
 

 

Figure 7.14. The ratio of the transverse dispersivity to the longitudinal dispersivity vs 2 . 
 

7.5 Summary 
In this chapter, we developed the 2 dimensional version of SSTM for the flow length of [0,1], 
and estimated the transverse dispersivity using the Stochastic Inverse Method (SIM) 
adopted for the purpose. The SSTM2d has mathematically similar form to SSTM but 
computationally more involved. However, the numerical routines developed are robust. We 
will extend SSTM2d in a dimensionless form to understand multi-scale behaviours of 
SSTM2d in the next chapter.
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Multiscale Dispersion in 2 Dimensions 
 
8.1 Introduction 
In Chapter 7, we have developed the 2 dimensional solute transport model and estimated 
the dispersion coefficients in both longitudinal and transverse directions using the stochastic 
inverse method (SIM), which is based on the maximum likelihood method. We have seen 
that transverse dispersion coefficient relative to longitudinal dispersion coefficient increases 
as 2 increases when the flow length is confined to 1.0. In this chapter, we extend the 
SSTM2d into a partially dimensional form as we did for 1 dimension, so that we can explore 
the larger scale behaviours of the model. However, the experimental data on transverse 
dispersion is scarce in laboratory  and field scales limiting our ability to validate the 
multiscale dispersion model. In this chapter, we briefly outline the dimensionless form of 
SSTM2d and illustrate the numerical solution for a particular value of flow length. We also 
estimate the dispersion coefficients using the SIM for the same flow length. 
 

8.2 Basic Equations 
As in the one dimensional case, we define dimensionless distances to start with: 
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We also define dimensionless concentration with respect to the maximum concentration, 0C : 
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As in Chapter 6, we derive the following partial derivatives: 
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As we have developed the SSTM2d for [0,1] domains in both x and y directions (see Chapter 
6), we define the cosine and sine of the angle as follows, 
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We can also express the partial derivatives of the mean velocities in both x and y directions 
in terms of dimensionless space variables: 
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Similarly, we can express the derivatives related to solute concentration in terms of 
dimensionless variables: 
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 We recall the SSTM2d in x and y co-ordinates, 
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 Because 0 1 2 0 1 2, , , , , , , , , and xj yj x y j j j j j jh h P P P Q Q Q  are calculated for the domain [0, 1], we 
use the same values and functions but we use the following 
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The above equations constitute the multiscale SSTM2d and we developed the numerical 
solutions when the flow length along the main flow direction is 100 m and the flow length in 
the direction perpendicular to the main direction is 25 m. 
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The above equations constitute the multiscale SSTM2d and we developed the numerical 
solutions when the flow length along the main flow direction is 100 m and the flow length in 
the direction perpendicular to the main direction is 25 m. 
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8.3 A Sample of Realisations of Multiscale SSTM2d 
For the illustrative purposes, we plot three realisations of concentration when 0C =1.0 at 
(x=0; and y=0) when time is 20 days for two different 2 values, 0.01 and 0.1. These are 
shown in Figures 8.1 and 8.2. 

 
Figure 8.1. A concentration realisation when time is 20 days for 2 =0.01. Mean velocity in x 
direction is 0.5 m/day and, in y direction is 0.0. 

 
Figure 8.2. A concentration realisation when time is 20 days for 2 =0.1. (Same conditions as 
in Figure 8.1.) 

 

 

8.4 Estimation of Dispersion Coefficients 
We use the same methodology as in Chapter 7 with a slight modification to the advection-
dispersion stochastic partial differential equation (SPDE) to make it dimensionless. 

The SPDE becomes, 
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We can use the SIM to estimate the parameters but to obtain the dispersion coefficients, we 
note the following relations: 
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Based on 60 realisations for each value of 2 , Table 8.1 shows the estimated mean 
dispersion coefficients for the same boundary and initial conditions. 
 

2  LD  TD  

0.01 5.445969667 0.259079583 

0.1 6.853118 1.043493717 

Table 8.1. The estimated mean dispersion coefficients for two different 2 values (b=0.1). 
 

8.5 Summary 
In this brief chapter, we have given sufficient details of development of the multiscale 
SSTM2d and a sample of its realisations. We also have adopted SIM to estimate dispersion 
coefficients in both longitudinal and lateral directions. The computational experiments we 
have done with the SSTM2d show realistic solutions under variety of boundary and initial 
conditions, even for larger scales such 10000 m. However, it is not important to illustrate the 
results, as we have discussed the one dimensional SSTM in detail in Chapter 6. If there are 
reliable dispersivity data in different scales, both in longitudinal and transverse directions, 
then one can develop much more meaningful relations between longitudinal and lateral 
dispersivities based on a properly validated model.
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