

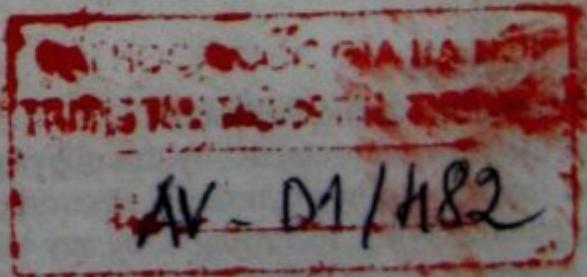
331
MIT
1997

Applied Asymptotic Methods in Nonlinear Oscillations

by

YU. A. MITROPOLSKII

*Institute of Mathematics,
Kiev, Ukraine*


and

NGUYEN VAN DAO

*Vietnam National University,
Hanoi, Vietnam*

KLUWER ACADEMIC PUBLISHERS
DORDRECHT / BOSTON / LONDON

CONTENTS

Preface	ix
Chapter 1. Free Oscillations of Quasi-linear Systems	1
1. Free oscillations of systems governed by a general second order differential equation	1
2. Conservative systems	10
3. Dissipative systems	17
4. Stationary amplitudes and their stability	20
5. Equivalent linearization of nonlinear oscillatory systems	22
6. Nonlinear oscillatory systems with slowly varying parameters. Adiabatic invariants.	25
7. Free oscillations of systems governed by a third order differential equation	41
8. Free oscillations of systems governed by N -order differential equation	49
Chapter 2. Self-excited Oscillations	58
1. Lienard and Routh-Hurwitz criteria. Stability of equilibrium states	58
2. Self-excited oscillations of a mechanical system	72
3. Dynamic absorber for quenching self-excited oscillations of the mechanical systems having one degree of freedom	75
4. Dynamic absorber for quenching self-excited oscillations of systems having two degrees of freedom	85
5. Self-excited oscillation of a system with N degrees of freedom	90
6. Dynamic absorber for a beam undergoing self-excited oscillation	94
7. Absorber for self-excited oscillations of a plate	100
Chapter 3. Forced Oscillations	107
1. Statement of the problem	107
2. Nonresonance case	109
3. Resonance case	118
4. External harmonic excitation of a nonlinear oscillator. Duffing's equation. Jump phenomenon	129
5. Subharmonic oscillations	137
6. Nonstationary oscillations	145
7. Multi-frequency oscillations in systems with one degree of freedom	156
8. Forced oscillation of systems governed by N -order differential equation	164
9. Single-frequency oscillations in nonlinear systems with multiple degrees of freedom	178
10. Multi-frequency oscillations in nonlinear systems with multiple degrees of freedom	180
Chapter 4. Parametrically-excited Oscillations	196
1. Some examples of parametrically-excited oscillators	196
2. Behaviour of oscillators governed by a Mathieu equation	199
3. Oscillators governed by a nonlinear Mathieu equation	206
4. Some generalized Mathieu equations	211
5. Parametric oscillations of mechanical systems with hysteresis	226

6. Indirectly-excited parametric oscillations	234
7. Parametrically - excited oscillations in an electromechanical system	239
Chapter 5. Interaction of Nonlinear Oscillations	245
1. Forced oscillations of systems with self excitation. Synchronization effect	245
2. Interaction between self-excited and parametric oscillations	254
3. Generalized Van Der Pol equation	257
4. Interaction of subharmonic oscillations	263
5. Interaction between parametric and forced oscillations in multidimensional systems	272
Chapter 6. Averaging Method	282
1. The idea of averaging by Bogoliubov	283
2. Averaging differential equations with slowly varying parameters	291
3. Averaging in systems excited by impulsive forces	293
4. Conditions for uniformity in the averaging method	297
5. Averaging in systems containing slow and rapid motions	300
6. Averaging in systems containing rotation. Motion of satellites	303
7. Modified averaging methods	319
8. Averaging method and stability of motion in the critical case	322
Appendix 1. Principal Coordinates	327
Appendix 2. Some Trigonometric Formulae Often Used in the Averaging Method	331
References	332
Index	336