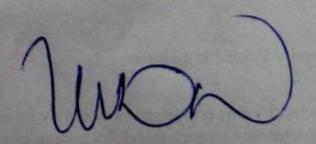
ASYMPTOTIC METHODS

OF


NONLINEAR DYNAMICS


Mitropolskii Yuri Alekseevich

Institute of Mathematics, Kiev National Academy of Sciences of Ukraine

Nguyen Van Dao

Vietnam National University, Hanoi, Vietnam

CONTENTS

Pretace	1X
SECTION I. INTRODUCTORY LECTURES	
Lecture 1. Introduction	1
Lecture 2. Examples of nonlinear oscillating systems	6
Lecture 3. Idea of Poincare's method	19
Lecture 4. Secular terms, Lindstedt's method and Liapunov's method	30
SECTION II. ASYMPTOTIC METHODS	
Lecture 5. Asymptotic method of Krylov and Bogoliubov for autonomous systems	49
Lecture 6. Asymptotic method of Krylov and Bogoliubov for autonomous systems (continued)	64
Lecture 7. Asymptotic method of Krylov and Bogoliubov for non- autonomous systems	88
Lecture 8. Asymptotic method of Krylov and Bogoliubov for non- autonomous systems (continued)	112
Lecture 9. Nonlinear differential equations with deviated argument	135
Lecture 10. Influence of periodic forces on oscillating systems with delay	146
Lecture 11. Oscillations described by integro-differential equations.	157

	Energetic method of construction of asymptotic approximate solutions	164
Lecture 13.	Nonlinear oscillations of systems with slowly varying	101
	parameters	171
Lecture 14.	The influence of external "periodic" forces on the nonlinear	
	systems with slowly varying parameters. The passage	
1	through resonance	185
Lecture 15.	Adiabatic invariants	204
Lecture 16.	Asymptotic methods for studying relaxation oscillatory	
	systems	219
Lecture 17.	Asymptotic series and their properties. Poincare's theorem	
	on asymptotic integration	239
	SECTION III. AVERAGING METHODS	
Lecture 18.	Averaging method within celestial mechanics	249
Lecture 19.	Van der Pol's method of averaging	262
Lecture 20.	Bogoliubov's method of averaging	280
Lecture 21.	Pendulum with oscillating suspension point	302
Lecture 22.	Mathematical foundation of the averaging method of	
	Bogoliubov	310
Lecture 23.	Averaging in the canonical and nearby systems	321
Lecture 24.	Averaging in systems excited by momentary forces	326
Lecture 25.	Method of averaging for stochastic systems	332
Lecture 26.	Development of averaging method and the method of	
WALL BY	separation of variables	351
Lecture 27.	Stroboscopic method and its connection with the averaging	
	method	362
Lecture 28.	Method of multiple scales of Nayfeh and averaging method	370

SECTION IV. INTERACTION OF NONLINEAR OSCILLATIONS

Lecture 29	9. Forced oscillations of system with self-excitation.	
	Synchronization effect	380
Lecture 30.	The interaction between external and parametric excitations	
	of the first degree	392
Lecture 31.	The interaction between external and parametric excitations	
	of the second degree	407
Lecture 32.	The interaction between external and parametric excitations	
	of the third degree	418
Lecture 33.	Van der Pol's system under the parametric excitation of the	
	first degree and forced external excitation	430
Lecture 34.	Van der Pol's system subjected to the parametric excitation	
	of second degree and external excitation	441
Lecture 35.	Van der Pol's system subjected to parametric excitation of	
	the first and third degrees	458
Lecture 36.	Van der Pol's system with variable nonlinear friction	470
References		486
Index		490