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Abstract. This paper analyzes the stability of linear, lumped, quadratic, and cubic spatial
interpolation functions in finite element one-dimensional kinematic wave schemes for simulation of
rainfall-runoff processes. Galerkin’s residual method transforms the kinematic wave partial
differential equations into a system of ordinary differential equations. The stability of this system is
analyzed using the definition of the norm of vectors and matrices. The stability index, or singularity
of the system, is computed by the Singular Value Decomposition algorithm. The oscillation of the
solution of the finite element one-dimensional kinematic wave schemes results both from the
sources, and from the multiplication operator of oscillation. The results of computation experiment
and analysis show the advantage and disadvantage of different types of spatial interpolation
functions when FEM is applied for rainfall- runoff modeling by kinematic wave equations.
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1. Introduction

The need for tools which have capability
of simulating influence of spatial distribution
of rainfall and land use change on runoff
processes the development
hydrodynamic rainfall-runoff models [1, 8].
One of the basic assumptions for such models
regards the existence of a continuous layer of
water moving over the whole surface of the
catchments. Although observations show that
such conditions are rare, the assumption can
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be relaxed by considering the total flow to be
the result of the flow from many small plots
draining into a fine network of small channels.

The actual physical flow processes may be
quite complicated, but for practical purposes
there to be gained
introducing complexity into the models. As a
common way of getting optimal results, the
one-dimensional kinematic wave models [2,
5, 8, 11] are often selected. These can be
solved by different methods, one of which is
the finite element method (FEM) which is
analyzed in this paper.

The FEM models are normally derived by
the weighted residuals method, which is

is nothing from
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based on the principle that the solution
residuals should be orthogonal to a set of
weighting functions [7]:

IR0~ )W, =0,

Q
where:

- N(h)= f :partial differential equation of /;

- h~ Y a;N; : estimated solution;
l

- W;: set of weighting functions;
- N;: functions of spatial ordinate;
- a; : functions of time.

According to Peyret and Taylor [9], the
weighted residual method is a general and
effective technique for transforming partial
differential equations (PDE) into systems of
ordinary differential equations (ODE). When
h,a; and N, are functions defined on a

spatial interval (element) the method is called
FEM. The special case of weighting functions
W. = N, is called Galerkin’'s residual FEM and
it is often used for solving one-dimensional
kinematic wave rainfall-runoff models.

The numerical solutions of the finite
element schemes for overland flow and
groundwater flow in one dimensional
kinematic wave rainfall-runoff models may
often run into problems with stability and
accuracy due to oscillation of the solution.
The scheme may be considered stable when
small disturbance are not allowed to grow in
the numerical procedure. The reasons for
oscillation of the Galerkin's FEM method for
kinematic wave equations have been
discussed by Jaber and Mohtar [5].

One important factor which influences the
stability characteristics of the method is the
choice of spatial interpolation function. Jaber
and Mohtar [5] used linear, lumped and
upwind schemes for spatial approximation
and the enhanced explicit scheme for
temporal discretization. They analyzed the
stability of different schemes through Fourier

analysis and concluded that the lumped
scheme is the most suitable for solution of
kinematic wave equations.

Blandford et al [2] investigated linear,
quadratic, and cubic interpolation functions
for simulation of one-dimensional kinematic
wave by FEM and found that quadratic
elements produced the most accurate solution
when the implicit interaction procedure was
used for temporal discretization.

The results of these researches and the
mathematical implication of Galerkin’s FEM
show that the stability and accuracy of the
finite element schemes does not only depend
on the type of spatial interpolation functions,
but also on the temporal integration of the
system of ODE occurring when FEM is
applied for overland flow kinematic wave
and groundwater Boussinesq equations.

In the works cited above, the numerical
schemes have been based on equi-distant
spatial elements. In practical applications, it is
often necessary to use elements of different
size, where the discretization reflects the
variation of physical properties of the channel
or the catchments being modeled. The main
purpose of this paper is to analyze the effects
of varying size of spatial elements on the
stability of the solution. Furthermore, the
origin of instability will be discussed.

In the analysis, the numerical stability of
the various schemes will be evaluated by
investigating associated matrices using the
Singular Decomposition  (SVD)
algorithm. The following types of spatial
interpolation functions are

Value
investigated:
linear, lumped, quadratic, and cubic.

2. Finite element schemes for one-

dimensional kinematic wave equations

The one-dimensional kinematic wave
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equations have been used for simulation of
the rainfall-runoff process in small and
average size river basins with steep slopes.
They have been applied in numerous studies
for hydrological design, flood forecasting etc.
[2, 3, 6, 8 11, 12]. The one-dimensional
kinematic wave equations are normally

written in the form of the continuity equation:

oh g
LN 1
o Tk Y @

and the equation of motion for (quasi)
uniform flow:

g=ar?, @
where: h: flow depth (m); ¢ : unit-width flow
(m?/s); r(x,t): effective rainfall or lateral flow

(m/s); a=S"%In; p=5/3; n: Manning

roughness coefficient ( m* /s); S, : the surface
or bottom slope that equals to friction slope in
the case of kinematic wave approximation; x:
spatial coordinate (m); and ¢: time (s).
Equations (1) and (2) are partial differential
equations which have no general analytical
solution. However, with given initial condition
h(=0) and boundary condition /(x=0), numerical
solutions can be found. The kinematic wave
results from the changes in flow and since it is
unidirectional (from upstream to downstream),
only one boundary condition is required.
Principles of spatial discretization for the
one-dimensional kinematic wave model
using the FEM method have been presented
by Ross et al [11]. The surface area of the river
basin is divided in the cross-flow direction
into "strips". Each strip is then divided into
based on the
characteristics (e.g. slope) of the basin so that

computational elements

each element is approximately homogeneous.

For each computational element, the
variables /(x,¢) and ¢(x,t) are approximated in
the form:

)~ h= 3 N ()
- (3)
q(xt)~q= EJ N;(x)q;(t)

where: N,(x): space interpolation function

(shape function or weighting function).

It is noted that the expressions (3) should
satisfy not only Equation (1) but also the
initial condition and the boundary condition.

The  Galerkin’s  residual = method
normalizes the approximated error with
shape function over the solution domain:

M | dh; ON ;

The approximation (3) combined with the
integral (4) transforms the partial differential
Equation (1) into a system of ordinary
differential equations, which for each element
(4) takes the form:

A(e)Z—h+ B@q- 1@ —y. (5)
t

For the linear scheme, the spatial
interpolation functions can be defined as:

N@=1-y, and N,(=y,
where y=x/1; [ is the length of the element.

In this case, the matrices of Equation (5)
are written as:

O
S 20-1 1|

Lz L

e _13 6]. (&) _| 2

A = i i’ ' = ir()c,t)
6 3 2

The lumped scheme [5] is based on the
spatial interpolation functions expressed in
the forms:

N roHs L) N st
jr === ) V= {5

The heavyside function H(x) is defined as:
Hix)=0 if x<0;

Hix)=1 if x>0;

s: distance from node j-1.
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The matrices for the lumped scheme of
Equation (5) can be estimated in the form:

A(C)_ll 0
210 [

The matrix B and vector f remain
the same as linear scheme.

In the case of quadratic scheme [2], the
spatial interpolation functions are:

N, =1-3y+2y%;
N, =4y —4y*;
N, =—y+2)°%

The matrices for one element are defined
as following:

2 1 1]
15 15 30
A0_| L 8 1)
15 15 15 |
L2
| 30 15 15
12 1] 1]
2 3 6 6
B©@ — _E 0 Z : £ = 2 r(x,1)
3 3 3
1 21 ’
6 3 2| | 6 |

For cubic scheme (one element, four
nodes), spatial interpolation functions can be
expressed in the forms:

N, =1-55y+9y? —4.5)°
N, =9y -225y? +13.5)°
N, =—-4.5y +18y? —-13.5)°
N, =y-45y% +45)°
The matrices for one element are
integrated and are presented as:

8, 38, 3, 10
105 560 140 1680
38, 2o, 21, 3
A© _| 560 70 560 140 |
o8, 2, 2, 3B
140 560 70 560
9, 3, B, 3B,
| 1680 140 560 105

1o 3 7 !

2 80 10 80 8

A R

(@ _| 80 80 10| ¢ _| 8
B = 3 8t ; 57 | ' = gr(x,t)

10 80 80 8

7 3 51 !

L 80 10 80 2 | L8]

For the whole domain containing the

elements, Equation (5) has the form:
dh

AE+Bq—f =0 (6)

In the case of using lumped scheme,
matrices A; B and vector f for the domain
(strip) containing n elements can be presented
in the forms:

4 0 0 0 0 0 0
2
0 i+172 0 0 0 0 0 0
2 2
0 0 172+]73 0 0 . 0 0
2 2
0 0 0 173+174 0 0o 0 0
2 2
A= 0 0 0 0 ]E+75 0 0 0
0 0 0 0 liJrL6 0 0
2 2
0 0 0 0 0 kzyda o
2 2
0 0 0 0 0 0 1”;1*’[7” 0
2 2
0 0 0 0 0 0 0 L
2]
_L ES 0 0 0 . 0 0
2 2
_L 0 L 0 0 0 0
2 2
0 _L 0 L 0 0 0 0
2 2
0 0 _L 0 L 0 0 0
2 2
B = 0 0 0 _L 0 ES 0 0
2 2
0 0 0 0 _L 0 ES 0
2 2
0 0 0 0 _L 0 £
2 2
0 0 0 0 0 L
2 2]
hn
2
L | L
2 2
Lyry + lgrs
2 2
f= : =Cr
Lyoaluy 4 Ly,
2 2
lrlrrl
2
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For overland flow, the system of ordinary
differential equations (6), can be written in

the form:
dh

AE+Bq—Cr:O, (7)
where: C: sparse matrix containing the size of
elements; r: vector of effective rainfall.

The solution of Equation (7) can be
obtained by various numerical methods, one
of which is the standard Runge-Kutta method
and Successive Linear Interpolation for
solution of ODE with boundaries [4, 10].

In order to analyze how the stability and
accuracy of the solution schemes depends on
the choice of spatial interpolation functions,
equation (7) has been transformed into a
system of linear algebraic equations:

Ax=y, ®)

Ah
where: N =X : unknown vector;
t

y = Cr — Bq : given vector for explicit
temporal differential scheme and estimated
vector for implicit interactive scheme for each
time step.

3. Stability and error analysis

In order to evaluate the stability of
various finite element schemes, the Singular
Value Decomposition (SVD) algorithm will be
applied. It will be introduced and described
below together with the definition of some
essential vector and matrix concepts:

(i) According to the SVD algorithm [4. 10],
the matrix A (mxm) can be expressed in the
form:

A=UzV’, )
where U, V: square orthogonal matrices
(mxm), X: diagonal matrix with J; # 0 called
singular values of matrix A.

(ii) The norm of the vector x is defined as:

x| = (" o x)"? (10)

(iii) The norm of the matrix A is defined
as the maximum coefficient of extension and
can be expressed as:

lal=us v |<UliElv ] =IZ]= m A1)

The physical implication of Equation (8) is
that one vector, x, in linear space is transformed
by A into vector, y. This
transformation takes three different forms:

another

extension, compression, and turning.

The stability index, or singularity of the
matrix A, can be defined as the ratio of
maximum extension capacity over the minimum
compression capacity, expressed as [4]:

la DTy
max—m— max:

Conday—— A _F M _dmax, (12)
¥ min
S

where O, Opin ¢ Maximum and minimum
singular values of A respectively.

Now, in order to study the stability of the
solution scheme, a disturbance (oscillation)
Ay is introduced. This results in a
corresponding disturbance (oscillation) Ax in
the solution. The system of linear algebraic
equations (8) with and without oscillation
becomes:

Ax=y = [y]<[A]ex]=dms]  @3)

A(X+Ax)=y+Ay = ||Ay||28min ||Ax

where: Ax,Ady: oscillation vector of solution

7

and oscillation vector of errors respectively.
This means that:

M < Cond(A)M (14)

] I+

The relationship (14) shows that the
stability of the solution of system (8) depends
on the stability index of the matrix A with a
high value of the index indicating lower
stability. The relationship (14) also means that
the stability index (or singularity of A) may
be considered as the multiplication of
oscillation Ay:



62 Luong Tuan Anh, Rolf Larsson / VNU Journal of Science, Earth Sciences 24 (2008) 57-65

Ay =CAr-BAq. (15)

The upper limit of oscillation (15) can be
estimated by applying the definition of the
norm of vectors and matrices:

|4x] =|lcar - Bag] <

(16)
<||car|+|Bag] < SpalAr] + Snaxl 2]

B . .
where: J,,: maximum singular value of

matrix B; &5 : Maximum singular value of

matrix C.

Expression (16) shows that the source of
oscillation include oscillation in the source
term r (effective rainfall) as well as oscillation
in the advection term accumulated during the
computation process. The upper limits of
these oscillations depend on the chosen
spatial interpolation function, and they are
related with the structure of the matrices B
and C respectively. These values will be
computed and the results will be discussed
below for the selected types of interpolation
functions.

The solution of the system (8) normally
requires to inverse matrix A [5, 12]. We can
show that the singularity of the (square)
matrix A has the same value as the singularity
of the inverse matrix A" by using Equation (9):

Alt=vzu’. (17)

Application of Singular Value Decomposition
of A* gives:

A'l=UzTV’, (18)

The decompositions (9) and (18) are
"almost" unique [10]. It means that X' =3,
and:

Cond (A) = % =Cond(A™) =
min (19)
§min 5max
The relationships (14) and (19) show that
the stability and accuracy of solution of
system (8) are directly related with the

singularity of the hard matrix A.

4. Numerical experiments

In order to verify the methodology, some
basic investigations are made for different
types of interpolation schemes in section 4.1.
In section 4.2, the effect of using elements of
various lengths is investigated. Finally, in
section 4.3, the influence of different disturbance
sources is analyzed.

4.1. Stability index of matrix A for different types
of spatial interpolation functions

Now we assume that the studied strip of
surface area is divided into elements of
(equal) unit length. The index of stability of
matrix A has been computed for various
numbers of elements for each type of
interpolation function. The results of the
computations are presented in Fig. 1.

12.0

—Q—Linedar .
—a&— Quadratic
10.0 4 +8ubic

—a— Lumped
8.0 q — N N . A
6.0 \-\.‘

40 1 * *

2.0 1 / £ & £ & A

0.0

Cond(A)

>
*

*

Elements

Fig. 1. The change of stability index of matrix A.

The numerical experiments show that the
index of stability is virtually constant for each
type of interpolation scheme when the
number of elements is two or higher. It is also
clear that the lumped scheme gives the lowest
value of stability index,
quadratic and cubic schemes give 2, 3 and 4
times  higher
conclusion, the lumped scheme has the

while linear,

values respectively. In
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highest order of stability among the four
studied numerical schemes.

The results of numerical experiments
presented above agree well with the results of
analytical Fourier stability analysis for
consistent (linear) and lumped schemes that
have been presented in the work by Jaber and
Mohtar [5].

4.2. The impact of finite element approximations
Numerical

conducted in order to assess the effect of
element size on stability of the four finite

experiments have been

element schemes: linear, lumped, quadratic
and cubic. The calculations have been made
for a strip of 1000 m length, which has been
approximated by two elements. The lengths
of the two elements have been chosen
according to three different options, with
more or less asymmetric proportions: option
1 with proportions 1:1, option 2 with proportions
1:9, and option 3 with proportions 1:99.

The stability index of matrix A and the
maximum extension capacity of errors of
matrices B and C have been computed and
are shown in Table 1. The results show that
the stability of the finite element one-
dimensional kinematic wave schemes does
not only depend on the type of spatial
interpolation function, but also on the spatial
discretization of the surface strip considered.
For all four interpolation schemes, the lower
the stability is, the more disproportionate the
elements are. At the same time for all three
options, each with different geometric
proportions, the stability is higher for lumped
and linear schemes than that for quadratic
and cubic schemes.

Another conclusion is that there are two
main causes for oscillation of the solution.
One is the oscillation sources, and the other
one is the multiplication operator.

Furthermore, it should be pointed out that the
efficiency of the algorithm is an important
aspect with regards to the choice of
interpolation scheme for practical applications.
The linear and lumped schemes require n+1
equations, while quadratic and cubic schemes
require 2n+1 and 3n+1 equations respectively
for solving a problem with n elements.

Table 1. Stability index of matrix A
and maximum coefficient of oscillation

Cases of . Lum- Quad-
Linear .
study ped  ratic

Option 1 5rﬁax 0.866 0866 129 1.67
s¢ 404.5 4045 3342 1987
max

Cond (A) 3.73 2.00 583 813
Option 2 5;13&)( 0.866 0.866 129 1.67

Cubic

5nfax 452.8 452.8 6185 355.8
Cond (A) 14.6 10.0 412 63.1
Option3 53 0.866 0.866 129 1.67

max

5r§ax 495.0 495.0 680.3 3913
Cond (A) 149.6 100.0 448.8 688.6

4.3. The upper limit of oscillation sources for
different types of spatial interpolation functions

If the oscillation occurring at a given time
step are supposed to be equal for different
types of spatial functions, then the upper
limit of source of oscillation will be related
with the maximum singular values of
matrices B and C. The structure of these
matrices is depended on the type of
functions. The
singular values of B and C for unit elements

interpolation maximum
of equal length have been computed and are
presented in Table 2.

The results show that for advection
oscillation, both the linear and the lumped
schemes give values that are nearly
independent of the number of elements,

while the quadratic and cubic schemes exhibit
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increasing values for increasing number of
elements (see Fig. 2). The experiment also
shows that linear and lumped schemes have
the same source of oscillation. They can also
control the advection oscillation better than
quadratic and cubic ones. However, the
oscillation of effective rainfall component is
better controlled by quadratic and cubic
schemes than by lumped and linear ones.

Table 2. Maximum coefficients of source of oscillation

Number of Para- . Lum- Quad- .
elements  meters Linear ped ratic Cubic
1 St 1.0 1.0 116 155
S o 0.500  0.500 0.667 0.375
2 5L 0.866 0.866 129  1.67
3 o 0.809 0.809 0.689 0.398
3 sk 1.0 1.0 133 171
S o 0.901 0901 0.689 0.398
4 SL. 0951 0951 134 1.73
3 o 0.940 0940 0.689 0.398
5 5L 1.0 1.0 135 174
3 o 0.960 0.960 0.689 0.398
6 5L 0975 0975 135 1.75
S o 0971 0971 0.689 0.398
7 St 1.0 1.0 135 175
S 0.978 0978 0.689 0.398

2.0

- A/k/“_—ﬁ

2

k3]

I ./._A_q——l—l—.

Q

IS

o

15

‘» 1.0 4 W

j =

Q

=

@

3

= 05 —e— Lumped/Linear
—&— Quadratic
—a— Cubic

0.0
1 2 3 4 5 6 7

Elements

Fig. 2. The change of maximum extension capacity
of matrix B.

5. Conclusions

This paper analyses the sources and
causes of oscillation of solutions for finite
rainfall-runoff
models when different types of spatial
interpolation

element one dimensional

functions is applied for
overland flow kinematic wave simulation. It
does so by applying the definition of norm of
vectors and matrices and the Singular Value
Decomposition (SVD) algorithm.

The structure of matrix A, which contains
sizes of the finite elements, is related to the
type of spatial interpolation function which is
applied. From the above presented results
and discussions, it can be concluded that the
stability index or singularity of matrix A can
be considered as an effect of multiplication of
oscillation occurring during computation
process. It will affect the stability and
accuracy of the solution of finite element one-
dimensional kinematic wave schemes, and it
is actually one of the main causes of
oscillation of solutions.

The results of computation experiment
show the advantage and disadvantage of
different types of spatial interpolation
functions when FEM is applied for rainfall-
runoff kinematic wave models. If the reason
for growing oscillation is seen as the most
important criterion for assessing stability of
numerical schemes, the lumped and linear
schemes have higher order of stability than
the quadratic and cubic schemes. However,
when the lumped scheme is used, the matrix
A becomes a diagonal matrix and then the
algorithm is more efficient than all other three
types of schemes.

The results also show that the finite
element one-dimensional kinematic wave
schemes can be improved by choosing the
most suitable spatial interpolation function
for decreasing the singularity of matrix A and
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minimize the source of oscillation. The spatial
interpolation functions of higher order do not
always give improved results when finite
element method is used for kinematic wave
rainfall-runoff models.
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