level have origins in microscopic 
level. Therefore, we can anticipate that molecular level description would justify the 
operational models that we develop at an ensemble level. Naturally one could expect that 
the statistical moments of the variables of an ensemble would lead to meaningful models of 
the process we would like to observe. 

In the development of the SSTM, we express the velocity of solute as the sum of the mean 
velocity and a fluctuating component around the mean. The mean velocity may then be 
evaluated by using the Darcy’s law. We then express the fluctuating component in terms of 
the spectral expansion dependent on a covariance kernel. However, we need to understand 
that this type of picture in a more fundamental way should be based on the established 
theories. Towards that end, in this chapter, we review some of the fundamental theoretical 
frameworks associated with molecular fluctuation. We show the connectivity of 
thermodynamical, molecular and stochastic description of fluctuations and dissipations, and 
then we make use of Ito diffusions to obtain the models of statistical moments of relevant 
variables. While we do not cite the reference within this chapter -- as the works we refer to 
are well accepted knowledge in the disciplines such as thermodynamics, statistical 
mechanics and stochastic processes-- all the relevant works are given in the references list at 
the end of the book. However, we refer to Keizer’s work (1987) primarily in this chapter. 
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Any description of a process once expressed in mathematical abstraction, becomes a 
“contracted” description or a contracted model. What is important  to understand is that 
different levels of contracted descriptions could be useful for different purposes, and at the 
same time, the insights gained from one level of description should be obtained by another 
level of description and vice versa. However, this is a very difficult task in many of the 
molecular level processes. One of the main reasons for this difficulty is that the most of the 
molecular processes are thermodynamically irreversible. In addition, physics of the 
processes at different levels of descriptions are based on different conceptual frameworks, 
albeit being very meaningful at a given level. In our discussion here, we consider the 
thermodynamic level of description, the Boltzmann level of description, and physical 
ensemble description which is inherently stochastic, hence described in stochastic processes. 
 

5.2 Thermodynamic Description 
To facilitate the discussion here, we make use of the Brownian motion as an example with 
the aim of developing a general framework for discussion. The total differential of entropy 
of an idealized system of the Brownian particles can be written as, 

,dU PdS dV dN
T T T

        
   

    

                   (5.2.1) 

where U  is the internal energy; V  is the volume of the system; N  is the number of 
particles (molecules); P  is the pressure;   is the chemical potential; and, T  is the 
absolute temperature. Equation (5.2.1) is a statement for a system of molecules and the 
system has the well-defined physical boundaries through which mass and heat transfer 
could occur. The momentum of the particles is included in the internal energy term, and by 

including the momentum ( M ) , the total energy is 
2

2
ME U
m

   , where m  is the mass of 

a particle. We can write equation (5.2.1) in the following form after including the 
momentum as a thermodynamic variable: 

.dE v PdS dM dV dN
T T T T

             
     

                  (5.2.2) 

In equation (5.2.2), v  is the row vector of particle velocities and M  is the column vector 
of particle moments. The total differential of entropy  dS  can be expressed in terms of 
partial derivatives: 

,S S S SdS dE dM dV dN
E M V N

                
                 (5.2.3) 

where S
M

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 indicates the row vector of 
i
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
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

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 
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 and S
N

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 are 

thermodynamically conjugate to the respective variables in equation (5.2.3), namely E, ,M V  
and N . 

 

The Onsager principle for the linear laws for irreversible processes states that the rate of 
change of an extensive variable is linearly related to the difference of the corresponding 
thermodynamically conjugate variable from its value at the thermodynamic equilibrium. 
According to this Onsager linear law we can express the expected value of the momentum 
conditional on the initial value in component form as follows: 

           0 0 0 ,i i ij e
j i i i i

dE S S S SM t M L E t E t
dt M M M M

                           
        (5.2.4) 

with  E  denoting the expectation operator;  L  denoting the coupling matrix, which is 
symmetric and non-negative definite; and subscript “e” refers to  the values at the 
thermodynamic equilibrium. To simplify the notation, we denote conditional expectation as 

0
E     when the variable within square brackets is conditional upon a well defined value at 

0t  . Using this notation, equation (5.2.4) can be written as, 

     
0 0

0
.i ij e

j i i

dE S SM t L E t E t
dt M M

                    
               (5.2.5) 

According to equation (5.2.5), the rate of change of the conditional average of the 
momentum of the particle is linearly related to the deviation of conditional average of the 
thermodynamic conjugate of the momentum from its value at the equilibrium. The 

conjugate variables are intensive variables and the conjugate for the momentum is iv
T
  

according to equation (5.2.2); i.e.,  

i

i

S v
M T


 


                              (5.2.6) 

The coefficient matrix L  needs to be found to complete the linear law. In this case, we can 
make use of the Langevin description of the Brownian motion. (See section 5.3 for a 
discussion of the Langevin equation.) By disregarding the random force term, the expected 
value of the particle momentum can be expressed as,  

   0 0
,dE M t E M t

dt m
           

                    (5.2.7) 

with   as the fiction constant m  is the mass of the particle, according to the Newton law 
of motion. 

Because    M t mv t , we can rewrite equation (5.2.7) as, 

   0 0
.dE M t E v t

dt
                                 (5.2.8) 
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Combining with equation (5.2.6), equation (5.2.8) becomes, 

   
0

0
.dE SM t TE t

dt M


 
        

                      (5.2.9) 

As the equilibrium value of  ev t  is 0, we could express equation (5.2.9) in form of the 
Onsager linear law, 

     
0

0
.
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i ij e
j j j

dE S SM t L E t E t
dt M M

                       
              (5.2.9a) 

with ij ijL T  when ij  is the Kronecker delta. 

Another example of linear law is the Newton’s law of cooling. Consider the heat transfer 
between two solids, one at temperature 1T  and the other at 2T , and the equilibrium 
temperature the two solids reach is eT . The thermodynamic conjugates of the internal 

energies, 1U  and 2U , are 
1

1
T

 and 
2

1
T

 (equation (5.2.1)). The Onsager principle states 

that, 

       
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e

dE U t dE U t L E T t E T t
dt dt T

                             (5.2.10) 

Equation (5.2.10) can be derived from applying the Onsager principle for the two solids 
separately and taking into the account of the fact that the energy loss of one solid is the 
energy gained of the other solid. L  in equation (5.2.10) is non-negative and needs to be 
determined experimentally. Further, equation (5.2.10) is only valid in the vicinity of the 
equilibrium. 

The extensive variables, the momentum and the internal energy, are expressed as 
thermodynamic rule laws in equation (5.2.9) and (5.2.10); however, the momentum and the 
internal energy have quite distinct forms of functional characteristics. For example, if we 
reverse the velocities of the molecules, the magnetic field and the time associated with a 
physical ensemble, the momentum changes the direction but the internal energy remains the 
same. As the time progresses in the reverse direction, the ensemble will move along the past 
trajectory. When an extensive variable changes its sign under the reversal of the time or the 
magnetic field or velocities, we call that variable an odd variable; the variables that are 
invariant under the reversal are call even variables. In the Brownian molecule and the heat 
transfer examples discussed previously, the internal energy and the momentum are 
decoupled, i.e. the coupling effects are ignored. The coupling are only among the variables 
having the same symmetry under time reversal. Onsager principle can be extended to the 
situation where the coupling between the variables with different time reversal symmetry 
exists. The matrix ijL  in the linear laws now change to  

   ij i j ijL B L B  
   

                      (5.2.11) 

 

when L  is dependent on the external magnetic filed, B , when either the effects of the 
external magnetic field are ignored or the magnetic field is absent, the even or odd variables 
are coupled by a symmetric matrix where as the odd and even variables are coupled by a 
antisymmetric matrix. Equation (5.2.11) are called the Onsager-Casimir reciprocal relations. 

To simplify the notation in the linear laws such as equation (5.2.5), we introduce the 
following variables: 

1.    
0 0

j e
j j

S SY E t E t
x x

    
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       
 to denote the conditional average difference of the 

thermodynamic conjugate of the extensive variable jx  from the corresponding equilibrium 
value; and 

2. 0 0( ) [ ( )] [ ( )]i i i ea t E x t E x t  to denote the conditional average of the difference between an 
extensive variable of our choice and its value at the thermodynamic equilibrium. Then the 
Onsager linear laws can be written as, 

i
ij j

da L Y
dt

                             (5.2.12) 

and equation (5.2.12) can be interpreted in terms of fluxes and thermodynamic forces: jY  is 
the “thermodynamic force” which drives ia  towards zero, i.e., ix  approaches its 
equilibrium value on the average. The rate of change of ia  can be considered as the 
average thermodynamic flux, iJ , giving, 

i
i ij j

i

da J L Y
dt

                            (5.2.13) 

In the linear laws, the thermodynamic forces are descriptions of the entropy of the system. At 
thermodynamic equilibrium, the entropy of a given system is maximum as the Second Law of 
thermodynamics says that entropy increases on the average of any spontaneous process. Let us 
consider the entropy of an isolated system in the vicinity of its thermodynamic equilibrium. The 
extensive variable a  as defined before has finite values, and the entropy associated with the 
system, ( )S a , can be expressed in terms of Taylor series: 
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x x x
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  .              (5.2.14) 

at the maximum of ( )S a , 

0
e

j

S
x

 
   

, 

And 
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e e

j i j
j i jj i j
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at the maximum of ( )S a , 
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as these conditions are true for any a , the matrix 
ij
S  must be negative semi-definite. By 

incorporating equation (5.2.12) in equation (5.2.14), and using the conditions for the 
thermodynamic equilibrium stated previously, we obtain, 

1( ) (0)
2 ij i j

i j
S a S S a a   .                        (5.2.15) 

But as an approximation, we can write, 

i ij j
j

Y S a ,                            (5.2.16) 

Because our definition of iY  is the first derivative of S  with respect to ix  on the average. 

Therefore, we can write equation (5.2.15), 

1( ) (0) .
2 i i

i
S a S Y a   . 

This can be expressed on the average 

( ) 1
2

i
i

i

dS a daY
dt dt

                             (5.2.17) 

Using equation (5.2.12), 

( ) ,ij i j
i j

dS a L YY
dt

                           (5.2.18) 

As the derivative of the entropy with respect to time is positive, L  is a positive semi-
definite matrix. What equation (5.2.17) and (5.2.18) convey is that the mean fluctuations of 

an extensive variable give rise to increase in the entropy, and therefore ( )dS a
dt

 alludes to 

dissipation of energy due to the fluctuations of an extensive variable. We define the 
Rayleigh-Onsager dissipation function as  

( )( ) 0.ij i j
i j

dS aa L YY
dt

                          (5.2.19) 

The dissipation function   is also called the entropy production and is dependent on our 
choice of the system. 

Using equation (5.2.16) and (5.2.12), one can write, 

,i
ij ij j ij j

j j j

da L S a H a
dt

                        (5.2.20) 

 

where ij ik kj
k

H L S , which is the relaxation matrix H  governing the return of mean 

values of  the extensive variables to equilibrium; equation (5.2.20) can be written in the 
matrix form, 

,da Ha
dt

                               (5.2.21) 

which has the solution, 
0( ) exp( )a t Ht a                           (5.2.22) 

where 0a  is the initial value of the selected process. The matrix H  must be negative 
semi-definite as the entropy increases on the average during the relaxation process. 

Using equation (5.2.22), we can deduce the covariance function, 1 2( , )C t t , 

    0 0 0 0
1 2 1 2 1 2 1 2( , ) [ ( ) ( )] [ exp( ) exp( ) ] [ ]exp .

TT T TC t t E a t a t E Ht a Ht a E a a Ht H t     (5.2.23) 

If 2 1t t   , and closer to the equilibrium the process is stationary, 

 0 0 0( ) [ ( )] [ ]exp .T T TC E a a E a a H                      (5.2.24) 

As we can see, from a thermodynamic point of view, equation (5.2.23) and (5.2.24) state that 
the covariances have an exponential character to them, and they are decaying functions with 
respective to time. 

Equation (5.2.21) shows the behaviour of the conditional average value of 

   0 0( ) ( ) ( ) .i i i ea t E x t E x t   in relation to matrix ijH . By substituting for a  the component 
form of equation (5.2.21) can be written as, 

        0 0 0 0( ) ( ) ( ) ( ) .i i e ij i ij i e
d E x t E x t H E x t H E x t
dt

    

At equilibrium,  0( )i eE x t  remains unchanged; therefore, 

      0 0 0( ) ( ) ( ) .i ij i ij i e
d E x t H E x t H E x t
dt

   

As discussed before any dissipative system would have fluctuations in extensive variables. 
Let us define the fluctuations with reference to the expected value conditioned upon the 
initial value as, 

 0( ) ( ) ( ) .i i ix t x t E x t                           (5.2.25) 

Then, 

     ( ) ( ) ( ) ( ) ( ) ( ) ;i i ij i i ij i e i e
d x t x t H x t x t H x t x t
dt

        
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As we can see, from a thermodynamic point of view, equation (5.2.23) and (5.2.24) state that 
the covariances have an exponential character to them, and they are decaying functions with 
respective to time. 
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Then, 
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dx t d x t H x t H x t H x t H x t
dt dt
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Rearranging, 

( ) ( )( ) ( ) ( ) ( ).i i
ij i ij i e ij i ij i e

d x t dx tH x t H x t H x t H x t
dt dt

       

Near equilibrium, 

( ) 0i ex t  ; and ( ) ( ( ) ( ))i
ij i e i e

dx t H x t x t
dt

   
 

 is small compared to  ( )i
d x t
dt

  following 

equation (5.2.21), we can simplify the above equation to  

( ) ( ) .i
ij i i

d x t H x t f
dt

     

where if  is a random term. Expressing this in matrix form, 

.d X H X f
dt
                               (5.2.26) 

This equation is the Onsager’s regression hypothesis for fluctuations. This hypothesis is 
based on the thermodynamic arguments not on the particles behaviour in a physical 
ensemble. However, as we will see in the next sections, equation (5.2.26) has a similar 
character to those derived from the particle dynamics. 

To complete the Onsager picture of random fluctuations in equation (5.2.26), we need to 
consider equation (5.2.26) as linear stochastic differential equation. Then f  term can be 

defined in terms of the Wiener process and H  as a function of X  to develop the 
simplest form of a stochastic differential equation. We will address this in section 5.4. 
 

5.3 The Boltzmann Picture 
As mentioned in the previous section, the Onsager regression hypothesis is based on the 
entropy and the coefficients which form the coupling matrix, L . The Boltzmann equation is 
on the other hand dependent entirely on the molecular dynamics of collisions and the 
resulting fluctuations. We do not intent to derive the Boltzmann equation here; instead, we 
describe the equation and the variables here. For the technical details of the derivation, there 
are many excellent texts on statistical mechanics and some of the original works are given in 
the references.  

Boltzmann’s work was on the dynamics of dilute gases and the average behaviour of gas 
molecules was the main focus on his work. The Boltzmann’s equation describes the 
nonlinear dynamics of the molecular collisions, while Onsager theory is on linear dynamics 
without fluctuations. It can be shown that the linearized Boltzmann equation is a special 
case of Onsager theory. 

In the derivation of the Boltzmann equation, we have a six-dimensional space in which the 
position of, r , and the velocity, v  , of the centre of mass of a single molecule are defined. 

 

We call this six-dimensional space the -space or molecule phase space. We can divide the 
six-dimensional space into small cellular volumes and each volume elements is assigned an 
index 1,2,3,i   as a unique number for identification purposes. The number of 
molecules, ( )iN t  would be the macroscopic Boltzmann variable associated in the volume 
element i , and we choose the volume element i  to be sufficiently large that ( )iN t  is a 
large number. 

It is assumed that binary collisions between the molecules of only two volume elements 
located at ,r v  and 1,r v  occur in the -space. Each of these volumes lose one molecule 
each and volume elements located at ,,r v  and '

1,r v  gain one molecule each at the end of 
each collisions. (The primes denote the velocities at the centre of mass velocities after the 
collisions.) We can define the extensive property of the number density is -space, 

( , , )r v t , so that ( , , )r v dt drdv is the number of molecules with centre of mass position 
and velocity in the ranges  ,r r dr  and  ,v v dv . 

Then the Boltzmann equation gives, 

' '
1 1 1ˆ ,r v Tv F g dv

t
                                 (5.3.1) 

where '' ' '
11

( , , ) , ( , , )r v t r v t   


   , F  is an external force field acting in the -space, and 

r  and v  are the derivatives with respective to r  and v  , respectively. The third term 
on the right hand side of equation (5.3.1) is the dissipative effect of collisions; ˆT  is a linear 
operator and g  is the constant relative velocity magnitude. In the absence of an external 
force equation (5.3.1) can be written as, 

,r ev d
t
 
   


                           (5.3.2) 

with ed  lumping the dissipation due to collisions. 

Unlike the Onsager’s linear laws, which are true only near the thermodynamic equilibrium, 
the Boltzmann equation is true not only in the vicinity of the equilibrium but also away from 
the equilibrium. However, near the equilibrium these two pictures are similar and while the 
Boltzmann equation is valid strictly speaking only for diluted gases, the Onsager linear laws 
are valid for any ensemble. 

Boltzmann’s theory includes a function called the H-function which behaves in an entropy-

like manner; for a closed system H-function is a non-increasing function, i.e., 0.dH
dt

  H  

function is defined as  

ln .H drdv                               (5.3.3) 

This attribute of H function is H-theorem, and H function has similar character to the Gibb’s 
free energy in thermodynamics. 
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1,r v  gain one molecule each at the end of 
each collisions. (The primes denote the velocities at the centre of mass velocities after the 
collisions.) We can define the extensive property of the number density is -space, 
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Boltzmann equation is valid strictly speaking only for diluted gases, the Onsager linear laws 
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function is defined as  
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This attribute of H function is H-theorem, and H function has similar character to the Gibb’s 
free energy in thermodynamics. 
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It can be shown that when 0,dH
dt

  if e   then 

' '

1 1
e e e e                               (5.3.4) 

where ‘ e ’ indicates the equilibrium state. 

In the vicinity of equilibrium, we can write, 

( , , ) ( ) ( , , )er v t v r v t                            (5.3.5) 

where ( , , )r v t  is a small change in the -space density. By substituting equation (5.3.5) 

in the Boltzmann equation and ignoring the higher order terms of rD , we obtain, 

  ,rv C
t
  
    


                         (5.3.6) 

with  C   replacing the dissipation integral as a linear functional. 

It can be shown that (Fox and Uhlenbeck, 1970 a and b) by adopting the Onsager hypothesis, 

  ( , , ),L X f r v t
t

 


                          (5.3.7) 

where, lnB
e

X k 


 
   

 
 the local thermodynamic force in -space; 

  1 1 1( , ) ,
e

S
r

B

vL X X L v v X dv
k
 

   
 

  

with SL  is a linear operator (see Fox and Uhlenbeck, 1970 a and b);  and f  is a random 
term which needs to be characterised. 

The random term now can be defined by, 

( , , ) 0E f r v t   
  and 

' ' ' ' '
1( , , ) ( , , ) 2 ( , ) ( ) ( ).S

BE f r v t f r v t k L v v r r t t      
                (5.3.8) 

In equation (5.3.7), the rate of change of the -space density increments are expressed in 
terms of thermodynamic forces  X . 

By deriving the random term f  as in (5.3.8), we see that the random term is a zero-mean 
stochastic process in the -space,  -correlated in r  and t  but influenced by the velocity 
of the centre of mass through a linear operator derived from the dissipation term, Sd , in the 
Boltzmann equation. Equation (5.3.7) and (5.3.8) show that the Boltzmann and Onsager 
pictures are united near equilibrium. Equally importantly, equation (5.3.8) justifies the  -

 

correlated stochastic processes to model the fluctuations. Moving away from the -space, we 
describe the fluctuations and dissipation using the theory of stochastic processes in an effort 
to develop operational models of molecular fluctuations. 
 

5.4 Onsager Regression Hypothesis, Langevin Equation and Itō processes 
The Onsager regression hypothesis, equation (5.2.26), states that the fluctuations of 
extensive variables around their expected values conditional on the initial values can be 
expressed in terms of a system of differential equations through a relaxation matrix which is 
defined in equation (5.2.20). Equation (5.2.26) is similar in form to equations (5.3.6) and 
(5.3.7) which are derived from Boltzmann’s equation (5.3.1). Both of these theories support 
the hypothesis that the time derivatives of fluctuations on the average follow differential 
equations with additive random terms. The average fluctuations are driven by 
thermodynamically coupled driving forces because of energy dissipation according to 
Boltzmann. We have seen in the previous section that both of these descriptions are 
phenomenologically equivalent. However, none of those descriptions are amenable for 
operational models of fluctuation and dissipation. 

Starting point of the development of such models is the Langevin equation which describes 
the motion of Brownian particles. Even though Langevin used the Newtonian laws to 
describe the particle motion, he developed a differential equation with an addictive random 
term, which is quite similar to the Onsager regression hypothesis. Langevin started by 
considering a particle of mass m at a distance r  from an initial point, if p  is the 
momentum vector of the particle and V  is the velocity, we can write from the Newton 
laws,  

pdr
dt m




,                                 (5.4.1) 

 
dpF
dt




,                                 (5.4.2)   

                                               
and p mV .                              (5.4.3) 

We have slightly changed the notation to indicate that the variables are associated with a 
particle rather than with an ensemble. 

In equation (5.4.2), F is the force vector on the particle (the particle is bombarded by the 
surrounding water molecules). We can express the F  as ( )d eF F  where dF  is the drag 
component due to friction and eF  is the external force; the force due to molecular collisions on 
the particle is assumed to be random. dF  can be expressed through the friction constant  , 

dF V  .                              (5.4.4) 

Now we can write, pdr
dt m
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 as in equation (5.4.1), 

and e
dp p F f
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It can be shown that when 0,dH
dt

  if e   then 

' '

1 1
e e e e                               (5.3.4) 

where ‘ e ’ indicates the equilibrium state. 

In the vicinity of equilibrium, we can write, 
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  ,rv C
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  
    


                         (5.3.6) 

with  C   replacing the dissipation integral as a linear functional. 

It can be shown that (Fox and Uhlenbeck, 1970 a and b) by adopting the Onsager hypothesis, 
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where, lnB
e

X k 


 
   

 
 the local thermodynamic force in -space; 
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with SL  is a linear operator (see Fox and Uhlenbeck, 1970 a and b);  and f  is a random 
term which needs to be characterised. 

The random term now can be defined by, 

( , , ) 0E f r v t   
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' ' ' ' '
1( , , ) ( , , ) 2 ( , ) ( ) ( ).S

BE f r v t f r v t k L v v r r t t      
                (5.3.8) 

In equation (5.3.7), the rate of change of the -space density increments are expressed in 
terms of thermodynamic forces  X . 

By deriving the random term f  as in (5.3.8), we see that the random term is a zero-mean 
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correlated stochastic processes to model the fluctuations. Moving away from the -space, we 
describe the fluctuations and dissipation using the theory of stochastic processes in an effort 
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considering a particle of mass m at a distance r  from an initial point, if p  is the 
momentum vector of the particle and V  is the velocity, we can write from the Newton 
laws,  
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We have slightly changed the notation to indicate that the variables are associated with a 
particle rather than with an ensemble. 

In equation (5.4.2), F is the force vector on the particle (the particle is bombarded by the 
surrounding water molecules). We can express the F  as ( )d eF F  where dF  is the drag 
component due to friction and eF  is the external force; the force due to molecular collisions on 
the particle is assumed to be random. dF  can be expressed through the friction constant  , 
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Now we can write, pdr
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In equations (5.4.5) and (5.4.1), the position of the particle, r  and the momentum, p  are 
coupled, and f  is a random additive noise. In a dissipative system, the random forcing 

term f  can be assumed to have an expected value of zero: 

0E f    .                              (5.4.6) 

At the given time, the random force term, f  at time 1t  is uncorrelated to that of 2t , and 

it is a result if molecular impacts on the particle. Therefore, we can assume that f  to be a 
 -correlated function: 

  2
1 2 1 2( ) ( ) ( )Cov f t f t t t   ,                      (5.4.7) 

where 2  is the variance. 

It is now clear that the Wiener process described in Chapter 2 is a good model for f , and 

therefore we can write equation (5.4.5) as, 

( )edp pdt F dt dw t
m
      

 
  ,                       (5.4.6) 

where, ( )w t  is the standard Wiener process. 

In the absence of an external force,  

( )dp pdt dw t
m
     

 
  .                         (5.4.7) 

Therefore, the solution of the stochastic differential equation (5.4.7), can be written as, 

( ) (0) ( )p t p pdt dw t
m
     

  
   ,                      (5.4.8) 

and equation (5.4.8) in an stochastic integral. The last integration can be interpreted in two 
ways: as an Itō integral or as a Stratonovich integral. Because of the martingale of property 
of Itō integrals, we choose to interpret the second integral on the right hand side of equation 
(5.4.8) as an Itō integral. The implications of this choice is important to understand: it makes 
stochastic processes such as equation (5.4.8) Markov processes with the transitional 
conditional probabilities obeying Fokker-Planck type equations. The stochastic differential 
equations of the type given by equation (5.4.7) describe the time evolution of stochastic 
variables. We generalize the stochastic differential of a vector valued stochastic process by, 

 ( , ) ( , )dn h n t dt g n t dw  ,                        (5.4.9) 

where n  is an extensive variable, h  is a vector function of n  and t ,   is a diagonal 
matrix with ii  as the diagonal element, ( , )g n t  is a matrix function of n  and t  and w  

is the standard Wiener process vector. By taking   to be diagonal matrix, we assume that 

 

covariance  2

ij  is not cross correlated, i.e., where i j , ij ii   and when i j , 

0ij  . Then by defining, 

( , ) ( , )G n t g n t , 

We can write a general Ito integral, 

( , ) ( , )dn h n t dt G n t dw    , and 

0 0

0( ) ( ) ( , ) ( , )
t t

t t

n t n t h n t dt G n t dw    .                   (5.4.10) 

Equation (5.4.10) depicts a Markov process and is a martingale. 

The probability density or the transitional probability function of ( )n t , 1 1( , | , )p n t n t  obeys 
the Fokker-Planck equation (given in the repeated summation indices):  

2
1 1

1 1 1 1
( , | , ) 1( , ) ( , | , ) ( , ) ( , ) ( , | , ),

2
iki

ik
j i j

p n t n t gh n t p n t n t n t g n t p n t n t
t n n n

 
 

   
      (5.4.11) 

 
and 1 1( ,0| ,0) ( )p n n n n  . 

Once the Fokker-Plank equation is solved for the conditional density, the Markov process 
( )n t  can be described completely. For the most of the Markov process of practical interest 
( , )h n t is linear in n  and ( , )G n t  is independent of n , and therefore the Fokker-Plank 

equation (5.4.10) can also be solved using integration by parts without resorting to Ito 
calculus. However, in general stochastic integrals are solved using Ito definition. 
 

5.5 Velocity as a Stochastic Variable 
Equation (5.4.6) expresses the dynamics of a single Brownian particle based on the first 
principles. We can write the infinitesimal change in momentum in a slightly modified form: 

e p pdp p F dt dw
m
 

         

  ,                       (5.5.1) 

where the subscript “ p ” indicates that they are associated with particle momentum. 

eF denotes the external force acting on the particle. If the particle is in a porous media 
saturated with water, the porous matrix exerts a force opposite to the direction of flow, 
whereas the pressure gradient acting in the flow direction would be largely responsible for 
p . The first term on the right hand side of equation (5.5.1) can be thought of as the change 
of momentum on the average if we lump the fluctuating component of eF  in to p pdw .  
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In equations (5.4.5) and (5.4.1), the position of the particle, r  and the momentum, p  are 
coupled, and f  is a random additive noise. In a dissipative system, the random forcing 

term f  can be assumed to have an expected value of zero: 

0E f    .                              (5.4.6) 

At the given time, the random force term, f  at time 1t  is uncorrelated to that of 2t , and 

it is a result if molecular impacts on the particle. Therefore, we can assume that f  to be a 
 -correlated function: 
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1 2 1 2( ) ( ) ( )Cov f t f t t t   ,                      (5.4.7) 

where 2  is the variance. 

It is now clear that the Wiener process described in Chapter 2 is a good model for f , and 

therefore we can write equation (5.4.5) as, 

( )edp pdt F dt dw t
m
      

 
  ,                       (5.4.6) 

where, ( )w t  is the standard Wiener process. 

In the absence of an external force,  

( )dp pdt dw t
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     

 
  .                         (5.4.7) 

Therefore, the solution of the stochastic differential equation (5.4.7), can be written as, 
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  
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and equation (5.4.8) in an stochastic integral. The last integration can be interpreted in two 
ways: as an Itō integral or as a Stratonovich integral. Because of the martingale of property 
of Itō integrals, we choose to interpret the second integral on the right hand side of equation 
(5.4.8) as an Itō integral. The implications of this choice is important to understand: it makes 
stochastic processes such as equation (5.4.8) Markov processes with the transitional 
conditional probabilities obeying Fokker-Planck type equations. The stochastic differential 
equations of the type given by equation (5.4.7) describe the time evolution of stochastic 
variables. We generalize the stochastic differential of a vector valued stochastic process by, 

 ( , ) ( , )dn h n t dt g n t dw  ,                        (5.4.9) 

where n  is an extensive variable, h  is a vector function of n  and t ,   is a diagonal 
matrix with ii  as the diagonal element, ( , )g n t  is a matrix function of n  and t  and w  

is the standard Wiener process vector. By taking   to be diagonal matrix, we assume that 
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ij  is not cross correlated, i.e., where i j , ij ii   and when i j , 

0ij  . Then by defining, 

( , ) ( , )G n t g n t , 

We can write a general Ito integral, 

( , ) ( , )dn h n t dt G n t dw    , and 
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0( ) ( ) ( , ) ( , )
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n t n t h n t dt G n t dw    .                   (5.4.10) 

Equation (5.4.10) depicts a Markov process and is a martingale. 

The probability density or the transitional probability function of ( )n t , 1 1( , | , )p n t n t  obeys 
the Fokker-Planck equation (given in the repeated summation indices):  
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and 1 1( ,0| ,0) ( )p n n n n  . 

Once the Fokker-Plank equation is solved for the conditional density, the Markov process 
( )n t  can be described completely. For the most of the Markov process of practical interest 
( , )h n t is linear in n  and ( , )G n t  is independent of n , and therefore the Fokker-Plank 

equation (5.4.10) can also be solved using integration by parts without resorting to Ito 
calculus. However, in general stochastic integrals are solved using Ito definition. 
 

5.5 Velocity as a Stochastic Variable 
Equation (5.4.6) expresses the dynamics of a single Brownian particle based on the first 
principles. We can write the infinitesimal change in momentum in a slightly modified form: 

e p pdp p F dt dw
m
 

         
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where the subscript “ p ” indicates that they are associated with particle momentum. 

eF denotes the external force acting on the particle. If the particle is in a porous media 
saturated with water, the porous matrix exerts a force opposite to the direction of flow, 
whereas the pressure gradient acting in the flow direction would be largely responsible for 
p . The first term on the right hand side of equation (5.5.1) can be thought of as the change 
of momentum on the average if we lump the fluctuating component of eF  in to p pdw .  
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Therefore, we can write equation (5.5.1) as, 

' '
e p pdp p F dt dw

m
 

         

  ,                       (5.5.2) 

where ' '
p pdw  now contains the fluctuating component of the momentum change due to 

the porous media. eF  is in the mean force acting on the particle, and in the saturated 
medium, it may be dominating the first term of the right hand side of equation (5.5.2). 
Therefore, we could approximate equation (5.5.2) for an i th particle in an ensemble particles 
with, 

, ,i i p i p idp Fdt dw  ,                          (5.5.3) 

where iF  now depicts the mean force acting on a particle i, and all the variables are vectors 
and ,p i  is a matrix. Now we can write, 

i i ip m v , 

where im  is the mass of a particle i and iv  is the particle velocity, which is a random 
variable. We can express equation (5.5.3) as, 

, ,( ) i
i i i p i p i

dvd m v m dt dw
dt

  , and 

the instantaneous change in the velocity, idv , can be approximated by  iv dt  where iv  is 
the mean velocity of the i th particle at the locality of the particle at time, t. Now we can 
write 

, ,i i v i v idv v dt dw  ,                          (5.5.4) 

where ,v iw  is the standard Wiener process related to velocity fluctuations and 

, ,v i v i im  is the associated amplitude. As discussed in Chapter 2, we can express the 
fluctuating component as, 

, ,v i v i idw dt                                (5.5.5) 

where i  is the noise associated with velocity. We can rewrite equation (5.5.4) as, 

   i i i i i i idv v dt dt v dt d v        ,                   (5.5.6) 

for very small increments of dt.                             

Therefore, we can write, 

i i iv v   ,                               (5.5.7) 

where particle velocity is  decomposed into the mean velocity and a fluctuating 
component. For an ensemble of n particles, 

 

 

i i iv v     , and diving this equation by n, 

V V   , 

where V  is the Gausssian velocity of the ensemble, V is the mean velocity and   is the 
“average” noise representing the fluctuations. 

We have shown that the velocity can be expressed as consisting of a mean component and 
an additive fluctuating component, based on the Langevin description of Brownian 
particles. From an application point of view, the additive form of the velocity can be used to 
explain the local heterogeneity of the porous medium, i.e., we can always calculate the 
average velocity in a region and then the changes in the porous structure may be assumed to 
cause the fluctuations around the mean. This is the working assumption on which the 
stochastic solute transport model (SSTM) in Chapter 3 is based. 
 

5.5.1 Thermodynamic Character of SSTM 

As we have seen in section 5.3, equation (5.3.7) unites the Onsager and Boltzmann pictures 
close to equilibrium (Keizer, 1987). The SSTM given by equation (4.2.1) has a similar form to 
that of equation (5.3.7) and equation (5.3.2) where the fluctuating component is separated 
out as an additive component but the fluctuating part is now more complicated reflecting 
the influence of the porous media. According to equation (5.3.8), the “noisy” random 
functions have zero means and the two-time covariances are δ-correlated in time and space; 
and these Dirac’s delta functions are related through a linear operator. In the development 
of SSTM, we assume only the δ-correlation in time because the spatial aspect is separated 
into a continuous function of space. This assumption can be justified as the porous medium 
influencing the fluctuations can be considered as a continuum.  

 

 

 

 

 

 

 

 

 

 

 

 

 



Theories of Fluctuations and Dissipation 175
 

Therefore, we can write equation (5.5.1) as, 
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where ' '
p pdw  now contains the fluctuating component of the momentum change due to 

the porous media. eF  is in the mean force acting on the particle, and in the saturated 
medium, it may be dominating the first term of the right hand side of equation (5.5.2). 
Therefore, we could approximate equation (5.5.2) for an i th particle in an ensemble particles 
with, 

, ,i i p i p idp Fdt dw  ,                          (5.5.3) 

where iF  now depicts the mean force acting on a particle i, and all the variables are vectors 
and ,p i  is a matrix. Now we can write, 

i i ip m v , 

where im  is the mass of a particle i and iv  is the particle velocity, which is a random 
variable. We can express equation (5.5.3) as, 
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the instantaneous change in the velocity, idv , can be approximated by  iv dt  where iv  is 
the mean velocity of the i th particle at the locality of the particle at time, t. Now we can 
write 

, ,i i v i v idv v dt dw  ,                          (5.5.4) 

where ,v iw  is the standard Wiener process related to velocity fluctuations and 

, ,v i v i im  is the associated amplitude. As discussed in Chapter 2, we can express the 
fluctuating component as, 

, ,v i v i idw dt                                (5.5.5) 

where i  is the noise associated with velocity. We can rewrite equation (5.5.4) as, 
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for very small increments of dt.                             

Therefore, we can write, 
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where particle velocity is  decomposed into the mean velocity and a fluctuating 
component. For an ensemble of n particles, 
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where V  is the Gausssian velocity of the ensemble, V is the mean velocity and   is the 
“average” noise representing the fluctuations. 

We have shown that the velocity can be expressed as consisting of a mean component and 
an additive fluctuating component, based on the Langevin description of Brownian 
particles. From an application point of view, the additive form of the velocity can be used to 
explain the local heterogeneity of the porous medium, i.e., we can always calculate the 
average velocity in a region and then the changes in the porous structure may be assumed to 
cause the fluctuations around the mean. This is the working assumption on which the 
stochastic solute transport model (SSTM) in Chapter 3 is based. 
 

5.5.1 Thermodynamic Character of SSTM 

As we have seen in section 5.3, equation (5.3.7) unites the Onsager and Boltzmann pictures 
close to equilibrium (Keizer, 1987). The SSTM given by equation (4.2.1) has a similar form to 
that of equation (5.3.7) and equation (5.3.2) where the fluctuating component is separated 
out as an additive component but the fluctuating part is now more complicated reflecting 
the influence of the porous media. According to equation (5.3.8), the “noisy” random 
functions have zero means and the two-time covariances are δ-correlated in time and space; 
and these Dirac’s delta functions are related through a linear operator. In the development 
of SSTM, we assume only the δ-correlation in time because the spatial aspect is separated 
into a continuous function of space. This assumption can be justified as the porous medium 
influencing the fluctuations can be considered as a continuum.  
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6 
 

Multiscale, Generalised Stochastic Solute 
Transport Model in One Dimension 

 
6.1 Introduction 
In Chapter 3 and 4, we have developed a stochastic solute transport model in 1-D without 
rosorting to simplifying Fickian assumptions, but by using the idea that the fluctuations in 
velocity are influenced by the nature of porous medium. We model these fluctuations 
through the velocity covariance kernel. We have also estimated the dispersivity by taking 
the realisations of the solution of the SSTM and using them as the observations in the 
stochastic inverse method (SIM) based on the maximum likelihood estimation procedure for 
the stochastic partial differential equation obtained by adding a noise term to the advection-
dispersion equation. We have confined the estimation of dispersitivities to a flow length of 1 
m (i.e,  0,1x ) except in Chapter 3, section 3.10, where we have estimated the 
dispersitivities up to 10 km using the SIM by simplifying the SSTM. This approach was 
proven to be computationally expensive and the approximation of the SSTM we have 
developed was based on the spatial average of the variance of the fluctuation term over the 
flow length. Further, the solution is based on a specific kernel. This development in Chapter 
3 is inadequate to examine the scale dependence of the dispersitivity. Therefore, we set out 
to develop a dimensionless model for any given arbitrary flow length, L , in this Chapter 
for any given velocity kernel provided that we have the eigen functions in the form given by 
equation (4.2.3). Then we examine the dispersivities in relation to the flow lengths to 
understand the multi-scale behaviour of the SSTM. 

The starting point of the development of the multi-scale SSTM is the Langevin equation for 
the SSTM, which is interpreted locally. From equation (4.9.1), the Langevin equation can be 
written as, 

2

2( ) ( ( ), ( , ), ) ( ( ), , , ) ( )x x
x x x x x

C CdC t C t V x t x dt C t x dw t
x x

   
  

 
          (6.1.1)   

where the coefficients x  and x  are dependent on , ( )xx C t  and ( , )V x t ; and 
2
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x

C CC t
x x

 
 

 and x , respectively. ( )dw t  are the standard Wiener increments with 

zero-mean and dt  variance. As discussed in Chapter 4, equation (6.1.1) has to be 
interpreted carefully to understand it better. Equation (6.1.1) is a SDE and also an Ito 
diffusion with the coefficients depending on the functions of space variables. It gives us the 
time evolution of the concentration of solute at a given point x  which is denoted by 
subscript x . Obviously, the computation of xC  also depends on how the spatial 


