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1. Introduction 

Capillary electrophoresis (CE) is a separation technique that can be used as a sample pre-
treatment step in the analysis of ionic analytes (Grossman and Colburn 1992; Stewart et al. 
2008). Compared with other separation technologies it can offer advantages such as higher 
speed and sensitivity, smaller injection volumes and reduced consumption of solvent and 
samples, the possibility of miniaturisation, and reduced cost (Issaq 2001; Jarméus and 
Emmer 2008; Polesello and Valsecchi 1999; Wang 2005; Wee et al. 2008). 
CE is based on the difference of the electrical mobilities of molecules within a capillary tube 
filled with electrolyte solution. When an electrical field is applied between the two ends of a 
capillary and a sample is introduced at one end, analytes are separated as they migrate 
towards the other end under the influence of the electrical field. These separated analytes 
are detected near the outlet by methods such as optical or electrochemical techniques 
(Polesello and Valsecchi 1999; Guijt et al. 2004; Kappes and Hauser 1999; Kubáň and Hauser 
2004, 2009; Kuhn and Hoffstetter-Kuhn 1993; Marzilli et al. 1997; Tanyanyiwa et al. 2002; 
Zemann et al. 1998). The signal from a detector is digitised and typically presented in the 
form of voltage versus time, i.e. an electropherogram. Peaks evident in an electropherogram 
typically correspond to analytes in the sample, and with optimisation of the system 
parameters, the peaks can usually be resolved sufficiently. Fig. 1 shows an example 
electropherogram of data obtained from a practical trial reported earlier (Petkovic-Duran et 
al. 2008) 
For analytical chemistry purposes, the operator's aim is to determine from the 
electropherogram what analytes are present and the corresponding concentrations. In this 
paper we assume that this is done by separating the task into two stages: Signal Processing, 
i.e., obtaining peak information from the electropherogram, and Pattern Matching, using 
this peaks' summary information to compare with established peak library of known 
chemicals. Whilst the process of identifying the peaks, removing the noise present and 
fitting curves for peak quantification is, to a large extent, done to-date manually by 
professionals, the operator would be greatly aided through fully automated techniques with 
little or no human input. This is particularly crucial for the development of field-deployable 
devices which could be operated by non-technical staff. Furthermore, automated signal 
processing techniques can allow results to be reproducible or consistent and can remove the 
subjectivity of a human evaluation. In addition, they can also detect features that may not 
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otherwise be obvious to the human eye, and enable the operation of detection devices by 
non-experts. 

 
Fig. 1. An example electropherogram for separating a mixture of chemical warfare agent 
degradation products MPA, EMPA, IMPA and PMPA. Reproduced from Petkovic-Duran 
(2008). Conditions: 10mM MES/His (pH 6.1) buffer; separation field strength 340V/cm; 
injection field strength 625V/cm; Injection time 20s; frequency 360kH; peak-to-peak-voltage 
8V; sinus ac waveform. The first spike corresponds to the start of sample injection into the 
CE channel. 

The task of automating the extraction of peaks, i.e. obtaining peak information such as peak 
shape, peak height, peak area and arrival time, from an electropherogram is, however, not 
an easy one. Not only must signal processing techniques be developed that can find the 
location of peaks, but they must do so in the presence of low and high frequency baseline 
noise that corrupts the signal. Furthermore, analytes may co-elute resulting in poorly 
resolved peaks that overlap. Even once the peak locations have been identified, the peaks 
need to be extracted and/or accurately quantified in the presence of interfering signal 
components. 
The purpose of this paper is to review the current progress in signal processing relevant for 
capillary electrophoresis that are directed towards the quantification of peaks in 
electropherograms. We provide an overview of a signal processing strategy for a complete 
system, and then detail each signal processing step through examples cited from the 
literature. We are then able to draw some conclusions about the work needed to develop 
well defined and completely automated signal processing systems for CE. In the next section 
(Section 3) we detail a model for the electropherogram signal and the signal components to 
be analysed. Section 4 provides an overview of the steps in the signal processing strategy for 
CE signals. Pertinent examples from the literature are cited for each step (baseline noise 
removal, peak finding and peak extraction and quantification) to illustrate the different 
approaches adopted. Section 5 addresses how the performance of signal processing 
strategies/algorithms should be assessed, and on the need for benchmark testing and for the 
provision of system specifications. Section 6 discuss briefly some difficulties and 
requirements for the future Pattern Matching work needed for practically extracting 
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chemical identity information from the electropherogram's peak data. A concluding 
summary is provided in Section 7.  

2. Modelling an electropherogram signal 
An electropherogram is typically modelled as the superposition of a number of components 
under the assumption of system linearity (as are chromatograms (Dyson 1998) and mass 
spectrograms (Coombes et al. 2005)). These include the peaks corresponding to the analytes, 
system peaks and noise components. Mathematically, the model for an unfiltered/raw 
electropherogram signal can be expressed, e.g., in the form of voltage v(t) (Kubáň and 
Hauser 2009), as follows,  
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where pi(t) is a peak that corresponds to the ith analyte eluted, N is the number of analyte 
peaks, sj(t) is the jth system peak, M is the number of system peaks, B is a constant baseline, 
and n(t) is unwanted baseline noise. Here we consider a constant baseline, and any 
deviation from this is due to baseline noise, n(t), which may itself contain a number of 
components. Eq. (1) is useful, not only for modelling electropherograms obtained from 
physical systems, but also for devising synthetic signals to test peak finding or peak 
extraction algorithms.  
The aim of a peak extraction algorithm is to apply signal processing means to extract the 
separate peak components, pi(t), from an electropherogram. Each peak component can then 
be quantitatively analysed to provide information pertaining to the concentration of its 
corresponding analyte. When the sample being tested is unknown, the information obtained 
for the peaks can then be used in conjunction with prior knowledge or a database to identify 
the chemical compounds present in the sample (Reichenbach et al. 2009). In order to 
complete these tasks successfully, it is important to model or understand the characteristics 
of all the signal components in Eq. (1) and this will be discussed in detail in the following 
sections. 

2.1 Peak models 
Before discussing peak models, it is important to clarify the terminologies associated with a 
peak. On the basis of the peak definitions of The International Union of Pure and Applied 
Chemistry (IUPAC) and the Differential Thermal Analysis (DTA) (Inczédy et al. 1998), we 
propose a general definition for a peak with a view to it being widely applicable in different 
situations within a CE context, i.e. a peak is a portion of a signal or waveform with the 
characteristic of a rising and then a falling of the dependent variable with time. In particular, 
an analyte peak is a peak that is a signal component of an electropherogram (viz. pi(t) in Eq. 
(1)) resulting directly from the presence of an analyte and distinct from noise and other 
peaks [e.g. see (Vivó-Truyols et al. 2005a)] while a system peak is a peak directly resulting 
from the background electrolyte (viz. sj(t) in Eq. (1)) (Beckers and Everaerts 1997; Gaš et al. 
2007; Gebauer and Boček 1997; Macka et al. 1997; Sellmeyer and Poppe 2002). 
Fig. 2 provides an illustrative example of the qualitative definitions above. It can be seen 
how system and analyte peaks contribute to the electropherogram signal which also 
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contains low and high frequency baseline noise. It should be noted that we are only 
considering peaks that are at a coarser scale than the high frequency noise that is present. In 
this figure it is clear that if the low and high frequency baseline noise were removed, then 
the electropherogram peaks would approximate the analytes or system peaks provided they 
are fully resolved (don't overlap) and have the same constant baseline. It should also be 
mentioned that a peak can be either ‘positive’ or ‘negative’. Negatives peaks correspond to 
changes to below baseline and appear as valleys in an electropherogram. The profile of an 
analyte peak is dependent ``on the physical-chemical processes inside the capillary, the 
heterogeneity of the capillary surface, capillary overload, solute mobility, and instrumental 
effects''( García-Alvarez-Coque et al. 2005).  
 

  
 
 

  
Fig. 2. A synthetic electropherogram composed from the superposition of peaks and 
baseline noise. Each interval in the electropherogram shown in bold corresponds to a 
successful or unsuccessful peak candidate. 

A number of different peak models have been proposed in the literature. The triangle is 
likely to be the earliest peak model used (Dyson 1998) and is perhaps the simplest. It has 
been used as a peak model in a number of studies (Barclay and Bonner 1997; Stewart et al. 
2008). One definition for a triangle function is (Couch 1990), 

(a) (b) 

(c) (d) 
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where t is time, and T is half the width of the triangle which has unity height and is centred 
about the y-axis with an apex at (0,1). This function can be scaled, translated and sampled to 
give a suitable digital signal representation of a peak.  
A more common approach, however, has been to model a peak as a Gaussian curve or 
variant thereof (Bocaz-Beneventi et al. 2002; Oda and Landers 19970. Such curves are likely 
to be more realistic given the underlying physical-chemical process. For example, Solis et al. 
(Solis et al. 2007) define a peak to be of the form (Graves-Morris et al. 2006): 
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where Ai is the peak's amplitude, Toi is the migration time, Wi the width of the peak and TS 
the sampling interval. This model could be applied to both pi(t) and sj(t) in Eq. (1). More 
complex peak models have also been introduced for CE. For example, to account for skewed 
peaks, a ``Combination of Square Roots (CSR)'' model has been proposed (García-Alvarez-
Coque et al. 2005) and compared to other models. Another example is the resonance model 
for peaks described in (Graves-Morris et al. 2006). 
As with CE, there is a need for peak models in other analytical chemistry techniques 
including chromatography, spectroscopy and gel and zone electrophoresis. The signals 
obtained in these techniques are generally alike, often owing to the similarity between the 
underlying physical-chemical processes (the mechanisms in chromatography and 
electrophoresis are particularly similar (Johansson et al. 2003; Poppe 1999). Gaussian based 
peak models are a popular choice for various techniques in analytical chemistry. For 
example, in chromatography the peaks in chromatograms are expected in theory to be close 
to Gaussian as they result from the dispersion of sample bands (Dyson 1998; Parris 1984). 
However, in practice, as with CE, Gaussian models must be modified or replaced to capture 
other effects that impact on peak shape (including asymmetry). Examples of modified 
Gaussian peak models include Exponentially Modified Gaussian (EMG) (Grushka 1972; 
Naish and Hartwell 1988; Poole 2003) and Exponential-Gaussian Hybrid (EGH) functions 
(Lan and Jorgenson 2001; Poole 2003). Numerous other peak models for chromatography 
have also been proposed (see the references cited in (García-Alvarez-Coque et al. 2005) for 
some further examples). 

2.2 Baseline noise 
Noise is usually the result of “spontaneous fluctuations which occur within matter at the 
microscopic level” (e.g. thermal noise and shot noise). In a CE system, noise components in 
a baseline signal may be due to electrical noise, chemical noise originating in the underlying 
physical-chemical processes of separation and so on. In general, baseline noise could contain 
both low frequency and high frequency components. The high frequency noise is from the 
instrument/detector which results from ``incomplete grounding or from the signal 
amplification system'' (Kuhn and Hoffstetter-Kuhn 1993) or from other sources such as 
electronic components including the Analogue to Digital Converter (ADC) (Jacobsen 2007; 
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Solis et al. 2007; Xu et al. 1997). The low frequency noise is mainly generated from 
temperature variations, impurities of the background electrolyte (`chemical noise') and air 
bubbles (Kuhn and Hoffstetter-Kuhn 1993; Xu et al. 1997). The unsatisfactory sample 
injection could also contribute to the low frequency noise due to the background buffer 
solution variations. The term baseline drift can refer to very low frequencies (Kuhn and 
Hoffstetter-Kuhn 1993) or to low frequencies in general (Solis et al. 2007). It should be 
mentioned that the detector type could also affect the baseline signal characteristics. For 
example, there are a range of detectors which can be used for CE or other techniques such as 
UV/Visible, fluorescence, electrochemical, conductivity, light scattering, mass spectral 
techniques. Some of the detectors measure bulk property of samples (e.g. conductivity and 
refractive index techniques) while some are for measuring solute properties (e.g. UV/Vis, 
fluorescence, electrochemical techniques). Bulk property detectors tend to have higher 
background signal which could vary due to background condition change. Solute detectors, 
on the other hand, usually have less background signal.  
Since understanding the nature of the noise present in a system is important for an appropriate 
denoising of a signal (Perrin et al. 2001; Szymańska et al. 2007), numerous quantitative noise 
characterisation studies have been carried (Katsumine et al. 1999; Smith 2000; Smith 2007; 
Vaseghi 2008) to understand the spectral characteristics of the noise present in practical 
systems. The outcome of such studies may indicate the need for a unified noise model that 
does not partition the noise into low and high frequencies. For example, a brown noise model 
may be appropriate (Vaseghi 2008) or other models, e.g. a 1/f noise model (Katsumine et al. 
1999; Smit and Walg 1975), or a correlated noise model (Perrin et al. 2001). The simplest 
method for noise modelling is to estimate the noise statistics from the signal-inactive periods 
(Vaseghi 2008). For instance, the noise in a system may be characterised by its power spectral 
density which can be estimated using a variety of methods (Cruz-Marcelo et al. 2008; Smith 
2007). Of course, a noise process should really also be checked for stationarity by confirming 
its statistical parameters are constant over a sufficient interval of time. If a noise process is non-
stationary, for example, the heteroscedastic noise (Li et al. 2006; Mittermayr et al. 1999; 
Mittermayr et al. 1997), then modelling techniques for time-varying stochastic processes will 
need to be employed (Vaseghi 2008). Where noise characterisation is impractical, adaptive 
filters or filters whose parameters can be adjusted or tuned manually in-situ may need to be 
employed for effective removal of noise.  
It is worth mentioning that, while various models have been proposed for the low and high 
frequency noise, a unified approach is also required to handle the noise as a whole to 
simplify the signal processing process. The baseline drift and noise contributions could be 
modelled as interferences from different ends of frequency spectrum domain. Approaches 
may include Fourier and wavelet transforms. Some of these techniques will be reviewed in 
the next section  

3. Signal processing techniques for peak extraction 
3.1 Processing approaches 
The aim of a peak extraction algorithm is to extract the separate peak components, pi(t), from 
an electropherogram. In general, when trying to identify the peaks in an unknown sample 
we aren't privy to information about when and where the different signal components will 
occur and in what measure. Only a measured signal is available and we have to solve an 
inverse problem (Mammone et al. 2007; Tarantola 2005) to identify the parameters in our 
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model. Approaches to solving single-channel source separation problems must rely on 
additional information, with filtering, decomposition and grouping, and source modelling 
approaches having been used (Schmidt 2008). A typical signal processing strategy might 
consist of a number of steps including: (i) the removal/suppressing of the baseline noise, (ii) 
finding the peaks, and (iii) extracting and/or quantifying the peaks. Some approaches 
combine some of these steps into a single step. In the following sections we detail each of 
these steps in further detail. 

3.2 Baseline noise removal 
To remove the baseline noise from an electropherogram, it is often convenient to assume the 
noise components are confined within certain spectral ranges. Linear filters can then be used 
to suppress the content in those ranges (Horlick 1972; Rabiner et al. 1975). There are many 
standard filters that can be used to do this, some of which have been listed (Yang et al. 
2009). In their review on peak detection algorithms for mass spectrometry, various open 
source software packages were compared and the filters employed were identified.  

3.2.1 High frequency noise removal 
For removing the high frequency baseline noise in analytical chemistry data, the moving 
average filter is a popular choice. Perhaps the most intuitive filter to understand, this Finite 
Impulse Response (FIR) filter (non-recursive filter) performs local averaging to attenuate the 
rapidly fluctuating components of a signal (Lyons 2004; Oppenheim et al. 2007). It is used 
for smoothing in the software PROcess (Li et al. 2005; Yang et al. 2009) for smoothing. 
However, with this filter, peaks tend to be flattened out. A widely cited seminal paper by 
Savitzky and Golay (Savitzky and Golay 1964) provides the details for a popular alternative 
for filtering out high frequency baseline noise. The filter, known as the Savitzky-Golay (SG) 
filter, has filter coefficients that implement least squares polynomial smoothing and can 
denoise signals and calculate derivatives with reduced peak degradation (Leptos et al. 2006; 
Peters et al. 2007; Vivó-Truyols and Schoenmakers 2006; Vivó-Truyols et al. 2005a). The filter 
has been extended and improved in many different ways (Browne et al. 2007). Other digital 
filters have also been used including the Kaiser filter (Mantini et al. 2007) and Gaussian 
related filters (Leptos et al. 2006; Yang et al. 2009). In general, digital filters have different 
time and frequency domain characteristics that are appropriate for different situations and 
often have parameters that must be optimized so that peak distortion is minimised 
(Hamming 1983) and the maximal amount of noise removed. It is possible to custom design 
a digital filter based on an ideal transfer function which, for low-pass (high-frequency 
attenuating) filter designs, can entail choosing an appropriate cut-off frequency (Lam and 
Isenhour 1981).  

3.2.2 Low frequency noise removal 
Digital linear filters can also be used for removing low frequency baseline noise (drift). 
However, the standard linear filtering approaches can have problems when the baseline 
noise is not confined to specific frequency bands or overlaps with the frequency bands of 
peaks. Similar problems arise in the processing of ECG signals, and are of principal concern 
since filtering can cause significant distortion to important key features (Mozaffary and 
Tinati 2005). Whilst non-linear filters may be one alternative strategy (Kiryu et al. 1994), the 
most common approach for filtering out the low frequency baseline noise in CE signals (and 
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signals in related areas) is to estimate the low-frequency baseline and then subtract the 
estimate from the signal. Windowing and interpolation based methods are commonly used. 
For example, a moving window method, retaining minimums, was used to estimate the low 
frequency baseline noise component in chromatograms (Quéméner et al. 2007). The 
estimated component was then subtracted from the original signal to give a corrected 
chromatogram. The method appeared successful but required the width of the moving 
window to be set experimentally. A similar strategy was employed for baseline correction of 
CE data (Coombes et al. 2005; Szymańska et al. 2007). In another published work (Gras et al. 
1999), selected values from windows were interpolated using cubic splines to estimate the 
low frequency baseline noise in MALDI-TOF mass spectra. A different strategy was 
employed with the signal trend being estimated by removing the peaks from a mass 
spectrum signal (Mantini et al. 2007). Other researchers have also applied curve fitting 
techniques (Coombes et al. 2005; Bernabé-Zafón et al. 2005; Gillies et al. 2006; Mazet et al. 
2005). 

3.2.3 Wavelet transformation for noise removal 
Despite some successful demonstrations of (low and high frequency) baseline noise removal 
techniques, no single approach has proved so undeniably successful across various 
conditions that it has been universally adopted. Recently, however, there has been some 
interest in the use of relatively new signal processing techniques such as wavelets.  
Wavelets (Burrus et al. 1998; Daubechies 1988; Grossmann and Morlet 1984; Mallat 1989, 
1999) allow the simultaneous analysis of a signal's time and frequency (or scale) properties, 
which is particularly useful for the processing of transient signals. The continuous wavelet 

transform (CWT) of a signal, 2( )f t L R , at a scale, s, and time u, is given by (Mallat 1999), 
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The “mother wavelet”, 2( )t L R , is a function with zero average and ``is well localised in 

both time and frequency'' (Cohen and Kovačević 1996). Under certain conditions an inverse 
continuous wavelet transform also exists that allows the reconstruction of f(t) (e.g. Burrus et 
al. 1998; Cohen and Kovačević 1996). The coefficients from the wavelet transformation 
provide an indication of the signal energy contained at various scales over time. It is 
therefore possible to calculate the energy density (scalogram) of a signal which can be used 
in signal analysis and/or graphically depicted in a time-frequency heat map. 
For a discrete wavelet transform (DWT), the wavelet coefficients can be computed for a 
discrete grid of points ( , )ns u Z  (Cohen and Kovačević 1996). Practically though, a 
multiresolution analysis (MRA) (Mallat 1989) is most often used to give a series expansion 
for 2( )f t L R , in terms of a scaling function, φ(t), and wavelets, ψj,k (Burrus et al. 1998), 
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where orthogonality constraints are placed on the expansion functions which form a basis. 
The first summation in Eq. (5) provides a low resolution approximation to f(t), and each 
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successive index, j, in the second summation adds additional detail to the signal. A fast 
DWT algorithm that employs the use of filter banks has been developed by Mallat for the 
calculation of the approximation coefficients c(k) and detail coefficients d(j,k) (Mallat 1989), 
and is frequently used in practice. Once the coefficients have been obtained for a signal, they 
are thresholded or processed in various ways, before the reconstruction part of Mallat's 
algorithm can be used to reconstruct the signal.  
One of the most widely used applications of wavelets is in denoising. Donoho and 
Johnstone developed a wavelet denoising technique based on the thresholding of 
coefficients (Donoho 1995; Donoho and Johnstone 1994). The denoising works on the 
premise that the underlying signal can have a sparse representation where it is 
approximated by a small number of relatively large-amplitude coefficients, whereas noise 
will have its energy spread across a large number of small-amplitude coefficients (Burrus et 
al. 1998; Mallat 1999). Hence, thresholding can remove noise whilst keeping the underlying 
signal largely intact. Different thresholding strategies such as hard thresholding and soft 
thresholding can be applied (Burrus et al. 1998; Donoho 1995).  
A comprehensive study on wavelet denoising in CE using thresholding based methods was 
recently performed (Perrin et al. 2001). In the study, a number of wavelets from different 
wavelet families were tested, with the Haar wavelet found to perform the best. High 
frequency noise was removed by filtering the detail coefficients using hard thresholding and 
the low frequency baseline noise was removed by filtering the approximation coefficients 
using soft thresholding. Soft thresholding was used so as to reduce peak distortion. After 
thresholding, the inverse wavelet transform was calculated to reconstruct the signal with 
impressive results. The strategy was developed to accommodate larger baseline drifts (Liu 
et al. 2003). Fig. 3 shows an example of signal denoising using wavelet transform. This line 
of work was further developed by implementing spatially adaptive thresholding for the 
denoising of DNA capillary electrophoresis signals (Wang and Gao 2008). Wavelet 
denoising strategies were also used (Ceballos et al. 2008) on pattern recognition in CE. 
Similar wavelet based denoising strategies to those cited above have also been applied to 
liquid chromatography data (Barclay and Bonner 1997; Shao et al. 2004), Raman 
spectroscopy (Hu et al. 2007), mass spectrometry data (Barclay and Bonner 1997; Coombes 
et al. 2005), as well as numerous other areas of research (Jagtiani et al. 2008; Komsta 2009).  
The DWT is sufficient in many scenarios when removing high and low frequency noise from 
signals. However, in some situations it may be appropriate to use the continuous wavelet 
transform so that finer grained control over the scales used can be gained. In particular, 
Jakubowska has done some interesting work using the CWT for removing high and low 
frequency noise in voltammetry signals (Jakubowska 2008). After finding the CWT, certain 
scale bands were identified as containing noise, and these were excluded in the 
reconstruction of a signal using the inverse CWT. The method was also suitable for 
resolving overlapping peaks which will be discussed in the next sections. 

3.3 Peak detection 
Once the noise has been filtered, the next task is to find the peaks from the filtered 
electropherogram vf(t) = v(t) - n(t). Many different criteria can be used to determine whether 
a point corresponds to the apex of a peak (Yang et al. 2009). One simple strategy for finding 
the location of peaks in vf(t) might be to find those points that are above a threshold and/or 
correspond to a local maximum found by looking for positive to negative zero crossings in 
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Fig. 3. An example of signal denoising by a discrete wavelet transform technique. 
(A)Original signal; (B) Denoised signal by db5 at decomposition level; (C) Removed noise. 
Reproduced from Liu et al. (2003) with permission from Wiley-VCH Verlag GmbH & Co. 
KGaA. 

the signal derivative (or looking at just the second derivative). Thresholding and derivative 
based peak detection strategies are popular in various areas outside of CE. For example, an 
auto-threshold based peak detection algorithm for analyzing electrocardiograms was 
developed (Jacobson 2001); peaks in mass spectrometry data were found by selecting local 
maximum points with a signal-to-noise ratio above a certain value (Coombes et al. 2005; 
Mantini et al. 2007), and points of local maximum with an intensity sufficiently greater than 
neighbouring points were classified as peaks (Yasui et al. 2003). Zero-crossings of the 
derivative of signal were used to find the peaks in the analysis of partial discharge 
amplitude distributions (Carrato and Contin 1994). Derivatives of a smoothed signal are 
often used for peak detection in chromatography (Poole 2003). Signal peaks were detected in 
chromatograms after the Savitzky-Golay (SG) method was used to calculate derivatives 
(Peters et al. 2007). For CE, it was detailed how peaks can be identified through the location 
of inflection points (calculated using the second forward difference) (Graves-Morris et al. 
2006). 
Whilst derivative and threshold based techniques may be appropriate for some signals, low 
frequency baseline noise remaining in an electropherogram signal can disrupt threshold 
based peak detection (Wee et al. 2008), and high frequency noise can also cause problems 
especially for derivative based techniques, as discussed in (Lu et al. 2006). Recently, other 
approaches have been developed that are less susceptible to the inevitable unsuppressed 
noise that remains in the filtered electropherogram signal.  
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It is well established that wavelets can be used to detect singularities (points not 
differentiable) and edges (Mallat 1999; Struzik 2000). Singularities are detected by following 
across scales the local maxima of the wavelet transform. Using related multiscale zooming 
procedures, it is possible to detect discrete-time peaks even though the corresponding peaks 
may be continuous and differentiable. This idea has been applied to mass spectrometry data 
(Du et al. 2006). The CWT was firstly evaluated at different scales using the Mexican Hat 
wavelet to give a matrix of coefficients. Patterns evident in the matrix of coefficients were 
then analysed, with local maxima at each scale being linked across scales to give “ridges”. 
Ridges meeting certain conditions were then used to indicate the location of peaks. The 
algorithm was later extended to peak detection in CE (Petkovic-Duran et al. 2008; Stewart et 
al. 2008). An example of peak detection using the technique is shown in Fig. 4, with 
comparison with three other techniques (Du et al. 2006; Mantini et al. 2007; Morris et al. 
2005). Similar peak detection approaches have also been adopted in other areas, such as 
detecting evoked potentials (EPs) of the brain in electroencephalograms (EEGs) using the 
DWT (McCooey et al. 2005; McCooey and Kumar 2007).  
A potential benefit of these wavelet approaches is that the pre-processing step of removing 
low and high frequency baseline noise is unnecessary, as the process of selecting ridge lines 
can account for the presence of noise. Reconstruction of signals based on the local maxima of 
the wavelet-transform modulus is also possible (Mallat and Hwang 1992), so it would be 
interesting to investigate whether reconstruction of peaks in CE could be performed in this 
way. Such a technique has already been applied for extracting EPs of the brain from EEGs 
(Zhang and Zhen 1997) in addition to detection of EPs (mentioned earlier). 
 

 
Fig. 4. An example of peak detection using a continuous wavelet transform technique and 
its comparison with other techniques. The techniques shown are, from top to bottom, 
CROMWELL (Morris et al. 2005), MassSpecWavelet Script (Du et al. 2006), LIMPIC (Mantini 
et al. 2007) and Ridger (Wee et al. 2008), respectively. Reproduced from (Wee et al. 2008) 
with permission from Wiley-VCH Verlag GmbH & Co. KGaA. 
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Whilst it is beyond the scope of this paper, it should be noted that when multiple data sets 
are available (i.e. data from multiple trials) statistical peak alignment or finding techniques 
can be applied (Ceballos et al. 2008; Coombes et al. 2005; Cruz-Marcelo et al. 2008; Dixon et 
al. 2006; Liu et al. 2008; Morris et al. 2005; Yu et al. 2008). 

3.4 Peak resolution, peak extraction and quantification 
After the baseline noise in the signal is suppressed and the peak locations are identified, 
peak components can be readily extracted by taking the portion of the signal above the 
constant baseline (B in Eq. 1), or B + δ where δ can account for a threshold that is above 
residual noise or tailing peaks) around the identified peak locations. A peak model can be 
fitted to the extracted peaks and measure important peak parameters such as area, height, 
skewness and so on. However, a single model may be insufficient and the curve fitting 
process is complicated when there are overlapping peaks that are not baseline resolved 
(Dyson 1998).  
Usually in developing a CE method, the experimental conditions are optimised so as to 
ensure that all sample components are separated (Hanrahan et al. 2008; Vera-Candioti et al. 
2008). However, such optimisation may not always be practicable and/or complete 
separation may be difficult, if not impossible, to achieve (Mammone et al. 2007; Sentellas et 
al. 2001; Zhang et al. 2007). As a result, unresolved peaks may be present in an 
electropherogram and this means quantitative measurements made directly on the peaks 
may be inaccurate (Dyson 1998). There is thus great need for signal processing techniques 
that are able to separate overlapping peaks especially in situations where conducting 
additional trials would be undesirable, infeasible or ineffectual. 
Were the data acquired multi-dimensional (e.g. from multiple identical or dissimilar 
detectors or resulting from multiple trials under similar or dissimilar conditions), numerous 
statistical techniques would be at the researchers disposal to try and resolve overlapping 
peaks (Bocaz-Beneventi et al. 2002; Li et al. 2006; Sentellas et al. 2001; Zhang et al. 2007; 
Zhang and Li 2006). However, different approaches are necessary when the data from only a 
one-dimensional data vector (that results in a single electropherogram trace) is available. 
There are two main signal processing approaches that can be followed to analyse 
overlapping peaks. 
The first approach is to try and extract the peak components from the signal using curve 
fitting. An accurate peak model is required and, if the number of peaks is known, the model 
can then be fitted to the peaks that are overlapping using non-linear least squares curve 
fitting techniques. Such techniques have been applied to CE (Jarméus and Emmer 2008; 
Vera-Candioti et al. 2008), as well as chromatography (Dasgupta 2008; Jin et al. 2008; Vivó-
Truyols et al. 2005a, b), voltammetry (Huang et al. 1995) and gel electrophoresis (Kitazoe et 
al. 1983; Shadle et al. 1997) to name but a few. Fig. 5 shows an example of deconvolution 
technique (Vivó-Truyols et al. 2005b) for extracting overlapping peaks from a 
chromatographic signal. Such technique is also applicable for CE and other similar signals. 
However, the above-mentioned methods require a good peak model and initial parameter 
estimates must be sufficiently accurate for convergence of the curve fitting routines (Jarméus 
and Emmer 2008; Olazábal et al. 2004). In addition, in some cases the methods may be 
sensitive to noise and it may be difficult to automate the whole process (Jarméus and 
Emmer 2008; Vivó-Truyols et al. 2005a; Zhang et al. 2000). If there is poor separation, 
quantitative measurements made on the peaks may be inaccurate (Du et al. 2006).  
The second approach to analysing overlapping peaks is to apply signal processing to 
increase the resolution of the peaks by decreasing their width but preserving their height or 
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area. For example, voltammetric or polarographic peaks were resolved using a 
deconvolution method (Engblom 1990). In the technique, signals were transformed to the 
Fourier domain where the width of the peak (in the time domain) could be modified by 
dividing/multiplying the Fourier transform by a suitable function (note: multiplication in 
the Fourier domain corresponds to convolution in the time domain). By an appropriate 
function choice, peaks can be resolved in the time domain by having their widths reduced 
but their height or area preserved. A deconvolution approach was also detailed in 
Kauppinen et al. 1981 and more recently deconvolution/convolution approaches have been 
used in combination with wavelets (Wang et al. 2004; Zhang et al. 2000; Zhang et al. 2001; 
Zheng et al. 2000). 
 

 
Fig. 5. An example of deconvolution of multi-overlapped chromatographic signal peaks. The 
five runs correspond to five mixtures eluted with 80% (m/m) methanol. The compounds are 
toluene (Tol), ethylbenzene (Eth), butylbenzene (But), o-terphenyl (Tph), amylbenzene 
(Amy), and triphenylene (Trp), respectively. Reprinted from Vivó-Truyols et al. (2005b) with 
permission from Elservier. 

Perhaps the most popular approaches for dealing with overlapping peaks involve the use of 
wavelet transforms. These can be used to transform a signal with overlapping peaks into a 
new waveform with resolved peaks, where, in so doing, some peak parameters (e.g. area 
and location) can be preserved. Such approaches are suitable where quantification of certain 
peak parameters is of interest but the complete peak waveform is not required. For example, 
the discrete wavelet transform (DWT) was used (Shao et al. 1997) to process chromatograms 
by decomposing them into detail coefficients at different decomposition levels. The 
overlapping peaks for the chromatograms analysed had peaks in the detail coefficients that 
were well resolved at a specific level of decomposition. After baseline correction (which was 
needed as a secondary step) the areas under the peaks were used to provide an accurate 
quantitative measure of the concentration. 
The continuous wavelet transform (CWT) has also been used to resolve overlapping peaks 
in CE. Unlike the dyadic levels of decomposition typically used with the DWT's orthogonal 
wavelets, in non-orthogonal wavelet analysis the choice of scales is arbitrary (Torrence and 
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Compo 1998). For example, the maximum wavelet scale was chosen to resolve coefficient 
peaks Jiao et al. 2008. At the selected scale, the resolved coefficient peaks could then be 
quantitatively analysed. Other researchers have applied similar approaches using the CWT 
(Jakubowska and Kubiak 2008; Shao et al. 1997; Shao and Sun 2001; Wang et al. 2004). In 
choosing the scale, the aim is to minimise the noise but ensure peaks are baseline resolved, 
and the mother wavelet chosen as well as the signals being analysed impact upon the 
results. Where resolution at specific scales in the wavelet coefficients is not evident, 
information across scales can also been utilised (Xiao-Quan et al. 1999) as it is for peak 
finding (see Section 4.3). 
In difficult problems, peaks may still not be resolved by the CWT coefficients. In such cases 
it may be useful or necessary to select a range of scales and reconstruct a time-domain signal 
using the inverse CWT (Jakubowska 2008). An appropriate choice for the scale band used 
can then lead to resolution of peaks in the reconstructed signal (Torrence and Compo 1998).  
Whilst it is clear that a range of techniques exist for extracting quantitative information 
about overlapping peaks, there is still a need for techniques that are able to extract the peak 
components in their entirety. The process of resolving peaks with wavelet transforms does 
not generally permit the peak components to be extracted directly, as usually some of the 
peak parameters are modified during transformation. Even though this isn't a problem for 
obtaining some quantitative information, it may be useful to have a complete representation 
for the peaks. In addition, most of the techniques demonstrated are for particular problems 
or setups. Generalised approaches to resolving overlapping peaks are needed that make 
minimal assumptions about the peak components and baseline noise.  

4. Assessing algorithm and system performance 
As this review has revealed, there are numerous approaches available for processing signals 
in capillary electrophoresis, each with a different signal processing strategy and 
demonstration on synthetic and/or real test data. However, little effort has been devoted to 
the comparison of performance from these different methods in spite of the few published 
work (Barclay and Bonner 1997; Cruz-Marcelo et al. 2008; Wee et al. 2008; Yang et al. 2009). 
In order to select or develop most efficient method, comparative studies are needed to test 
the methods on the same data (Leptos et al. 2006). One way to enable this happening is to 
make the software algorithms free and publically available so that other researchers can use 
and compare. One good example is that of Mantini and co-workers who provide both the 
algorithm source code and test data as additional material accompanying their paper 
(Mantini et al. 2007). Perhaps the more practical way is to standardise the test data sets so 
that different algorithms can be compared using the same data for their performance in key 
parameters such as noise removal, peak detection, peak resolution, peak extraction and 
quantification, and computing efficient, speed and power requirements. This can be viewed 
as a step towards reproducible research (Arora and Barak 2009; Deb 2001; Zheng et al. 1998). 
This type of approach is common in other areas of research. For example, in the area of 
multi-objective evolutionary optimisation (MOEA), there are standard test problems that 
algorithms are compared against (Deb 2001). Since that algorithm performance is likely to be 
dataset dependent, there should be a range of standardised benchmark datasets which 
could be obtained from real experimental setups or generated synthetically, and made 
publically available. 
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Standard performance indicators are needed in addition to standardised test data, so that 
algorithms can be quantitatively assessed and compared. For example, peak detection 
algorithms could be assessed by their false discovery rate (FDR) and sensitivity (Cruz-
Marcelo et al. 2008; Wee et al. 2008; Yang et al. 2009) or receiver operating characteristic 
(ROC) curve (Mantini et al. 2007). For assessing noise removal efficiency or for evaluating 
the preservation of peak properties after peak resolution, different measures that might be 
used include: root square error (RSE) or integrated square error (ISE) (Jagtiani et al. 2008), 
root mean square (RMS) (Barclay and Bonner 1997), relative error (RE) (Zhang et al. 2001; 
Zheng et al. 1998), individual sum of squared residuals (Vivó-Truyols et al. 2005b), signal-to-
noise ratio (SNR) and correlation coefficient (Jakubowska and Kubiak 2008). In addition to 
these performance indicators, an analysis of an algorithm's computational complexity 
(Arora and Barak 2009) would also be worth reporting. If this approach were widely 
adopted, then the performance of algorithms could be readily compared. 
Assessing algorithm performance is one step towards complete system characterisation and 
performance assurances. With appropriate quantification of the noise processes present in a 
system and bounded variation in the peak model, in conjunction with knowledge regarding 
the performance of the signal processing algorithms used, a researcher should be able to 
specify the quantitative properties of peaks along with a determined uncertainty measure. 
This would also allow systems to be compared with other (including commercial) systems 
and would ensure objective assessment of results could be made.  

5. Pattern matching - inferring chemical identity 
Given the successful extraction of peaks from an electropherogram, the next step is to use 
this summary information to identify the present chemicals. Substantial effort has been 
devoted to the algorithm development for such a purpose (Fruetel et al. 2006; García-Péreza 
et al. 2008; Liu et al. 2008; Stein and Scott 1994). As this process requires reference to a 
library of peak information, extracted from known chemicals measured in similar 
environment, we will refer to it as Pattern Matching. 
Due to uncertain inputs, the pattern matching is an inference process, resulting in 
probabilities. Inferring about the general composition of a sample, without reference to 
particular list of chemicals, is beyond what we consider possible from electrophoresis, as the 
solution for this question, based on electrophoresis results, is materially under-constraint. In 
general, we attempt to answer the following question: 
What are the odds that a particular chemical (i) is present in the sample, given the peaks 
expected from chemical i and other chemicals in the same environment?  

 
( / )

?
( / )

i

i

P Chemical DI
P Chemical DI


 

, (6) 

where D is the extracted peaks data, and I is the background library information.  
The pattern matching is encumbered by several real life constrains: the accuracy of peaks 
extraction is not assured; It is not certain that the peaks extracted from two measurements, 
performed on same sample and in the same environment, will be the same. The list of 
known chemicals may not be exhaustive; chemicals for which we do not have peaks 
information (library) may be present in the sample. It is possible that the measurement 
environment is not identical to the environment in which the library was created, leading to 
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different peaks extracted for same sample. It is also possible that several other chemicals will 
be present in the sample, influencing peaks extracted and attributed to the chemical of 
interest.  
An effective pattern matching will need to reliably account for these uncertainties, and 
consistently indicate the probabilities of chemicals presence, using our understanding that 
several other known and unknown chemicals may be present in the sample. This, in general, 
cannot be solely done using naive matching of the extracted peaks to the library peaks of the 
chemical of interest, as it ignores the possible presence of other chemicals. And, comparison 
of separate calculation of likelihoods of the peaks measured for each of the known chemicals 
ignores other information in hand, such as the possibility of presence of unknown chemicals 
and concurrent presence of chemicals. The pattern matching process will also benefit from 
ability to mount the evidence, or in other words, to learn: given peaks measured in one 
environment, the adequate process should combine this information with information 
extracted from measurement of the same sample in a different environment. Such a pattern 
matching process for electrophoresis is, to the best of our knowledge, not defined yet, and is 
the subject of future work. 

6. Concluding remarks 
In this paper we have provided an overview of the signal processing methods that have 
been used in capillary electrophoresis and other related areas. We firstly discuss the various 
models proposed in the literature for modelling peak shapes and baseline noise. Signal 
processing techniques for extracting peaks from the signal are then reviewed. This covers 
noise removal such as digital filters and wavelet transforms, peak detection, peak extraction 
and quantification. We also discuss possible approaches for assessing algorithm 
development and system performance. 
The problem of identifying peaks could be regarded as feature extraction, and problems of 
such a nature are not confined to analytical chemistry. There exists significant opportunity 
to apply ideas and adapt techniques from other disciplines (such as pattern recognition, 
adaptive control, particle swarm optimisation, evolutionary multi-objective optimisation, 
machine learning, artificial neural networks (ANN) and artificial intelligence generally), to 
the processing of signals in CE. Indeed, for real systems that may have drifting parameters 
or characteristics, techniques from other disciplines may be necessary to produce adaptable 
signal processing algorithms. 
With benchmark testing and performance assessment, we should be able to develop 
algorithms to realise effective and efficient automatic signal analysis and quantification. 
Peaks quantified could then be used as the input to an inference pattern matching stage to 
determine the analyte components present in a sample. These steps will help facilitate the 
development of CE systems that reliably perform to specification and allow users to focus 
on the experimental results of separation. 
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