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The Stochastic Solute Transport
Model in 2-Dimensions

7.1Introduction

In Chapter 6, we developed the generalised Stochastic Solute Transport Model (SSTM) in 1-
dimension and showed that it can model the hydrodynamic dispersion in porous media for
the flow lengths ranging from 1 to 10000 m. For computational efficiency, we have
employed one of the fastest converging kernels tested in Chapter 6 for illustrative purposes,
but, in principle, the SSTM should provide scale independent behaviour for any other
velocity covariance kernel. If the kernel is developed based on the field data, then the SSTM
based on that particular kernel should give realistic outputs from the model for that
particular porous medium. In the development of the SSTM, we assumed that the
hydrodynamic dispersion is one dimensional but by its very nature, the dispersion lateral to
the flow direction occurs. We intend to explore this aspect in this chapter.

First, we solve the integral equation with the covariance kernel in two dimensions, and use
the eigen values and functions thus obtained in developing the two dimensional stochastic
solute transport model (SSTM2d). Then we solve the SSTM2d numerically using a finite
difference scheme. In the last section of the chapter, we illustrate the behaviours of the
SSTM2d graphically to show the robustness of the solution.

7.2 Solving the Integral Equation
We consider the flow direction to be x and the coordinate perpendicular to x to be y in the 2
dimensional flow with in the porous matrix saturated with water. Then the distance

between the points (x,,y,)and (x,,y,), , is given by [(x1 —x2)2+(y1—y2)2T/2. We can

then define a velocity covariance kernel as follows:

r2
q(xllywxz/yz):UZ exp|:_bj|/ (721)

where o is a constant. o? is the variance at a given point, i.e, when x, =x, and

Y, =Y, . The covariance can be written as,

[, —x2>2+<y1—y2>2]1
- ,

g exp|:— (%, _bxz)2 :|exp|:— (v _yz)z :|

q(xllyuxz/yz):O'Z exp{—
(7.2.2)
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Then the integral equation can be written for 2 dimensions,

GZiiexp{—(Xl_bXZ)} exp{—(yl_b%)}/(xz,yz)dxzdyz =Af(x,9,), (7.2.3)

where f(x,y) and A are eigen functions and corresponding eigen values, respectively.
The covariance kernel is the multiplication of a function of x and a function of y , and from

the symmetry of equation (7.2.3), we can assume that the eigen function is the multiplication
of a function of x and a function of y:

fxy)=f(x)f,(y) . (7.2.4)

Then the integral equation can be written as,

b1 () -y
UII fxe b de fye b dyZ :ﬂ‘fxfy
00

, and

1 (m-x ¥ 1 -y ) A
J‘ fee b odx, _[ fy e vody,|r= ?fxf}/ : (7.2.5)
0 0

Therefore, if

1 (¥ )2

J.fxe " dx,=2.f.(x;),and

0

1 (11-%2 )2

If.ve ! dyZ:}”l/fy(%)

0

Then we cansee, f(x,y)=f, f,,and 2=0°44, .

This shows that we can use the eigen functions and eigen values obtained for 1-dimensional
covariance kernels in Chapter 4 can be used in constructing the eigen functions and eigen
values for two dimensional covariance kernel given in equation (7.2.2). Once we have
obtained eigen functions and eigen values as solutions of the integral equation, we can
derive the two dimensional mass conservation equation for solutes.

7.3 Derivation of Mass Conservation Equation
Consider the two dimensional infinitesimal volume element depicted in Figure 7.1. We can
write the mass balance for solutes with in the element as,

AC(x,y,t)n] Ax Ay ={], (x,y,t) - ], (x + Ax,y,t)}1 Ayn, At
+ {]y(x’y’t)_]y(x//y+Ay,t)}l AxneAt
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and Ac(x’y’t):(]x_]x+Ax)+(IV_IV+AV), (731)
At Ax Ay

where C(x,y,t) is the solute concentration and ] represents the solute flux at the location
indicated by a subscript. We can expand ] using Taylor expansions as follows:

10] 16, v 18, w .
—J =—LAx+——2(Ax) +——%(Ax) + higher order terms, and
Jeone =] 1! ox 2! 6x2( ) 3! 6x3( ) 8
0 o? o
Jyeny =1y = 19, A 19, (A )2 + 190, (Ay)3 + higher order terms.

=——YAy+— —
oy 7 2loy? 3l oy

Lumping the higher order terms greater than 2, and denoting R, and R, as the remainders of

the series,

9], 1%, 2
Josm—J. = " Ax+5 e (Ax)" +R,(¢), and (7.3.2a)
] 10°] 2
Jyemy =1, = ?;Ay+5 ay; (Ay) +R, (). (7.3.2b)
J_ I:r: ¥+ Ayt
¥ :
J, |.:.;|:E.:I : J lz+ Azt
Ay ______________________________
L o
I“ Ag ‘I‘ ‘I
J (z.9.t)

Figure 7.1. Two dimensional infinitesimal volume element with a depth I and porosity
n,. Ax and Ay are side lengths in x and y directions, respectively.
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Substituting equations (7.3.2a) and (7.3.2b) back to equation (7.3.1) and taking the limit
At—0,

, (7.3.3)

0 2 h, (& : :
| Do D) L) B R (04 R o)
ox oy ) 2\ ox 2| oy Y
where h, =Axand h =Ay.

dc —{alx+h*6212‘}dt—{%+h”a]j}dt+(Rx(g)+R (¢))dt
o 2 ox dy 2y !

Assuming (Rx (e)+R, (g))dt ~0,

2 o], h,o
dC(x,y,t)=- %Jrﬂa]; ar—| Jo o ]; dt . (7.3.4)
ox 2 ox oy 2 0oy

Now we can express the solute flux in terms of solute concentration and velocity,

J.(x,y,t)=V,(x,y,t)C(x,y,t), and (7.3.5a)
]y(x,y,t)=Vy(x,y,t)C(x,y,t). (7.3.5b)

We can express the velocity in terms of the mean velocity vector and a noise vector,
V(x,y,t)=V(x,y,t)+&(x,y.t), (7.3.6)

where  V(x,y,t), V(x,y,t) and ;(x,y,t) are velocity, mean velocity and noise vectors

respectively. Instantaneous velocity vector can now be expressed as,
V(x,y,t)=V,(x,y,t)i+ v, (xy.t)], (7.3.7)

where i and j are unit vectors in x and y directions, respectively; and, Vx(x, y,t) and

Vy(x, y,t) are the magnitudes of the velocities in x and y directions. By substituting the

vector components in equation (7.3.6) in to equation (7.3.7), we obtain,

V(x,y,t)=(V.(xyt)+ & () i+ (V, (0 y,t) + &, (x 1)) § 738)
:(ﬁi+\7yl)+(fx(x,y,t)i+§y(x,y,t)l') ,
where & and ¢ are the noise components in x and y directions. We can see the noise

term appearing as, (é’x (x,y,t)i+¢, (x,y,t)l) =&(x,y.t).
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To simplify the notation,
V.=V +¢ ,and (7.3.9)
V=V, +¢,. (7.3.10)

By substituting these equations in to equations (7.3.5a) and (7.3.5b), and then substituting
the resulting equations in to equation (7.3.4), we obtain,

dC =5 (V.C)dt+S,(V,C)dt+S,(C&,)dt+S,(C,E, )dt, (7.3.11)
2
where S = _[8 + htazj , and
ox 2 ox
h 2
Sl/ — i +li2 .
‘ oy 20

We can now write,

ac = (SJC (VXC) +8, (VVC))dt +8,(C,¢,)dt+8, (Cyfy)dt , and bringing dt in to the parenthesis
in the third and fourth terms of the right hand side,

dC=(S,(V.C)+S,(V,C))dt +5,(CEdt)+5,(CEt). (7.3.12)
As in the one dimensional case, we can define,

B.=¢dt and B =& dt, and these are the components of a noise vector, [, which

operates in a Hilbert space having eigen functions as co-ordinates. Equation (7.3.12) can now
be expressed as,

dC =(S,(V.C)+S,(V,C))dt +5,(Cdp,)+S,(CdB, ). (7.3.13)

The resultant noise term is given by,

Ap=0cy (A A, f..f,db;(t), (7.3.14)
j=1
where f .= eigen functionsin x direction, and

f,,; = eigenfunctionsin y direction.

Now we can express the components in x and y directions,

dp, =dpfcosé , and (7.3.15)

dp, =dpsing. (7.3.16)
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We make an assumption that @ is defined by

cosH:L' sind = Y

Vil ol Vol + ol

the modelling more tractable; as the noise term is quite random, this approximation does
not make significant difference to final results.

This is a simplifying approximation which makes

Then
dC =(8,(V.C)+S,(V,C))dt+5,(C(x,y,t)dpcos0)+ S, (C(x,y,t)dBsin6).  (7.3.17)

Analogous to equation (4.2.4),

S, (C(x,y,t)dBcos0) =S [ x,y,t {02 |22y i fo Sy, ( }Coséj.

-5, (CdBcos0) ——O'Z |22y i fyi X(wa cosﬂ)dbj(t)
= "Z\/’ix,//ly,ffu,j {_Sx (cr.. Cosg)} db, (t) |

Now we can expand the terms in the brackets in equation (7.3.18),

(7.3.18)

o h, &
(CﬁC j Cosﬁ) [fbc + Zasz(Cfx j Cosé’)
We see that,

B, dcosb of.; aoC
g(wa cos 9) Cf.i +Ccos i o and
0* 0*cos@ _0Ocosfof, dcos6 6C

——(Cf. .cos8)=| C +C oy f —
ox? ( fei ) [ fui ox* ox Ox fei ox Ox j
o*f. . of. .
+ CCOSQ fz/] J’,CM&J’, f 9%
ox ox Ox 6x ox

2 of
[fucosﬁac 6cos€§+c —f"” ac]

. 0s @
ox* fe ox  Ox ox Ox
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Now,

=S, (Cfx,]. cos 0)

of, . 2 of, o*f. . of,
=C(x/y,t)[fx,jacgse+cosé’ o, +hx[fx,ja cos , 6cosé Fo +cos fo, 4 9cosé 3 ﬂ
x

ox 2 ox* ox Ox ox? ox Ox
aC(x,y,t of. of, of. .
+7(x v.t) f. -C050L+£ fe Ocosb .y cos@+ f, '6C059+C°S‘9L
ox o ox 27 ox ox 7 ox Ox
*C(x,y,t)[ h,
+T|:?(f;'jcosg):l
Then,

=S, (Cfx,]. cos 0)

of, 2 of. . % f. .
=C(x,y,t){[fx,jacgsa+cos6’ g’"]+h"(fx,,-a C059+26COS€f“+c056’f“}}
x x

2 ox* ox  ox ox*

oC(x,y,t of.
+M 5 <c059+£ 2f, <6C056+2c059L
ox o 2 o ox

ox
*C(x,y,t) [,
+T{Efx’] COSH}.

Simplifying, we obtain,

8(fx,j cos 9)
ox

h
=S, (wa COSB) =C(x,y,t){ +? P

olf. . o
+ oClxy.t) {fx,j cosf@+h, i 000) )}

. 62(fx,j cosﬁ)}

ox ox
o*C(x,y,t) (h,
+ T{?(fV’] COS@)}.

Similarly,

Sy (wa cos@)

o) 6(fy,].sin€)+hixé‘ (fwjinﬁ) +6C(x,y,t) £, sino+h, 6(fwsin0)
%y 2oy oy %y

o*C(x,y,t) [h, )
+67y2 Ef(fwsm@) .
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S, (Cdpcosb)
o), )|,
__aza/ﬁt]/ly] B, Clxyt)+P AP
Where
ﬁ(fxr.cosﬁ) s (fxl-cosﬁ)
PUrf = Po,x,y,j = fy,j[ (]3.7( + ? 6;2 ; (7319)
6(fx ;cos 0)
Pj= Py = fos| fujcosO+h————=|; and (7.3.20)
x
hX
B=Py.,;=f, 3( f.;cos0) |- (7.3.21)
Similarly,
. z oC(x,y,t) 0°C(x,y,t)
S, (Cdpsin0)= _O-Z;\/’ix,f/lw QO,jC(x,y,t) +Qy 3y +Q,; oy* ,
p=
o(f,;sin@) h, &*(f, sind
Q. =fx,j[ ( f’éy )+2/ ( gyz )] (7.3.22)
ol f, .sin@
Q=1 [fy,j sing -+, (fv(;;m)]/ and (7.3.23)
h, .
Qu;=f.j| ~ (fi51n0) | (7.3.24)

S,(Cdp,)+S, (Cdﬂy)

z_gzm{( ;+Q,)C(x )+(p,.a§+Q],jZ§]+(pl.a:: .azcj}dbj(t)

Therefore,

2
dC = ~C(x,y,t)dl,, —Z—Cdl T

v (7.3.25)
—C(x,y,t)dlgy —%dlly —Zy—gdlzy

where dI, = (aVX

o Jdt+ Z [4, .4, . Pydb,( (7.3.26)
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e

]dt+o-2 [2, A, b, ( (7.3.27)

jdt+oz oAy Py (1), (7.3.28)

7‘ 62‘7 m
dloy :[ ayj ! Ev 5]/; ]dt " O-Z:' “Zx'j/i?/foUjdbj (t) ’ (7.3.29)
=

V,+h, Jdt+oz [4,,2, Q. db,(t) (7.3.30)

and

h _ m
dr,, = (;Vyjdt + GZ; [2, .7, Qb (t). (7.3.31)
-

Equations (7.3.25) - (7.3.31) constitute the SSTM2d with the definitions for P s and Q s given
by equations (7.3.19) to (7.3.24). The SSTM2d has similar Ito diffusions for velocities as in the
one dimensional case. Equation (7.3.19) shows an elegant extension of SSTM into 2-
dimensions. It should be noted that the eigen values for both directions are the same for the
[0,1] domain, further simplifying the equations.

The development of the SSTM2d is based on the fact that any kernel can be expressed as a
multiplication of two kernels, for example, as in equation (7.2.2); and we know the
methodology of obtaining the eigen values and eigen functions for any kernel. Therefore, we
can solve the SSTM2d for any kernel. However, for the illustrative purposes, we only focus
on the kernel given in equation (7.2.2) in this chapter.

7.3.1 A Summary of the Finite Difference Scheme

To understand the behaviour of the SSTM2d, we need to solve the equations numerically by
using a finite difference scheme developed for the purpose. We only highlight the pertinent
equations in the algorithm.

Now letx, =iAx,y; = jAy, t, =nAt,and C ;, =C[z ,1» Equation (7.3.25) can be redisplayed as,
det —det =t dl,, g TGy gy Sy Ty
C[x’,yj Cli, 1= C[i,j] 0%, d di 2 , - x]] dy] 1y dy > 2,

We use the forward difference to calculate the first first-order derivatives with respect to
time (t), the backward difference to calculate the first-order derivative in x and y directions
and the central difference to calculate the second-order derivatives, i.e.,
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n n+1 n n n n n n n
e,y G =S 9% % 9 S~ S
- 7 - 7 - 7
dt At dx Ax dy Ay (7.332)
2 n n n n 2 n n n n e
¢y G n = 2% TG 4 G = 260 0t G
= , = )
dx* Ax? dx’ Ay?

We can develop the finite difference scheme to solve the SSTM2d based on the following
equation:

n

ot o= ct =2t e
n+1 no_ n [i, j1 [i-1, j] [i+1, j] [i, j] [i-1, ]
i1 = iy = o, (J’ﬂu, _[ dl,

Ax Ax?
(7.3.33)
cho—ct . ct =2 o+
_C[”i,j]dlo,y _[ li, j1 [l,]_lljdll,;/, _( [i, j+1] [1,211 [w—lleIZly
j Ay Ay i

We illustrate some realisations of the solutions graphically in the next section.

7.3.2Graphical Depictions of Realisations

In the following figures, we present a sample of solution realisations of the SSTM2d to
illustrate the behaviours of the model under different parameter values for the boundary
condition: C(f, x, y)=1.0 at ( x=0.0 and y=0.0) for any given t. The value of b is kept at 0.1for
all computations.

Figure 7.2. A realisation of concentration at y=0.5 m when & =0.0001.
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Figure 7.4. A realisation of concentration at y=0.5 m when o’ =0.01.
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Figure 7.6. A realisation of concentration at =1 day when &> =0.0001.
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Figure 7.8. A realisation of concentration at =1 day when &> =0.01.
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1
'C':lrxr Yj’l:I.B
0.6

Cr3,x, . 98|
0.96}
0.94

Figure 7.10. A realisation of concentration at =3 days when o*=0.0001.
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Figure 7.12. A realisation of concentration at =3 days when o =0.01.
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Figure 7.13. A realisation of concentration at t=3 days under o =0.1.

The figures above shows that the numerical scheme is robust to obtain the concentration
realisations for a range of values of o°. As o’ increases the stochasticity of the
realisations increases.

7.4 Longitudinal and Transverse Dispersivity according to SSTM2D

To estimate the longitudinal and transverse dispersivities, we start with the partial
differential equation for advection and dispersion, taking x axis to be the direction of the
flow.

The two-dimensional advection-dispersion equation can be written as,

€ _Ip,[ZC),p,[2C ,vx(ﬁj (7.4.1)
ot ox’ oy’ ox

where C = solution concentration (mg/1),
t = time (day),

D = hydrodynamic dispersion coefficient parallel to the principal direction of flow
(longitudinal) (m2/day),

Dr = hydrodynamic dispersion coefficient perpendicular to the principal direction of
flow (transverse) (m2?/day), and

v, = average linear velocity (m/day).
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The randomness of heterogeneous groundwater systems can be accounted for by adding a
stochastic component to equation (7.4.1), and it can be given by

oC o’C o°C oC
R

where &(x,t)is described by a zero-mean stochastic process.

We multiple equation (7.4.2) by dt throughout and, formally replace &(x,t)dt by {(t). We
can now obtain the stochastic partial differential equation as follows,

o°C &°C C
dC={D [a ]+D [8}/ ]}dt— (axjdt+g(t). (7.4.3)

The two parameters to be estimated are D; and Dt (while v, =0.5 in this case). For the two

parameter case, we can write the right hand side of equation (7.4.3) as follows:

f(t,C,6,,6,)=0a,(C,t)+6,a,(C,t)+ 6,a,(C,t), (7.4.4)
where,
2 2
a,(C,t)=-v, (6C]:_05[6C] ; a,(C,t)= AS ; aZ(C,t)zg ;
Ox Ox o oy
6,=D, ; and 6,=D,.

The log-likelihood function can be written as (see Chapter 1),

M T
1(6,6,) = 3 [{ao(C.. 1)+ 6,,(C,, 1)+ 6,0,(C,, H}AC, (1)

B . (7.4.5)

_%Zj a,(C., 1)+ 6,a,(C,, ) + 0,a,(C,, 1)} 2d

i=1
If we have values for C(x,y,t) at M discrete points in (x, y) coordinate space for a period of
time t (where0<t<T), then differentiating equation (7.4.5) with respect to 6, and 6,,
respectively, we get the following two simultaneous equations:
a,(C;, 1)dC,(t) =D [{a,(C,, 1) + 6,a,(C;, t) + 6,0, (C;, 1)} {a, (C,, 1)} dt = 0
(7.4.6)

a,(C,,t)dC,(t) -

M= L=
St O

[
-

Mz le
Ot O

{a,(C., 1)+ 6,a,(C;, 1) + 0,0, (C;, )}{,(C;, 1)} dt = 0

I
-
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We simplify equation (7.4.6) to

M T M T
{ZJal (CC, (1) =D [a,(C, 1) aI(C,,t)dt}
0

=1 i=1 0

T MT
-6 Ial (C, D dt - 92] a,(C,, )}{a,(C,, )} dt =0

N
,_.
o

i=1 0

M T T (7.4.7)
{Zjaz(c,,t dC. (t Zjao (C.,H)ay( Cl,t)dt}
0,3 1€} (€ a3 [ €, =0

Now we substitute a,(C;,t), a,(C,t), a,(C,t), 6, and 6, in equations (7.4.7) to obtain the
following set of equations:

(S22 c-osf £l {rC )

i=1 t=0 =i L dx
M T 2 2 M T 2 2
OIS 0,33 T T =0
=iz | dx == | dx dy
w1 (g w1 (e (O . (7.4.8)
LYC,(t)+0.5 L Lhdt
[35{ 20k 05 340 0
M T dZC dZC M T dZC 2
-0 : Lidt -0, Lbdt=0
S PR
We can rewrite equations (7.4.8) as,
m, —D,k, —D,1, =0 749
D,k,-D;l,=0
M [dC, MI [(dC, | |dC,

Wh = —dC,(t)+0.5 : Lodt, 7.4.10
ere =S5 Foacivosg S 4G g0
N LAY

klzzz{ 2*} a (7.4.11)
7m0 | dx
T dZC} d’c,
L=k,= : Ludt 7.4.12
=k, ;;@f{@$ 7.412)

iy = ii{dzc; }dci(t) + o.sii {p;ci } {‘f;cz‘} dt, and (7.413)
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l, = fi{dzgx} at (7.4.14)

The two simultaneous equations in (7.4.9) can be solved to obtain the estimates of the
unknown parameters, D; and D, for a two-dimensional groundwater system. The solutions
of equations (7.4.9) are,

— m1lz — mzll
CokbL-L
and (7.4.15)
_myly —myk,
" Lkl

We have estimated the longitudinal and lateral dispersion coefficients for 100 realisations
for each of & value chosen, and their mean values are givenin Table 7.1 .

The transverse dispersion coefficient is significantly less than the longitudinal dispersion
coefficient for the flow length [0,1] when &” is very small but approaches approximately
0.5 of longitudinal dispersion coefficient when o7 increases (Figure 7.12). Comparing Table
7.1 with Table 4.9, we see that the dispersion coefficient, therefore, the dispersivity, is
smaller in 2 dimensions especially when & >0.01 . This needs to be expected as the lateral

dispersion provides another mechanism of energy dissipation, thwarting the dispersion in
the longitudinal direction.

o’ D, Dy
0.001 0.0251 0.0003
0.005 0.0258 0.0012

0.01 0.0264 0.0017
0.02 0.0273 0.0027
0.04 0.0293 0.0053
0.05 0.0304 0.0072
0.06 0.0314 0.0089
0.08 0.0332 0.012

0.1 0.0354 0.0145
0.15 0.04 0.0197

Table 7.1. Estimated mean longitudinal and transverse dispersion coefficients using 100
concentration realisations from SSTM2d for each of & value.
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0.02 04 0.06 0.028 0.1 0.12 0.14
0.1

Figure 7.14. The ratio of the transverse dispersivity to the longitudinal dispersivity vs o”.

7.5 Summary

In this chapter, we developed the 2 dimensional version of SSTM for the flow length of [0,1],
and estimated the transverse dispersivity using the Stochastic Inverse Method (SIM)
adopted for the purpose. The SSTM2d has mathematically similar form to SSTM but
computationally more involved. However, the numerical routines developed are robust. We
will extend SSTM2d in a dimensionless form to understand multi-scale behaviours of
SSTM2d in the next chapter.



