2006

Scale-Up in Chemical Engineering

Second, Completely Revised and Extended Edition

ĐẠI HỌC QUỐC GIA HÀ NỘI TRUNG TÂM THÔNG TIN THƯ VIỆN

AV-01/ 1786

WILEY-VCH Verlag GmbH & Co. KGaA

Contents

Preface to	the 1st Edition XIII
Preface to t	the 2nd Edition XV
Symbols	XVII
1	Introduction 1
2	Dimensional Analysis 3
2.1	The Fundamental Principle 3
2.2	What is a Dimension? 3
2.3	What is a Physical Quantity? 3
2.4	Base and Derived Quantities, Dimensional Constants 4
2.5	Dimensional Systems 5
2.6	Dimensional Homogeneity of a Physical Content 7
Example 2:	What determines the period of oscillation of a pendulum? 7 What determines the duration of fall θ of a body in a homogeneous gravitational field (Law of Free Fall)? What determines the speed v of a liquid discharge out of a vessel with an opening? (<i>Torricelli's</i> formula) 9
example 3:	Correlation between meat size and roasting time 12 The Pi Theorem 14
	Generation of Pi-sets by Matrix Transformation 17
example 4:	The pressure drop of a homogeneous fluid in a straight, smooth pip (ignoring the inlet effects) 17
xample 5:	Scale Invariance of the Pi-space – the Foundation of the Scale-up 25 Heat transfer from a heated wire to an air stream 27

5	Important Tips Concerning the Compilation of the Problem Relevance List 31
5.1	Treatment of Universal Physical Constants 31
5.2	Introduction of Intermediate Quantities 31
Example 6:	Homogenization of liquid mixtures with different densities and viscosities 33
Example 7:	Dissolved air flotation process 34
6	Important Aspects Concerning the Scale-up 39
6.1	Scale-up Procedure for Unavailability of Model Material Systems 39
Example 8:	Scale-up of mechanical foam breakers 39
6.2	Scale-up Under Conditions of Partial Similarity 42
	Drag resistance of a ship's hull 43
Example 10): Rules of thumb for scaling up chemical reactors: Volume-related
	mixing power and the superficial velocity as design criteria for mixing vessels and bubble columns 47
7	Preliminary Summary of the Scale-up Essentials 51
7.1	The Advantages of Using Dimensional Analysis 51
7.2	Scope of Applicability of Dimensional Analysis 52
7.3	Experimental Techniques for Scale-up 53
7.4	Carrying out Experiments Under Changes of Scale 54
8	Treatment of Physical Properties by Dimensional Analysis 57
8.1	Why is this Consideration Important? 57
8.2	Dimensionless Representation of a Material Function 59
Example 11	1: Standard representation of the temperature dependence of the viscosity 59
Example 12	2: Standard representation of the temperature dependence of den- sity 63
Evample 13	3: Standard representation of the particle strength for different materi-
Lampic 13	als in dependence on the particle diameter 64
Evample 14	4: Drying a wet polymeric mass. Reference-invariant representation of
Lampic 1	the material function $D(T, F)$ 66
8.3	Reference-invariant Representation of a Material Function 68
8.4	Pi-space for Variable Physical Properties 69
Evample 15	5. Consideration of the dependence $\mu(T)$ using the $\mu_{\rm w}/\mu$ term 70
Example 16	6: Consideration of the dependence $\rho(T)$ by the Grashof number Gr 72
8.5	Rheological Standardization Functions and Process Equations in
0.5	Non-Newtonian Fluids 72
8.5.1	Rheological Standardization Functions 73
8.5.1.1	Flow Behavior of Non-Newtonian Pseudoplastic Fluids 13
	Viacoolastic Fluids 76
8.5.1.2	Flow Behavior of Non-Newtonian Viscoelastic Fillius
8.5.1.2 8.5.1.3	Flow Behavior of Non-Newtonian Viscoelastic Fluids 76 Dimensional-analytical Discussion of Viscoelastic fluids 78 Elaboration of Rheological Standardization Functions 80

VIII | Contents

Examp	ple 17: Dimensional analytical	ontents
	ple 17: Dimensional-analytical treatment of Weissenberg's phenomenon Instructions for a PhD thesis 81	
8.5.2	Process Fountiers 6 - W	
8.5.2.1	Process Equations for Non-Newtonian Fluids 85 Concept of the Effective Vi	
8.5.2.2	of the Ellective Viccogity	0 00
	Fluids 87	an 86
Exampl	le 18: Power characteristics of a stirrer 87	
Exampl	19. Homogenization characteristics of a stimulation	
8.5.2.3	Process Equations for Thermal Processes in Association with	
	Non-Newtonian Fluids 91	
8.4.2.4	Scale-up in Processes with Non-Newtonian Fluids 91	
	mai Non-Newtonian Fluids 91	
9	Reduction of the Pi-space 93	
9.1	The Rayleigh - Righouchingl- C	
Example	20: Dimensional-analytical treatment of Boussinesq's problem 95	
Example	21: Heat transfer characteristic of a stirring vessel 97	
	of a stirring vessel 97	
10	Typical Problems and Maria	
10.1	Typical Problems and Mistakes in the Use of Dimensional Analysis Model Scale and Flow Condition	101
10.1.1	and and flow Conditions - Colorin and 1 11.	01
10.1.2	or the Laboratory Device and Fluid Deman.	
10.1.3	Dize of the Laboratory Device and the Pi-space 103	
	Mixing 104	
10.1.4	Micro Mixing and the Selectivity of Complex Chemical	
10.1-	reactions 105	
10.1.5	Mini and Micro Plants from the Viewpoint of Scale-up 105	
10.2	Ulisausiactory Sensitivity of the Torrest O	
10.2.1	Mixing Time θ 106	
10.2.2	Complete Suspension of Solids According to the 1-s Criterion	
10.3	and out of Magazine	106
10.3.1	Determination of the Ctime D	
10.3.2	Mass Transfer in Surface A	
10.4	Complete Pocordina Cul Pi	
10.5	Correct Procedure of the Pi-set by Experiment 109	
10.5.1	Correct Procedure in the Application of Dimensional Analysis Preparation of Maddal F	11
10.5.2	reparation of Model Experiments 111	
	Execution of Model Experiments 111	
10.5.3	Evaluation of Test Experiments 111	
1	Ontimization	
	Optimization of Process Conditions by	
vample 22.	Combining Process Characteristics 113	
Marriple 22.	Determination of stirring conditions in order to carry out a	
	nomogenization process with minimum miving work 112	
anipie 25.	Process characteristics of a self-aspirating hollow stirrer and the de	ter-
	miliation of its optimum process conditions 118	
xample 24:	Optimization of stirrers for the maximum removal of reaction	
	heat 121	

Selected Examples of the Dimensional-analytical Treatment of Processes in the Field of Mechanical Unit Operation
The chain of the operations 125
Introductory Remark 125
Example 25: Power consumption in a gassed liquid. Design data for stirrers and model experiments for scaling up 125
- Permiento foi scalino im 175
Example 26: Scale-up of mixers for mixing of colider and
Example 2/: Conveying characteristics of single gerow
Example 29: The hanging film phenomenon 143
Example 30: The production of liquid /liquid and 1.
Example 31: Fine grinding of solids in stirred media mills 150
Example 32: Scale-up of flotation cells for waste water purification 156
Example 33: Description of the towns 1
Example 33: Description of the temporal course of spin drying in centrifugal filters 163
Example 34: Description of particle separation by means of inertial forces Example 35: Gas hold up in bubble 1
The solution of the bubble columns 170
Example 36: Dimensional analysis of the tableting process 174
Process 1/4
Selected Examples of the Dimensional-analytical Treatment of Processes
in the Field of Thermal Unit Operations 181
13.1 Introductory Remarks 181
Example 37: Steady-state heat transfer in mixing vessels 182
Example 38: Steady-state heat transfer in pipes 184
Example 39 Steady-state heat transfer in bubble columns 185
Foundations of the Mass Transfer in a Gas/Liquid (C/L) Contact
11 short introduction to Examples 40, 41 and 42 189
Example 40: Mass transfer in surface aeration 191
Example 41: Mass transfer in volume aeration in mixing vessels 193
Example 42: Mass transfer in the C/L queter in 1 111
Example 42: Mass transfer in the G/L system in bubble columns with injectors as
gas distributors. Otimization of the process conditions with respect to
the efficiency of the oxygen uptake $E \equiv G/\Sigma P$ 196
Coalescence in the Gas/Liquid System 203
Example 43: Scaling up of dryers 205
Selected Examples for the Dimensional Late 1 -
Selected Examples for the Dimensional-analytical Treatment of Processes
in the Field of Chemical Unit Operations 211
Introductory Remark 211
Example 44: Continuous chemical reaction process in a tubular reactor 212
Example 45: Description of the mass and heat transfer in solid-catalyzed gas
reactions by dimensional analysis 218
Example 46: Scale-up of reactors for catalytic processes in the petrochemical
industry 226
Example 47: Dimensioning of a tubular reactor, equipped with a mixing nozzle,

designed for carrying out competitive-consecutive reactions 229