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MỞ ĐẦU  

Kiểm chứng mô hình là một trong các phương pháp kiểm tra tính 
đúng đắn của hệ thống đang ngày càng trở nên phổ biến. Với những 
thành tựu của mình, kiểm chứng mô hình đã đóng góp nhiều phương 
pháp, thuật toán, cấu trúc dữ liệu và trên cơ sở đó cung cấp nhiều bộ 
công cụ cho phép việc kiểm tra có thể được tiến hành một cách tự 
động. Tuy nhiên cho đến hiện nay, tình hình chung của kiểm chứng 
mô hình chủ yếu tập trung vào các hệ phi thời gian hoặc các tính chất 
thời điểm của hệ thời gian thực, tính chất thời khoảng vẫn còn ít thuật 
toán và hầu như các thuật toán này chỉ giải quyết bài toán theo ngữ 
nghĩa đã thu hẹp của tính chất cần kiểm chứng. 

Từ đó, mục đích của luận án là quan sát và thiết kế thuật toán 
kiểm chứng các tính chất thời khoảng theo ngữ nghĩa tổng quát của 
nó. Đó là lớp các hệ thống được biểu diễn bởi ôtômat thời gian và 
các tính chất khoảng được biểu diễn bởi các công thức trong lôgic 
khoảng như công thức khoảng tuyến tính (LDP), công thức bất biến 
khoảng tuyến tính (LDI). 

Để đề xuất thuật toán kiểm chứng các công thức trên, luận án sử 
dụng phương pháp qui hoạch tuyến tính. Trong đó, chúng tôi đề 
nghị phép toán hợp song song để biểu diễn lưới ôtômat thời gian thực 
bởi biểu thức chính quy thời gian, từ đó thiết lập bài toán qui hoạch 
tuyến tính và chứng minh kết quả giải bài toán qui hoạch tuyến tính 
cũng là kết quả của bài toán kiểm chứng. Một phương pháp khác 
cũng được chúng tôi sử dụng, đó là duyệt đồ thị vùng đạt được. Để sử 
dụng phương pháp này chúng tôi chứng minh tính rời rạc hoá được 
của các công thức LDP, LDI, từ đó xây dựng các đồ thị trọng số, đồ 
thị "rời rạc", và các thuật toán duyệt trên những đồ thị này để cung 
cấp câu trả lời cho bài toán kiểm chứng. Kết quả này đã được báo 
cáo tại các xemine, hội nghị trong nước và nước ngoài, đã đăng trong 
tạp chí khoa học của Đại học Quốc gia Hà Nội, và được xuất bản bởi 
các nhà xuất bản IEEE và Springer-Verlag. 

Cấu trúc của luận án gồm 4 chương. Trong chương 1 chúng tôi 
trình bày tóm tắt một số đặc trưng của kiểm chứng mô hình, các kết 
quả và các mặt hạn chế còn tồn tại trong lĩnh vực kiểm chứng tính 
chất thời khoảng cho đến thời điểm hiện nay. Các công cụ cơ bản 

dùng để đặc tả hệ thống và tính chất như ôtômat thời gian và lôgic 
khoảng được trình bày trong chương 2. Chương 3 và 4 dùng để trình 
bày kết quả. Trong đó, ở chương 3 chúng tôi trình bày phương pháp 
kiểm chứng bằng qui hoạch tuyến tính và trong chương 4 chúng tôi 
trình bày phương pháp duyệt đồ thị phân vùng trên cơ sở rời rạc hóa 
được của các công thức. Để minh hoạ các thuật toán đã trình bày, 
một bộ kiểm chứng mô hình đơn giản do chúng tôi cài đặt cũng được 
mô tả trong phụ lục A.  
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Chương 1 
KIỂM CHỨNG MÔ HÌNH VÀ HỆ THỜI GIAN THỰC 

1.1 ĐẶC TẢ VÀ KIỂM TRA HỆ THỐNG 
Mục đích chính của các phương pháp hình thức là giúp tạo ra khả 

năng cho phép xây dựng và phát triển các hệ thống hoạt động được 
một cách đúng đắn, đáng tin cậy. Cách đây vài thập kỷ, nhiệm vụ này 
là hết sức khó khăn, chủ yếu từ việc chưa có một phương pháp nhất 
quán để mô tả hệ thống, từ đó không tạo được nền tảng để xây dựng 
những kỹ thuật kiểm tra thống nhất và dẫn tới cách thức kiểm tra 
không hữu hiệu, thiếu tính thuyết phục.  

Do vậy, để thực hiện nhiệm vụ kiểm tra, trước hết hệ thống phải 
được đặc tả một cách rõ ràng và nhất quán. Đặc tả là quá trình mô tả 
hệ thống và các tính chất mong muốn của nó bằng một ngôn ngữ cụ 
thể. Tính chất của hệ thống có thể bao gồm nhiều loại: dáng điệu 
chức năng, dáng điệu thời gian, đặc trưng hoạt động, hoặc cấu trúc 
nội tại. Một ngôn ngữ đặc tả cần đủ khả năng để mô tả được hệ thống 
và các loại tính chất của nó. Thông thường, đặc tả hình thức dùng 
một ngôn ngữ với cú pháp và ngữ nghĩa xác định nên mang tính ổn 
định và nhất quán cao. Ví dụ một vài ngôn ngữ đặc tả như Z, VDM, 
RAISE sử dụng các cấu trúc toán học như tập hợp, quan hệ, hàm ... 
và hiện nay vẫn đang được sử dụng khá thành công trong nhiều lĩnh 
vực. Các hệ thống cũng có thể được trừu tượng hoá bằng một số công 
cụ biểu diễn khác như ôtômat, biểu thức chính quy, lưới Petri, đại số 
tiến trình hay bằng các hệ lôgic.  

Theo truyền thống, kiểm tra là chứng minh về mặt toán học 
chương trình hay hệ thống thoả mãn yêu cầu đặt ra, nói cách khác hệ 
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thống phải làm việc đúng như phân tích và thiết kế trong phần đặc tả. 
Trong thập kỷ 70 đã có nhiều công trình trình bày các kỹ thuật chứng 
minh được đưa ra bởi Dijkstra, Floyd, Gries, Hoare, Owicki, Manna, 
Plueni và nhiều tác giả khác. Vào đầu thập kỷ 80, Clarke, Emerson, 
Queille, Sifakis đề nghị một phương pháp khác có nhiều ưu điểm hơn 
được gọi là kiểm chứng mô hình. Phương pháp này cho phép người 
dùng có thể sử dụng máy tính và các phần mềm được lập trình sẵn để 
kiểm tra tự động sản phẩm thiết kế của mình trước khi sản xuất. Dựa 
trên hai phương pháp này nhiều công cụ kiểm tra đã ra đời như hệ 
chứng minh định lý (theorem prover) hay các bộ kiểm chứng mô hình 
(model checker). Trong luận án này chúng tôi quan tâm đến phương 
pháp thứ hai tức kiểm chứng mô hình và trong phần tiếp theo chúng 
tôi sơ lược lại một vài kết quả của phương pháp đó. 
1.2 KIỂM CHỨNG MÔ HÌNH 

Thuật ngữ kiểm chứng mô hình (model checking) được E.M. 
Clarke và E.A. Emerson đưa ra lần đầu tiên vào năm 1981: "Kiểm 
chứng mô hình là một kỹ thuật tự động mà cho trước một mô hình 
trạng thái hữu hạn và một tính chất logic, kỹ thuật sẽ cho phép kiểm 
tra một cách hệ thống một trạng thái (hoặc mô hình) liệu có thoả mãn 
tính chất đó". Cụ thể bài toán kiểm chứng mô hình có thể được viết 
dưới dạng: S ⊨ P ?, trong đó S là mô hình hệ thống, P là một tính 
chất và ⊨ kí hiệu cho vị từ "thoả được". Câu hỏi đặt ra là "Liệu hệ 
thống S có thoả mãn tính chất P ?" 

Thông thường S được thể hiện bởi ôtômat và P được biểu diễn 
bởi các công thức trong lôgic nào đó. Có vài hướng tiếp cận để giải 
bài toán. Hướng tiếp cận thứ nhất được nghiên cứu bởi Clarke và 
Emerson (1981), và cũng bởi Queille và Sifakis (1981) một cách độc 
lập. Theo hướng tiếp cận này, một thủ tục duyệt trên không gian 
trạng thái của hệ thống sẽ được sử dụng để kiểm tra liệu bất kỳ dãy 
chuyển trạng thái nào của hệ cũng thoả mãn tính chất. Hướng tiếp 
cận thứ hai dựa vào bài toán kiểm tra tính rỗng của ngôn ngữ (Alur, 
Kurskan 1994). Theo hướng tiếp cận này, tính chất P cũng được thể 
hiện bởi một ôtômat. Nếu ngôn ngữ L(S) được sinh bởi S là chứa 
trong ngôn ngữ L(P) được sinh bởi P thì S thoả P. Mặt khác, do L(S) 
⊆ L(P) ⇔ L(S x ¬P) = ∅ nên có thể chuyển bài toán trên về bài 
toán kiểm tra tính rỗng của ngôn ngữ sinh bởi ôtômat tích.  
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Nhược điểm của phương pháp kiểm chứng mô hình là bài toán 
bùng nổ không gian trạng thái (số trạng thái tăng nhanh theo số thành 
phần của hệ thống). Để khắc phục, một số tác giả đưa ra kỹ thuật biểu 
diễn bằng kí hiệu (symbolic model checking), với đặc trưng chính là 
biểu diễn mọi thành phần của bài toán (trạng thái, phép chuyển, tính 
chất) thông qua các kí hiệu đại diện. Kỹ thuật này cho phép sử dụng 
các sơ đồ biểu diễn nhị phân BDD (Binary Decision Diagram) với dữ 
liệu được cài đặt tốn rất ít bộ nhớ và các phép toán trên nó được thực 
hiện một cách rất hữu hiệu. Trên cơ sở này năm 1992, Clarke và 
McMillan đã xây dựng bộ kiểm chứng mô hình đầu tiên với tên gọi 
SMV (Symbolic Model Verifier) cho phép kiểm chứng các hệ thống 
với số lượng trạng thái lên đến 1020 trạng thái. Các kỹ thuật tương tự 
và trên cơ sở đó một số bộ kiểm chứng mô hình khác cũng dần ra đời 
phục vụ cho kiểm chứng các hệ thời gian thực. 

Hệ thời gian thực là các hệ thống mà tính đúng đắn của nó liên 
quan chặt chẽ đến các ràng buộc về mặt thời gian như thời gian thực 
hiện, thời gian hưởng ứng, chu kỳ tác vụ, thời gian trễ trong tương 
tác, truyền thông v..v... Đầu thập kỷ 90 một số công cụ đặc tả các hệ 
thời gian thực lần lượt ra đời mà nền móng cơ bản nhất là ôtômat thời 
gian (Alur và Dill − 1994), và các logic để đặc tả các tính chất cần 
kiểm chứng cũng được mở rộng thành các lôgic thời gian thực như 
lôgic cây tính toán theo thời gian, lôgic khoảng.   

Tư tưởng phổ biến của các bộ kiểm chứng thời gian thực là duyệt 
đồ thị vùng (region graph) của ôtômat thời gian. Vì số lượng các 
vùng là rất lớn nên một số biện pháp thu gọn cũng được đề nghị. Ví 
dụ, kết hợp nhiều vùng thành miền (zones) dựa trên các kỹ thuật như 
mô phỏng (simulation), trừu tượng hoá (abstract), hoặc lược bỏ bớt 
các phép chuyển đan xen thừa trong hợp các thành phần bằng kỹ 
thuật thứ tự bộ phận (partial orders), kết hợp với tối ưu hoá cấu trúc 
dữ liệu. Các kỹ thuật symbolic và on-the-fly (kỹ thuật kiểm chứng 
song song với quá trình sinh trạng thái để tiết kiệm bộ nhớ) cũng 
được áp dụng, từ đó các bộ kiểm chứng thời gian thực thường xuyên 
được cải tiến và ngày càng hữu hiệu hơn. Tuy nhiên, các bộ kiểm 
chứng này cũng mới tập trung chủ yếu vào các tính chất thời điểm. 

Để kiểm chứng các tính chất thời khoảng (là tính chất liên quan 
đến độ dài khoảng thời gian xuất hiện của các trạng thái) Zhou 
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Chaochen và đồng sự lần đầu tiên (1991) đã xây dựng một hệ lôgic 
có khả năng đặc tả các tính chất này được gọi là hệ lôgic khoảng 
(Duration Calculus − DC). Trên cơ sở đó một số thuật toán của Zhou 
Chaochen, Henzinger, Kesten, Dang Van Hung, Li XuanDong, Zhao 
Jianhua, Li Yong ... đã dần dần được xây dựng. Tuy nhiên, bài toán 
kiểm chứng tính chất thời khoảng là khó hơn rất nhiều so với kiểm 
chứng tính chất thời điểm, do vậy các kết quả trên chỉ mới dừng lại 
trên các lớp con của ôtômat thời gian và/hoặc với ngữ nghĩa thu hẹp 
của các tính chất khoảng. Trong luận án này chúng tôi đề nghị các 
thuật toán kiểm chứng với lớp hệ thống mở rộng hơn và các tính chất 
thời khoảng được xét trong ngữ nghĩa tổng quát hơn. 

Chương 2 
ĐẶC TẢ HỆ THỐNG VÀ TÍNH CHẤT 

Để đặc tả hệ thống thời gian thực, luận án sử dụng ôtômat thời 
gian, còn tính chất thời khoảng sẽ được đặc tả bởi các công thức 
khoảng trong DC. Chương này giới thiệu tóm tắt về hai công cụ đó. 
2.1 MÔ HÌNH THỜI GIAN 
2.1.1 Thể hiện đồng hồ và ràng buộc thời gian 
Để đánh dấu và đo lượng thời gian chúng ta sử dụng một tập hữu 

hạn X các biến thời gian x (hay còn gọi là các "đồng hồ") lấy giá trị 
mặc định trên tập số thực R+. Một bộ ν bất kỳ các giá trị đồng hồ 
được gọi là thể hiện đồng hồ (clock interpretations) hay còn gọi ngắn 
gọn là thể hiện. Một giá trị của x trong bộ ν được kí hiệu bởi ν(x). 

Cho δ ∈ R+ là một số thực không âm và λ ⊆ X là tập con các 
đồng hồ của X. Khi đó ν + δ kí hiệu cho thể hiện gán mỗi đồng hồ x 
tới giá trị ν(x) + δ, và ν[λ := 0] là một thể hiện nhận được từ ν bằng 
cách gán 0 tới mỗi x ∈ λ. Một ràng buộc thời gian là một công thức ϕ 
được cho theo cú pháp ϕ := x ≤ c | c ≤ x | x − y ≤ c | c ≤ x − y | ϕ ∧ ϕ, 
ở đây x, y ∈ X và c ∈ N. Một thể hiện ν được gọi là thoả ràng buộc ϕ 
nếu thay mọi biến x trong ϕ bởi ν(x) ta nhận được một công thức 
đúng, và kí hiệu ν ⊨ ϕ, ngược lại ta kí hiệu ν ⊭ ϕ.  
2.1.2 Kỹ thuật phân vùng đồng hồ 

Kí hiệu Φ(X) là tập các ràng buộc đồng hồ trên X. Cho φ ⊆ Φ(X), 

gọi c
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→

x là số nguyên c lớn nhất xuất hiện trong các ràng buộc của đồng 
hồ x trong φ. Alur và Dill đề xuất một quan hệ tương đương trên tập 
các minh họa hướng tới φ như sau. Kí hiệu t và fr(t) lần lượt là 
phần nguyên và phần thập phân của số thực t. Hai thể hiện ν và ν' 
được gọi là tương đương và được kí hiệu ν ≅ ν' nếu: 

− ∀x ∈ X, hoặc ν(x) = ν'(x) hoặc cả hai cùng lớn hơn cx ,  
− ∀x, y ∈ X và ν(x) ≤ cx, ν(y) ≤ cy thì fr(ν(x)) ≤ fr(ν(y)) khi và 

chỉ khi fr(ν'(x)) ≤ fr(ν'(y)) ,  
− ∀x ∈ X và ν(x) ≤ cx thì fr(ν(x)) = 0 khi và chỉ khi fr(ν'(x)) = 0.  
Quan hệ ≅ phân hoạch tập các minh họa đồng hồ thành các lớp 

tương đương gọi là vùng đồng hồ (clock regions) với tính chất: hai 
minh họa thuộc cùng một vùng đồng hồ sẽ cùng thoả hoặc cùng 
không thoả một ràng buộc bất kỳ trong φ. Vùng đồng hồ chứa ν được 
kí hiệu bởi [ν] và dễ dàng chứng minh được số vùng là hữu hạn.  

2.2 ÔTÔMAT THỜI GIAN 
2.2.1 Cú pháp và ngữ nghĩa 

Ôtômat thời gian là một bộ A  = <S, s0, Σ, X, I, E>, trong đó S là 
tập hữu hạn các vị trí, s0 ∈ S là vị trí ban đầu, Σ là tập hữu hạn các 
nhãn, X là tập hữu hạn các đồng hồ, I là một ánh xạ gán mỗi vị trí s 
∈ S với một ràng buộc đồng hồ I(s) được gọi là bất biến của s, E ⊆ S 
x Φ(X) x Σ x 2X x S là tập hữu hạn các phép chuyển vị trí.  

Một phép chuyển vị trí e = <s, ϕ, a, λ, s'> ∈ E (s, s' ∈ S, ϕ ∈ 
Φ(X), a ∈ Σ, λ ⊆ X) cho phép ôtômat chuyển vị trí từ s tới s' với 
nhãn a nếu điều kiện ϕ được thoả mãn. Khi phép chuyển e được thực 
hiện các đồng hồ trong λ sẽ được khởi tạo lại giá trị về 0. Cụ thể, ta 
gọi (s, ν) là một trạng thái (của ôtômat thời gian A) nếu s là một vị 
trí và ν là một minh họa đồng hồ bất kỳ sao cho ν ⊨ I(s), khi đó  
phép chuyển trạng thái của ôtômat sẽ thuộc 1 trong 2 dạng sau: ta nói 
hệ chuyển trạng thái từ q = (s, ν) đến q' = (s, ν + δ) bằng một phép 
chuyển liên tục và kí hiệu q →δ q', nếu ν + δ' ⊨ I(s), ∀δ' ∈ [0, δ], 
hoặc ta nói hệ chuyển trạng thái từ q = (s, ν) đến q' = (s', ν[λ := 0]) 
bằng một phép chuyển rời rạc và kí hiệu q →a q', nếu tồn tại phép 
chuyển e = <s, ϕ, a, λ, s'> sao cho ν ⊨ ϕ và ν[λ := 0] ⊨ I(s').  

δ →aTrường hợp hai phép chuyển q q' và q' q'' xảy ra liên 
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tiếp, ta có thể kí hiệu: q q'', tức (s, ν) (s', ν'). Kí hiệu 
này minh hoạ hệ thống nằm tại s với thể hiện ν, thời gian trôi một 
khoảng từ 0 đến δ, đến thời điểm này nếu thể hiện đồng hồ ν + δ thoả 
ràng buộc của phép chuyển vị trí thì hệ chuyển đến s' và một số giá 
trị trong ν + δ được đặt về 0, ν + δ chuyển thành ν' thỏa I(s'). 

→δ a, →δ a,

11

 22  mm

 ii

Trạng thái (s0, ν0) với s0 là vị trí ban đầu và ν0(x) = 0 với mọi x 
được gọi là trạng thái ban đầu của ôtômat.  

Ví dụ: Ôtômat thời gian A 
trong hình 2.2 có hai đồng hồ 
x và y. Tập hợp các vị trí là 
{s1, s2} cùng với các bất biến 
I(s1) = (y ≤ 5) và I(s2) = (x ≤ 
8 ∧ y ≤ 10). A có hai phép 

chuyển vị trí {< s1, y ≥ 3, a, {y}, s2 >, < s2, x ≥ 6 ∧ y ≥ 4, b, {x}, s1 >}. 
Đồng hồ y được đặt về 0 mỗi khi hệ chuyển từ s1 đến s2 và ngược lại 
khi chuyển từ vị trí s2 về s1 đồng hồ x sẽ được đặt về 0. 
2.2.2 Đường chạy và dáng điệu của ôtômat thời gian 

• Một đường chạy r của ôtômat thời gian A là một dãy hữu hạn 
hoặc vô hạn các phép chuyển trạng thái r: (s0,ν0)  →δ a,  
(s1,ν1) →δ a,  � →δ a,  (sm,νm) ... trong đó (s0,ν0) là 
trạng thái ban đầu của A và ∀i ≥ 1, (si-1,νi-1) →δ a,  (si,νi) là 
một phép chuyển trạng thái của A. 

• Một dáng điệu ρ của ôtômat thời gian A tương ứng với đường 
chạy r là một dãy vô hạn hoặc hữu hạn các cặp vị trí - thời gian 
 ρ: (s0, t0), (s1, t1), ..., (sm, tm) ... với t0 = 0 và δi = ti − ti-1, ∀i ≥ 1. 

Với đường chạy r bất kỳ và dáng điệu ρ tương ứng, ta có : ti ≤ ti + 1 
và ti là thời điểm hệ chuyển vị trí từ si-1 tới si, ∀i ≥ 0. Tức hệ thống 
nằm tại vị trí si-1 trong δi = ti − ti-1 đơn vị thời gian và chuyển đến vị 
trí si bởi một phép chuyển vị trí <si-1, ϕ, a, λ, si> nào đó.  
 Dựa trên kỹ thuật phân vùng đồng hồ (tiểu mục 2.1.2), Alur và 
Dill xây dựng đồ thị vùng đạt được RG của ôtômat thời gian A với 
tính chất: nếu trong A tồn tại một đường chạy từ vị trí s1 đến s2 thì 
trong RG cũng có một đường đi nào đó từ đỉnh v1 đến v2 và ngược 
lại. Ở đây v1 và v2 là các đỉnh của đồ thị đặc trưng cho s1 và s2. Từ đó 

 
y≥3,{y},a 

   s1 
 y≤5 

     s2 
x≤8,y≤10 

x≥6,y≥4,{x},b 

Hình 2.2. Ôtômat thời gian 
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∫
b

I dt)t(s

bài toán kiểm chứng tính đạt được của một vị trí trong ôtômat có thể 
đưa về bài toán duyệt trên đồ thị vùng RG.    

2.2.3 Hợp song song của các ôtômat thời gian 
Đối với nhiều hệ thống phức hợp được tạo thành từ các hệ thống 

đơn, chúng ta có thể sử dụng tích đồng bộ của các ôtômat thời gian 
để biểu diễn chúng. Lấy Ai = <Si, s0i, Σi, Xi, Ii, Ei> (i = 1, 2) là hai 
ôtômat thời gian. Hợp song song của A1, A2 (ký hiệu bởi A1 || A2) là 
ôtômat tích của A1, A2 hoạt động đồng bộ theo các phép chuyển. 
Điều này có nghĩa bất kỳ phép chuyển nhãn a của A1 hoặc A2 cũng 
là phép chuyển của A. Nếu a ∈ Σ1 \ Σ2 hoặc a ∈ Σ2 \ Σ1 phép chuyển 
này trong A được gọi là phép chuyển đan xen (interleaving) và nếu 
a ∈ Σ1 ∩ Σ2 ta gọi phép chuyển này là phép chuyển đồng bộ 
(synchronising), tức một phép chuyển đồng bộ xảy ra trong A khi và 
chỉ khi nó xảy ra đồng thời cả trong A1 lẫn A2. Đối với các hệ thống 
hợp song song bởi nhiều hơn hai thành phần, định nghĩa cũng được 
mở rộng một cách tương tự.  

2.3 LÔGIC KHOẢNG 
Lôgic khoảng (duration calculus - DC) được xây dựng và phát 

triển bởi Zhou Chaochen và các đồng sự như một lôgic để lý giải và 
tính toán về thời gian xuất hiện của các trạng thái trong các hệ thời 
gian thực. Trong DC, mỗi trạng thái s của hệ thống được xem như 
một hàm bool theo thời gian s: TIME ↦ {0, 1}, trong đó s(t) nhận 
giá trị 1 nếu tại thời điểm t hệ thống nằm tại trạng thái s và nhận giá 
trị 0 trong trường hợp ngược lại. Với S là tập các trạng thái, ta gọi tập 
bất kỳ các hàm bool I  = {sI(t) | s ∈ S} là một thể hiện của hệ thống.  
2.3.1 Mô hình trong lôgic khoảng 

Một mô hình σ của DC là bộ (I, [b, e]) biểu diễn một quan sát 
dáng điệu của hệ thống. Nó bao gồm một thể hiện I và đoạn thời gian 
quan sát [b, e] (b, e ∈ R+ , 0 ≤ b ≤ e < ∞). Với σ, tổng khoảng thời 
gian (time duration) xuất hiện của trạng thái s có thể được tính bởi: 

e

ds = . 

Kí hiệu ∫s = ds, đây là toán tử quan trọng phân biệt sự khác nhau 
về bản chất của lôgic khoảng với các lôgic thời gian khác. Kí hiệu ! 
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được dùng để chỉ độ dài của đoạn quan sát, tức ! = e − b. 
Một tập mô hình DC bất kỳ xác định một hệ thời gian thực S nào 

đó và ngược lại. Tập mô hình xác định hệ thời gian thực S được kí 
hiệu bởi M(S), chẳng hạn một ôtômat thời gian A bất kỳ cũng tương 
ứng với tập mô hình M(A) nào đó.  
2.3.2 Công thức khoảng và bài toán kiểm chứng mô hình 

Một công thức viết trong DC được gọi là công thức khoảng. Cho 
đến hiện nay số lượng các lớp công thức quyết định được đã biết 
trong DC là còn rất hạn chế. Dưới đây là hai lớp công thức khoảng cơ 
bản được quan tâm bởi nhiều tác giả và luận án này giải quyết vấn đề 
kiểm chứng chúng đối với ôtômat thời gian. 

Cho A  = <S, s0, Σ, X, E, I> là một ôtômat thời gian. Một bất 
biến khoảng tuyến tính (linear duration invariant - LDI) trên S là 
một tính chất được biểu diễn bởi một công thức D trong DC có dạng:  

m
D : , MscBA

i
ii ≤⇒≤≤ ∑ ∫

=1
l

Msc
i

ii ≤∑ ∫
=1

12 

∑ ∫
=

m

1i
ii sc

2. 

3. 

4. 

5. 

trong đó si ∈ S; A, B, ci ≠ 0, M là các hằng số thực (B có thể ∞), 
∫si kí hiệu cho độ dài khoảng thời gian xuất hiện của vị trí si, ! là độ 
dài của khoảng thời gian quan sát. 

Trường hợp A = 0, B = ∞, phần điều kiện của công thức trên có 
thể được lược bỏ và ta thu được công thức mới  

m
D :  

biểu diễn cho một tính chất được gọi là tính chất khoảng tuyến tính 
(linear duration properties - LDP).  

Các công thức trên mô tả lớp các tính chất thời khoảng hay gặp 
trong thực tế. Ví dụ tính an toàn của hệ thống dưới dạng phát biểu 
"một trạng thái không an toàn s nào đó sẽ không bao giờ xảy ra trong 
hệ thống" có thể được biểu diễn bởi một công thức LDI dạng ! ≥ 0 ⇒ 
∫s ≤ 0. Hoặc tính cân bằng tương đối (relative fairness) của 2 tiến 
trình p1 và p2 có thể được mô tả bởi hai công thức LDI:  

! ≥ 0 ⇒ ∫p1 − ∫p2 ≤ 1 và ! ≥ 0 ⇒ ∫p2 − ∫p1 ≤ 1. 
Trong phần này của luận án chúng tôi cũng đã trình bày một ví 

dụ chi tiết về đặc tả hệ bếp ga (gaz burner) bằng DC. 

Lấy σ  = (I, [b, e]) là một mô hình DC.  

Kí hiệu l(σ) = e − b và θ(σ) = , với ∫si được tính từ σ.  

Định nghĩa 2.4. Cho S là hệ thời gian thực được xác định bởi tập 
mô hình M(S) và cho D là một công thức LDP (LDI). Khi đó: 

− Mô hình σ  = (I, [b, e]) ∈ M(S) được gọi là thoả D (kí hiệu 
σ ⊨ D) nếu và chỉ nếu θ(σ) ≤ M với D là công thức LDP hoặc 
A ≤ l(σ) ≤ B ⇒ θ(σ) ≤ M với D là công thức LDI. 

− Hệ thời gian thực S được gọi là thoả công thức D và được kí 
hiệu bởi S ⊨ D nếu và chỉ nếu σ ⊨ D, với mọi σ ∈ M(S). 

Bài toán kiểm chứng mô hình trong luận án được phát biểu: Cho một 
ôtômat thời gian A = <S, s0, Σ, X,E,I> được xác định bởi tập mô hình 
M(A), cho công thức LDP (LDI) D trên tập vị trí S. Hãy tìm một thủ 
tục để quyết định liệu A ⊨ D, tức là liệu σ ⊨ D với mọi σ ∈ M(A).  

Chương 3. KIỂM CHỨNG MÔ HÌNH 
VỚI KỸ THUẬT QUI HOẠCH TUYẾN TÍNH  

Trong chương này chúng tôi trình bày phương pháp kiểm chứng 
tính thỏa của lưới ôtômat thời gian thực hoạt động đồng bộ đối với 
công thức khoảng LDI, dựa trên việc giải các bài toán qui hoạch 
tuyến tính. Có thể tóm tắt phương pháp bởi các nét chính sau:  

1. Biểu diễn hệ thống bằng biểu thức chính quy thời gian,  
Đưa biểu thức chính quy thời gian bất kỳ về hợp của một số 
các biểu thức chính quy thời gian hữu hạn,  
Đưa biểu thức chính quy thời gian hữu hạn về hợp của một số 
các biểu thức chính quy thời gian đơn giản,  
Thiết lập tương ứng mỗi biểu thức chính quy thời gian đơn 
giản với một bài toán qui hoạch tuyến tính.  
Dựa trên nghiệm của họ các bài toán qui hoạch tuyến tính đưa 
ra câu trả lời cho kết quả của bài toán kiểm chứng. 

3.1  BIỂU THỨC CHÍNH QUY THỜI GIAN VÀ  
BÀI TOÁN QUI HOẠCH TUYẾN TÍNH 
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3.1.1. Biểu thức chính quy thời gian TRE 
Biểu thức chính quy thời gian R (Timed Regular Expression - TRE) 
và tập trạng thái state(R) của nó được định nghĩa đệ qui như sau: 
Định nghĩa 3.1 [TRE] 
− ε là một TRE (được gọi là TRE rỗng) và state(ε) = ∅,  
− đối với s ∈ S, với các số thực a, b bất kỳ, 0 ≤ a ≤ b (b có thể 

∞), (s, [a, b]) là một TRE và state((s, [a, b])) = {s},  
− nếu R1, R2 là các TRE, thì R1*, R1 ◠ R2, R1 ⊕ R2 là các TRE, và 

state(R1*) = state(R1); state(R1 ◠ R2) = state(R1 ⊕ R2) = 
state(R1) ∪ state(R2),  

− nếu R1, R2 là các TRE, và state(R1) ∩ state(R2) = ∅, thì R1 ⊗ R2 
là một TRE và state(R1 ⊗ R2) = state(R1) ∪ state(R2).  

Mỗi (s, [a, b]) được gọi là một nguyên thủy và để ngắn gọn ta chỉ 
viết s thay cho (s, [0, ∞]). Như thông thường, toán tử ◠ thể hiện 
phép nối (hay hợp), khi đó biểu thức (s1, [a1, b1]) ◠ (s2, [a2, b2]) biểu 
thị hệ thống nằm tại s1 một khoảng thời gian d1 bị chặn bởi [a1, b1] 
(tức a1 ≤ d1 ≤ b1), sau đó hệ chuyển vị trí đến s2, tại đây hệ thống có 
thể nằm lại một khoảng thời gian bị chặn bởi [a2, b2]. Toán tử ⊕ thể 
hiện phép hoặc, tức biểu thức (s1, [a1,b1]) ◠ ((s2, [a2,b2]⊕(s3, [a3,b3])) 
biểu thị hệ thống có thể chuyển từ s1 đến s2 hoặc từ s1 đến s3. Toán tử 
* thể hiện phép lặp, có nghĩa biểu thức (s1, [a1, b1])* cho phép hệ 
thống chuyển vị trí về lại s1 một số lần bất kỳ. Đặc biệt đối với hệ 
hoạt động song song toán tử ⊗ thể hiện phép hợp song song, tức biểu 
thức (s1, [a1, b1]) ⊗ (s2, [a2, b2]) biểu thị thành phần thứ nhất của hệ 
thống chuyển vị trí đến s1 đồng thời (cùng một thời điểm) với thành 
phần thứ hai chuyển vị trí đến s2.  
Định nghĩa 3.2 [Tập mô hình xác định bởi TRE]  
− Mô hình σ  = (I, [0, T]) ∈ M(ε) nếu và chỉ nếu T = 0. 
− Mô hình σ  = (I, [0, T]) ∈ M((s, [a, b])) nếu và chỉ nếu a ≤ T 

≤ b và ∀t ∈ [0, T], sI(t) = 1, ∀s' ≠ s, s'I(t) = 0. 
− Mô hình σ  = (I, [0, T]) ∈ M(R1 ◠ R2) nếu và chỉ nếu tồn tại 

0 ≤ T' ≤ T, σ1 = (I1, [0, T']) ∈M(R1), σ2 = (I2, [0, T-T']) 
∈M(R2) sao cho ∀s ∈ state(R1) ∪ state(R2), sI1(t) = sI(t), ∀t ∈ 

[0, T') và s
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I2(t-T') = sI(t), ∀t ∈ [T', T], và ∀s' ∉ state(R1) ∪ 
state(R2), s'I(t) = 0,∀t ∈[0, T]. Khi đó, có thể xem σ  = σ1◠σ2. 

− Mô hình σ  = (I, [0, T]) ∈ M(R1 ⊗ R2) nếu và chỉ nếu có σ1 = 
(I, [0, T]) ∈M(R1), σ2 = (I2, [0, T]) ∈ M(R2) sao cho ∀t ∈ 
[0, T], sI1(t) = sI(t), ∀s ∈ state(R1) và sI2(t) = sI(t), ∀s ∈ 
state(R2) và s'I(t) = 0, ∀s' ∉ state(R1) ∪ state(R2), khi đó có thể 
xem σ1 ⊗ σ2 như mô hình σ.  

− Mô hình σ  = (I, [0, T]) ∈M(R1 ⊕ R2) nếu và chỉ nếu 
σ ∈M(R1) hoặc σ ∈ M(R2). 

− Mô hình σ  = (I, [0, T]) ∈M(R*) nếu và chỉ nếu tồn tại số 
nguyên k ≥ 0 sao cho σ ∈M(Rk), ở đây R0 ≙ ε và với k > 0, 
Rk ≙ R ◠ Rk. Hoặc, một cách tương đương, có các mô hình 
σ1, ..., σk ∈M(R) sao cho σ  = σ1 ◠ σ2 ◠ ... ◠ σk.  

Như vậy mỗi TRE R xác định một hệ thống được cho bởi tập mô 
hình M(R), mỗi mô hình tương ứng với một thể hiện cụ thể của hệ 
thống trong khoảng quan sát từ 0 đến thời điểm T nào đó.  

Ví dụ [Hệ chắn tàu]. Hình 3.1 biểu diễn một hệ thống điều khiển 
các thanh chắn chỗ giao nhau của đường sắt và đường bộ. Hệ gồm 2 
ôtômat biểu diễn 2 thành phần là bộ giám sát dùng để phát hiện các 
đoàn tàu đi vào chỗ giao nhau và bộ điều khiển ra lệnh việc nâng hạ 
các thanh chắn. Hai thành phần này hoạt động đồng bộ, trong đó 
phép chuyển từ A đến B đồng bộ với phép chuyển từ U đến D và từ 
MU đến MD (nhãn α), phép chuyển từ C đến P đồng bộ với phép 
chuyển từ Dn đến MU (nhãn β). Các ràng buộc trên hai đồng hồ {x, 
y} được cho trong hình. Chi tiết cụ thể xin xem trong luận án. 

Một TRE RCM dùng biểu diễn hệ có thể được thiết lập như sau: 

 

U A  B C MD P MU  Dn 

b ≤ x

a ≤ xα
β y ≤ c

α

α

β

Bộ giám sát Bộ điều khiển

Hình 3.1. Hệ chắn tàu.
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RCM = (A⊗U) ◠ 
((B, [a,∞))◠ C⊗(MD, [0,c])◠Dn) ◠ 
((P, [b,∞))◠ A⊗(MU◠U ⊕ MU)))* ◠ 
(ε ⊕ 
(B⊕B◠C) ⊗ ((MD, [0,c])⊕(MD, [0,c])◠Dn) ⊕ 
(B ◠ C⊗(MD, [0,c]) ◠ Dn) ◠ 
((P ⊕ P◠A) ⊗ (MU ⊕ MU◠U))) 

Một TRE R được gọi là thỏa công thức D (R ⊨ D) nếu σ ⊨ D, 
∀σ ∈M(R). Các TRE R1 và R2 được gọi là D-tương đương (kí hiệu 
bởi R1 ≡D R2) nếu R1 ⊨ D khi và chỉ khi R2 ⊨ D. 

3.1.2 Biểu thức TRE hữu hạn 
Một TRE trong đó không chứa phép toán * được gọi là TRE hữu 

hạn và nếu không chứa cả phép toán ⊕ sẽ được gọi là TRE đơn giản.  
Ví dụ, ((s, [1,5])◠(u, [1,7]))⊗((v1, [3,10])⊕(v2,[2,9])) là một TRE 

hữu hạn, và ((s, [1,5])◠(u, [1,7])) ⊗ (v, [3,10]) là một TRE đơn giản.  
Có thể khẳng định: bất kỳ TRE hữu hạn R đều là D-tương đương 

với hợp của một số TRE đơn giản Ri, tức R ≡D R1 ⊕ ... ⊕ Rk. Từ đó 
việc kiểm chứng một TRE hữu hạn R có thể đưa về kiểm chứng họ 
các TRE đơn giản Ri (định lý 3.1 và 3.2). 
3.1.3 Xây dựng bài toán qui hoạch tuyến tính 
Để kiểm chứng một TRE đơn giản R, chúng ta sẽ xây dựng bài 

toán qui hoạch tuyến tính sao cho thông qua nghiệm của bài toán này 
có thể xác định được kết quả của bài toán kiểm chứng. Có thể tóm tắt 
cách xây dựng bài toán qui hoạch tuyến tính này như sau: kết hợp 
mỗi nguyên thủy (s, [a, b]) của R với một biến thực t, ta có ràng buộc 
a ≤ t ≤ b. Bằng đệ qui theo định nghĩa của R ta xây dựng tiếp tập các 
ràng buộc cho mọi biến t (định nghĩa 3.6 của luận án), tập các ràng 
buộc tuyến tính này được kí hiệu bởi C(R). Tương tự, xây dựng ds(R) 
và l(R) biểu thị cho tổng khoảng thời gian xuất hiện của vị trí s và độ 
dài tối đa của các mô hình trong R. 

∑Đặt θ(R) =  và D(R) = max{θ(R) | C(R) ∧ A ≤ l(R) ≤ B}.  
∈Ss

)c
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Định lý 3.3. Đối với TRE đơn giản R, R⊨D khi và chỉ khi D(R) ≤ M. 

Ví dụ. Lấy R = ((s, [1,5])◠(u, [1,7]))⊗(v, [3, 10]) và D = 4 ≤ ! ≤ 8 
⇒ 2∫s − ∫v ≤ 5. Lấy x, y, z là các biến kết hợp với các nguyên thuỷ (s, 
[1,5]), (u, [1,7]), (v, [3,10]). R ⊨ D có thể được kiểm chứng bởi việc 
giải bài toán qui hoạch tuyến tính: Tìm max{2x − z} với các ràng 
buộc 1 ≤ x ≤ 5, 1 ≤ y ≤ 7, 3 ≤ z ≤ 10, z = x + y, 4 ≤ z ≤ 8 và kiểm tra 
liệu giá trị của nó có bé hơn hoặc bằng 5 ? Dễ thấy nghiệm của bài 
toán qui hoạch tuyến tính là x = 5, y = 1, z = 6 và giá trị lớn nhất của 
hàm mục tiêu là 4 < 5. do vậy R ⊨ D. 

3.2 CHUYỂN TRE VỀ HỢP CỦA CÁC TRE HỮU HẠN 
3.2.1 Cận thời gian của biểu thức TRE 

Với TRE R khác rỗng (M(R) ≠ ∅), gọi m(R), M(R) là các cận 
dưới và trên của độ dài các mô hình được xác định bởi R. R' được gọi 
là biểu thức con của R nếu nó xuất hiện tại một vị trí nào đó trong R. 
Khi đó độ dài các mô hình của R' ngoài việc bị chặn bởi m(R'), 
M(R'), nó còn bị chặn bởi m(R) và M(R) tạo thành các cận mới được 
kí hiệu bởi m(R', R) và M(R', R). Các đại lượng này có thể tính được 
một cách đệ qui thông qua các định nghĩa 3.7 và 3.8 trong luận án.  
3.2.2 Khử phép toán * trong biểu thức TRE 

Kí hiệu x là phần nguyên của số thực x. Cho A là một TRE đơn 
giản không chứa TRE con rỗng (việc loại TRE rỗng ra khỏi A không 
ảnh hưởng đến M(A)). Các định lý sau chỉ ra các trường hợp có thể 
thay A* trong R bởi một TRE đơn giản A' sao cho biểu thức nhận 
được R' là D-tương đương với R. Bằng cách thay dần các TRE dạng 
A* như vậy trong R, cuối cùng ta nhận được TRE hữu hạn R' ≡D R.  
Định lý 3.4. Giả sử A là một TRE đơn giản với m(A) = 0. Lấy A' 

là TRE đạt được từ A bằng cách thay mỗi nguyên thuỷ (s, [0, b])  (b > 
0 do qui ước A không chứa TRE con rỗng) của A bởi (s, [0, ∞)). Khi 
đó, bằng việc thay mỗi xuất hiện của A* trong TRE R bởi A', chúng 
ta đạt được TRE R' là D-tương đương với R. 

ss R(d Định lý 3.5. Giả sử A là một TRE đơn giản với m(A) > 0. Lấy 
một xuất hiện của A* trong R mà đối với nó M(A*, R) < ∞ hoặc B < 
∞ (B trong điều kiện A ≤ ! ≤ B). Lấy A' = ⊕{i=0..k}Ai, ở đây k = 
min{M(A*, R), B}/m(A) + 1. Khi đó bằng việc thay thế xuất hiện 

Định lý 3.3 dưới đây chỉ ra rằng kết quả của bài toán kiểm chứng 
có thể quyết định được thông qua giá trị của D(R). 
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3.3 CÁC CÔNG TRÌNH LIÊN QUAN  của A* trong R bởi A', chúng ta đạt được một biểu thức mới R' là D-
tương đương với R.   VÀ NHẬN XÉT VỀ PHƯƠNG PHÁP  

Lấy R' là một biểu thức con của R. R' được gọi là nằm dưới ⊗ 
nếu có một biểu thức con dạng R1 ⊗ R2 của R sao cho R' là một xuất 
hiện trong R1 hoặc trong R2. Dễ thấy nếu A* không nằm dưới ⊗, thì 
M(A*, R) = ∞. Cho A là một TRE đơn giản. Gọi maxθ(A) là giá trị 
lớn nhất của {θ(σ) | σ ∈M(A)} mà nó có thể tính được bằng việc 
giải bài toán qui hoạch tuyến tính: tìm giá trị lớn nhất của hàm mục 
tiêu θ(A) với tập các ràng buộc C(A). 

3.3.1 Các công trình liên quan 
Để kiểm chứng LDI, một số tác giả (Z. Chaochen, D.V. Hung, L. 

XuanDong, �) đã sử dụng các phép toán nối (◠), hợp (⊕) và lặp (*) 
để tạo các biểu thức chính quy thời gian mô tả các lớp con của 
ôtômat. Trong luận án này chúng tôi đưa thêm phép toán "hợp song 
song" (⊗) để biểu diễn lưới ôtômat thời gian thực hoạt động đồng bộ, 
trên cơ sở đó thiết lập bài toán qui hoạch tuyến tính. Đặc điểm chung 
của phương pháp này là phải giải một số rất lớn các bài toán qui 
hoạch. Trong một số công trình khác, để giảm bớt độ phức tạp, các 
tác giả đã xét tính chất đơn giản hơn với dáng điệu của hệ thống chỉ 
đi qua (hoặc không) một dãy trạng thái cố định cho trước. Điển hình 
như tính chất "khoảng tuần tự" (Temporal Duration Property − Li 
Yong and D.V. Hung) và chúng tôi cũng đã xây dựng thuật toán để 
kiểm chứng tính chất này cho lưới ôtômat thời gian. 

Định lý 3.6. Nếu B = ∞, và A* là một biểu thức con của R không 
xuất hiện dưới ⊗, ở đây A là một TRE đơn giản với m(A) > 0 thì:  

• Trường hợp maxθ(A) ≤ 0, thay A* trong R bởi A' = ⊕{i = 0..k}Ai, 
trong đó k = A/m(A) + 1 (A trong điều kiện A ≤ ! ≤ B), 
chúng ta nhận được biểu thức R' là D-tương đương với R. 

• Trường hợp maxθ(A) > 0, kết luận R ⊭ D.  
Tóm lại, từ các định lý 3.4, 3.5 và 3.6, chúng ta có thể phát hiện sớm 
trường hợp R ⊭ D hoặc khử dần các * trong các biểu thức A* với A 
là biểu thức đơn giản trong các trường hợp sau:  

3.3.2 Vài nhận xét về phương pháp 
Dễ dàng thiết lập được bài toán qui hoạch tuyến tính từ một TRE 

đơn giản và có thể sử dụng để giải lớp các công thức tuyến tính tổng 
quát. Tuy nhiên, phương pháp này chỉ thích hợp với bài toán kiểm 
chứng trên các đoạn quan sát có điểm bắt đầu và kết thúc trùng với 
thời điểm hệ chuyển vị trí. Ngoài ra số lượng bài toán qui hoạch 
tuyến tính phải giải là rất lớn và với lớp công thức phức tạp, việc rút 
gọn biểu thức về dạng đơn giản là khó.  

− m(A) = 0,  
− m(A) > 0, B hữu hạn hoặc M(A*, R) hữu hạn,  
− m(A) > 0, B vô hạn và A* không xuất hiện dưới ⊗. 
Trường hợp còn lại (m(A) > 0, B vô hạn và A* xuất hiện dưới ⊗) 

để khử * và kiểm tra tính rỗng của TRE R (M(R) = ∅) là phức tạp 
hơn và được chúng tôi trình bày riêng trong tiểu mục 3.2.4. 

Chương 4. KỸ THUẬT RỜI RẠC HÓA VÀ  3.2.3 Kiểm chứng tính an toàn của hệ chắn tàu 
DUYỆT ĐỒ THỊ ĐẠT ĐƯỢC Trong tiểu mục này của luận án chúng tôi đưa ra một ví dụ về áp 

dụng phương pháp đã mô tả để kiểm chứng TRE RCM biểu diễn hệ 
chắn tàu được cho trong hình 3.1. Một nhược điểm trong phương pháp qui hoạch tuyến tính là số 

bài toán qui hoạch phải giải là quá lớn. Do đó, một số tác giả đã quay 
lại áp dụng phương pháp truyền thống trong kiểm chứng tính chất 
thời điểm là duyệt đồ thị phân vùng cho các tính chất thời khoảng 
nhưng chỉ xét với các đồ thị vùng nguyên. Như đã biết một công thức 
đúng trong mô hình thời gian nguyên chưa hẳn đã đúng trong mô 
hình thời gian thực. Tuy nhiên, điều này vẫn xảy ra với một số công 
thức, các công thức như vậy được gọi là rời rạc hóa được. Với nhận 

3.2.4 Kiểm tra tính rỗng và khử * xuất hiện dưới ⊗ 
Trong tiểu mục này chúng tôi trình bày phương pháp kiểm tra 

tính rỗng của biểu thức R và khử * xuất hiện dưới ⊗ cho vài trường 
hợp riêng đặc biệt và chỉ ra rằng bài toán có thể giải được bởi kỹ 
thuật qui hoạch hỗn hợp tuyến tính và nguyên.  
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xét này các tác giả Jianhua và Dang Van Hung (JH) đã chứng minh 
LDP là rời rạc hóa được đối với các quan sát xuất phát từ vị trí ban 
đầu của ôtômat (tương đương với lớp mô hình M0(A) � xem tiểu 
mục 4.1.1), từ đó thiết kế thuật toán để kiểm chứng LDP đối với lớp 
mô hình này trên cơ sở duyệt đồ thị phân vùng nguyên. Một nhược 
điểm khác của phương pháp qui hoạch tuyến tính và cũng là nhược 
điểm của phương pháp duyệt đồ thị phân vùng là các thời điểm bắt 
đầu và kết thúc của đoạn quan sát phải trùng với các thời điểm 
chuyển vị trí của ôtômat (tương đương với lớp mô hình Muv(A)). 
Điều này là đủ đối với kiểm chứng tính chất thời điểm nhưng với tính 
chất thời khoảng cần phải xét rộng hơn với các đoạn thời gian quan 
sát bất kỳ, tức phải xét trên toàn bộ tập mô hình M(A).  

Để khắc phục nhược điểm này, dựa trên tư tưởng rời rạc hóa 
được của JH, kết hợp với khái niệm ε-nguyên hóa của Henzinger và 
Kesten chúng tôi chứng minh LDP và LDI là rời rạc hóa được theo 
ngữ nghĩa đầy đủ (trên toàn bộ tập mô hình M(A)). Từ đó, tính rời 
rạc hóa được sử dụng trong luận án này mang hai ý nghĩa: rút gọn đồ 
thị vùng thành đồ thị vùng nguyên để giảm độ phức tạp (như các tác 
giả JH đã sử dụng) và "rời rạc hóa" đồ thị vùng nguyên để thiết kế 
thuật toán kiểm chứng LDI. Nói cách khác, tính rời rạc hoá được 
không chỉ để giảm độ phức tạp mà còn đóng vai trò quan trọng trong 
việc chứng minh tính quyết định được của LDI.   

4.1 TÍNH RỜI RẠC HÓA ĐƯỢC VÀ ĐỒ THỊ VÙNG NGUYÊN 
4.1.1 Tập mô hình DC của ôtômat thời gian 

Tổng quát, một hệ thời gian thực bất kỳ là tương ứng với một tập 
các mô hình trong DC. Cũng tương tự, một hệ thống được biểu diễn 
bởi ôtômat thời gian A xác định một tập mô hình M(A) nào đó. Cụ 
thể, xét dáng điệu ρ = (s0, t0)(s1, t1)(s2, t2) ... của ôtômat thời gian A = 
<S, s0, Σ, X, I, E>, tức dãy các vị trí s  = s0, s1, s2, ... và thời gian t  = 
t0, t1, t2, ... thoả: t0 = 0, ti ≤ ti+1, ∀i ≥ 0, và ∀i ≥ 1, ∃ <si-1, ϕi, ai, λi, si> 
sao cho nếu gọi νi-1, νi là các thể hiện đồng hồ tương ứng tại các thời 
điểm ti-1, ti thì (si-1, νi-1) →δ a, (si, νi), trong đó δi = ti − ti-1. Khi đó 
dễ thấy s , t  tương ứng với một thể hiện I trong DC mà nó được 
định nghĩa bởi: siI(t) = 1 nếu và chỉ nếu t ∈ [ti, ti+1), ∀i ≥ 0. Ngược lại 

một thể hiện I bất kỳ xác định dãy ,  thoả các tính chất trên là 
một biểu diễn dáng điệu nào đó của ôtômat. Từ đó một quan sát hoạt 
động của ôtômat trong đoạn thời gian [b, e] (b ≤ e < ∞) sẽ là một mô 
hình σ = (I, [b, e]) trong đó I là một thể hiện hệ thống biểu diễn 
dáng điệu của ôtômat. Ta cũng kí hiệu σ bởi ( s , t , [b, e]) và tập các 
σ được kí hiệu bởi M(A). Các tập mô hình con của A được kí hiệu:  

s t
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s t

• M0(A) = {σ = ( , , [0, T]) ∈ M(A), ∀T ≥ 0},  
• Muv(A) = {σ = ( , , [tu, tv]) ∈ M(A), ∀tu ≤ tv ∈ },  s t t
• MI(A) = {σ=( , ,[b,e]) ∈ M(A) | ti, b, e ∈ N, (ti ∈ , ∀i≥0)}.  s t t
Nói cách khác, M0(A) là tập mô hình biểu thị các quan sát xuất 

phát từ thời điểm ban đầu (0) của ôtômat. Muv(A) chứa các mô hình 
mà thời điểm bắt đầu và kết thúc của quan sát trùng với các thời điểm 
chuyển vị trí của ôtômat. Điều này có nghĩa nếu σ = ( s , t , [b, e]) 
∈ Muv(A), ở đây s  = s0, s1, ..., sm, ... và t  = t0, t1, ..., tm, ... thì có tồn 
tại các chỉ số u, v sao cho b = tu và e = tv. Cuối cùng một mô hình của 
MI(A) biểu diễn cho các quan sát trên các dáng điệu nguyên của 
ôtômat, tức các ti và các cận quan sát b, e là những số nguyên. Các 
mô hình (đường chạy, dáng điệu) như vậy được gọi là các mô hình 
(đường chạy, dáng điệu) nguyên. 

4.1.2 Khái niệm ε-nguyên hoá và một vài tính chất 
Định nghĩa 4.1. Cho một số thực dương x và ε, (0 ≤ ε < 1). xε là 

một số nguyên nhận được từ x như sau: xε = x nếu phần thập phân 
của x là bé hơn hoặc bằng ε và xε = x nếu ngược lại. 

Khi đó, xε nhận được từ x bằng cách làm tròn xuống hoặc lên phụ 
thuộc vào ε và phần dư của x, và được gọi là ε-nguyên hoá của x. Ví 
dụ nếu x = 3.72 thì x0.5 = 4 và x0.8 = 3. 

Một số tính chất quan trọng của khái niệm ε-nguyên hoá được 
chúng tôi chứng minh trong các bổ đề 4.1 − 4.4, trong đó bổ đề 4.4 
khẳng định: với mọi 0 ≤ ε < 1 và với mọi mô hình (thực) σ ∈ M(A), 
ε-nguyên hóa của σ (tức ε-nguyên hóa mọi thời điểm chuyển vị trí ti 
và các cận quan sát b, e) cũng cho ta một mô hình (nguyên) σε của A. 
Trên cơ sở này trong tiểu mục 4.1.3 tiếp theo sau đây sẽ chứng minh 
tính rời rạc hóa được của các công thức LDP, LDI. 

ii
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4.1.3 Tính rời rạc hóa được của các công thức LDP, LDI  
Định nghĩa 4.2. Cho ôtômat thời gian A và công thức D. D được 

gọi là rời rạc hoá được đối với A nếu M(A) ⊨ D ⇔ MI(A) ⊨ D, 
tức A thoả D khi và chỉ khi mọi mô hình nguyên của A thoả D.  

Định lý 4.1. Mọi tính chất khoảng tuyến tính và bất biến khoảng 
tuyến tính D là rời rạc hóa được đối với ôtômat thời gian A. 

Định lý 4.1 được chứng minh bằng phản chứng: nếu ∃σ ∈ M(A) 
sao cho σ ⊭ D thì ∃ε ∈ [0,1) sao cho σε ∈ MI(A) và σε ⊭ D (chiều 
ngược lại là hiển nhiên vì MI(A) ⊆ M(A)).   
4.1.4 Đồ thị vùng đạt được nguyên 

Một đồ thị vùng nói chung chỉ phản ánh tính đạt được mà không 
phản ánh được thời gian của các phép chuyển vị trí. Tuy nhiên, với 
đồ thị vùng nguyên các cận bé và lớn nhất của thời gian chuyển vẫn 
có thể tính được. Trong phần này chúng tôi đưa ra thuật toán xây 
dựng đồ thị vùng nguyên RG và các cận thời gian như vậy. Từ RG 
chúng tôi tiếp tục xây dựng các đồ thị trọng số tương ứng để kiểm 
chứng LDP và LDI. Thuật toán xây dựng đồ thị vùng nguyên RG = 
(V, E) của ôtômat thời gian A có thể tóm tắt như sau. 

Một đỉnh v ∈ V là một vùng trạng thái <s, π>, trong đó π là vùng 
đồng hồ, s được gọi là vị trí đặc trưng của v (và kí hiệu s ∈ v). Vùng 
<s', π'> được gọi là hậu duệ của <s, π> nếu ∃ν ∈ π, ∃ν' ∈ π', ∃d ∈ N 
và ∃e = <s, ϕ, a, λ, s'> sao cho (s, ν)  a,d (s', ν'). Nếu <s, π> ∈ V 
và <s', π'> là hậu duệ của <s, π> thì (<s, π>, <s', π'>) là một cung 
trong E. Ngoài ra, mỗi cung e được gán nhãn là đoạn [l(e), u(e)], ở 
đây l(e) và u(e) biểu thị thời gian tối thiểu và tối đa mà ôtômat có 
thể nằm lại tại vị trí s trước khi chuyển đến s'. Xuất phát từ đỉnh ban 
đầu <s

 →
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0, π0> ∈ V, ta có thể xây dựng hoàn toàn RG bằng một thuật 
toán chi tiết được cho trong bảng 4.1 của luận án. 

Hình 4.4. Đồ thị vùng đạt được nguyên RG
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4.2 KIỂM CHỨNG CÔNG THỨC LDP 
4.2.1 Tính tương đương của M(A) và Muv(A) đối với LDP 

Thuật toán của JH có thể dễ dàng được mở rộng để áp dụng cho 
lớp mô hình Muv(A) (ví dụ có thể áp dụng thuật toán trên n lần với n 
là số đỉnh của đồ thị, mỗi lần thực hiện thuật toán với một đỉnh khác 
nhau đóng vai trò như đỉnh xuất phát của đồ thị). Việc mở rộng hơn 
nữa kết quả trên (đến lớp mô hình M(A)) là không hiển nhiên. Tuy 
nhiên, trong định lý 4.2 sau đây chúng tôi chỉ ra một kết quả khá thú 
vị đó là kết quả kiểm chứng trên hai tập mô hình M(A) và Muv(A) 
là như nhau đối với công thức LDP. 

Định lý 4.2. Cho ôtômat thời gian A và công thức LDP D. Khi 
đó: M(A) ⊨ D ⇔ Muv(A) ⊨ D. 

Như vậy để kiểm chứng tính thỏa của D đối với ôtômat A ta chỉ 
cần kiểm chứng trên tập mô hình Muv(A) và có thể áp dụng thuật 
toán của JH (như đã nêu trên). Tuy nhiên để giảm độ phức tạp chúng 
tôi đề nghị thuật toán kiểm chứng trên cơ sở thuật toán Warshall-
Floyd để tìm đường đi có trọng số lớn nhất giữa mọi cặp đỉnh của đồ 
thị như được trình bày trong tiểu mục 4.2.2 dưới đây. 

4.2.2 Đồ thị trọng số G phục vụ kiểm chứng LDP 
Một tính chất quan trọng của đồ thị vùng nguyên là mỗi đường 

chạy của ôtômat sẽ tương ứng với một đường đi trong đồ thị sao cho 
tổng thời gian trên đường chạy luôn bị chặn bởi tổng các cận l và u 
trên đường đi này. Hình 4.4 dưới đây minh họa đồ thị vùng đạt được 
nguyên của ôtômat được cho trong hình 2.2. Trong đồ thị này, mọi 
cung đều có cận dưới và cận trên bằng nhau (l = u) nên nhãn của 
chúng chỉ được gán bởi một số duy nhất (l).  

Cho một ôtômat thời gian A, một đồ thị vùng đạt được RG của A 

và công thức LDP: D = . 

Định nghĩa 4.5. Đồ thị trọng số G = (V, E, ω) là đồ thị vùng đạt 
được nguyên RG với hàm trọng số cung ω: E ↦ R xác định như sau: 

  s1 
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 s1
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  s1
[0,0]
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với mỗi cung e = (v, v') ∈ E và s ∈ v, nếu cs < 0, lấy ω(e) = cs.l(e) 
ngược lại, lấy ω(e) = cs.u(e). Dễ thấy ω(e) biểu thị giá trị lớn nhất 
của biểu thức cs∫s với s ∈ v.  

Với ω(e), tính thỏa của một đường đi trong G và từ đó của tập 
đường đi P(G) đối với công thức D cũng được định nghĩa trong định 
nghĩa 4.6 của luận án. Từ đó D được kiểm chứng thông qua G bởi:  

Định lý 4.3. Muv(A) ⊨ D ⇔ P(G) ⊨ D. 

4.2.3 Thuật toán kiểm chứng LDP 
Kết hợp các định lý 4.2, 4.3, thuật toán kiểm chứng LDP đối với 
M(A) được tiến hành trên đồ thị trọng số G như sau:  

− Nếu G có cung với trọng số vô hạn hoặc khuyên với trọng số 
dương, thuật toán dừng với kết luận G ⊭ D (từ đó A ⊭ D). 

− Loại bỏ các khuyên với trọng số âm ra khỏi đồ thị.  
− Tìm đường đi có trọng số lớn nhất giữa mọi cặp đỉnh (bằng 

thuật toán Floyd-Warshall). 
− So sánh trọng số này với M để kết luận tính thỏa của đồ thị G 

cũng là tính thỏa của ôtômat A đối với D.  
4.3 KIỂM CHỨNG CÔNG THỨC LDI 
4.3.1 Quan hệ giữa lớp mô hình Muv(A) và đồ thị đạt được RG 

hướng tới LDI 
Chúng tôi chỉ ra rằng một kết quả như định lý 4.2 đối với LDP là 

không xảy ra đối với LDI. Tuy nhiên, bằng định nghĩa thể hiện trọng 
số của một đường đi trong đồ thị RG chúng tôi chứng minh rằng tập 
các thể hiện trọng số nguyên là  "LDI-tương đương" với tập các mô 
hình Muv(A). Trên cơ sở đó, trong tiểu mục 4.3.2 dưới đây chúng tôi 
tiếp tục "rời rạc hóa" RG thành đồ thị trọng số G (với trọng số 0/1) 
mà tập đường đi P(G) của nó là cũng "LDI-tương đương" với tập mô 
hình nguyên MI(A). Từ đó, kết hợp với tính rời rạc hoá được của 
LDI, việc kiểm chứng tính thỏa của công thức LDI D đối với M(A) 
có thể đưa về kiểm chứng tính thỏa của D đối với tập đường đi P(G).   

4.3.2 Đồ thị trọng số G phục vụ kiểm chứng LDI 
Đồ thị trọng số G = (V, E, ω) được xây dựng từ RG bởi tư tưởng 

cơ bản sau: Đối với mỗi cung e = (vi, vj, [lij, uij]) (của RG) chia e 

thành u
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ij cung con với trọng số 1 bởi uij � 1 đỉnh con. Từ đỉnh con 
thứ lij đến đỉnh con cuối cùng bổ sung các cung nối các đỉnh con này  
với vj và lấy trọng số 0. Như vậy, mỗi cung (vi, vj, [lij, uij]) sẽ được 
thay thế bởi một họ gồm uij − lij + 1 đường đi trong G nối vi và vj 
với độ dài lần lượt bằng lij, lij + 1, ..., uij. Ngoài trọng số cung, mỗi 
đỉnh v của G cũng được gán một trọng số ω(v) là hệ số cs trong công 
thức LDI với s là vị trí đặc trưng của v. Trên cơ sở này chúng ta có 
thể định nghĩa độ dài l(p) và giá θ(p) của đường đi p như tổng độ dài 
của các cung và tổng các tích trọng số đỉnh với độ dài cung trong 
đường đi p. Từ đó một đường đi p là thỏa công thức LDI D nếu và 
chỉ nếu A ≤ l(p)≤ B ⇒ θ(p) ≤ M, và định lý 4.4 dưới đây cho phép 
đưa bài toán kiểm chứng LDI đối với ôtômat A về bài toán kiểm 
chứng LDI đối với đồ thị G. 

Định lý 4.4. MI(A) ⊨ D ⇔ P(G) ⊨ D.  
Hình 4.6 là một minh hoạ cho G được xây dựng từ đồ thị RG đơn 

giản với 2 cung   

1 111111
0 

0 

Hình 4.6. Đồ thị trọng số G từ đồ thị vùng đạt được RG 
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4.3.3. Thuật toán kiểm chứng LDI 
Trong tiểu mục này chúng tôi đưa ra thuật toán duyệt đồ thị G để 

kiểm chứng công thức LDI D. Tư tưởng cơ bản của thuật toán là sử 
dụng kỹ thuật quay lui tìm các đường đi với độ dài nằm trong đoạn 
[A, B]. Với mỗi đường tìm được, so sánh giá của nó với M để quyết 
định tính thỏa của đường đi này đối với D. Ngoài ra nếu phát hiện 
chu trình dương (tức chu trình với giá lớn hơn 0) có thể kết luận 
đường đi và do đó P(G) ⊭ D. Kết quả kiểm chứng này cũng cung 
cấp câu trả lời kiểm chứng đối với lớp mô hình MI(A) và do định lý 
4.1 cũng là câu trả lời cho kiểm chứng D đối với lớp mô hình M(A).  
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KẾT LUẬN 
Trong luận án này chúng tôi đã trình bày bài toán kiểm chứng mô 

hình đối với một số lớp tính chất biểu diễn được bằng các công thức 
khoảng tuyến tính trong lôgic khoảng. Một cách trực giác có thể thấy 
việc kiểm chứng các tính chất khoảng là khó hơn rất nhiều so với tính 
chất thời điểm bởi hai lý do: thứ nhất đối với tính chất thời điểm chỉ 
cần tiến hành kiểm chứng trên các quan sát bắt đầu và kết thúc tại các 
thời điểm hệ chuyển trạng thái, trong khi ngữ nghĩa của các tính chất 
thời khoảng đòi hỏi các quan sát phải được bắt đầu và kết thúc tại 
những thời điểm bất kỳ. Lý do thứ hai đến từ việc phải tính khoảng 
thời gian xuất hiện của các vị trí, do vậy cần quan tâm đến lịch sử của 
các vị trí này trong dáng điệu của ôtômat. Mặt khác thời gian được 
lấy trên tập trù mật R nên việc tính toán chúng cũng trở nên phức tạp 
hơn. Điểm khác biệt này lý giải vì sao phần lớn công thức khoảng là 
không quyết định được và các kết quả kiểm chứng tính chất thời 
khoảng cho đến hiện nay vẫn còn khiêm tốn. Hầu như các thuật toán 
được xây dựng thường chỉ hạn chế trên các lớp con của ôtômat thời 
gian và các tính chất tuyến tính trong DC, cuối cùng thường là chúng 
có độ phức tạp rất cao. Có thể kể đến một số kết quả đã có như: 

− Kiểm chứng công thức hội của các LDP hệ số nguyên đối với  
lớp ôtômat thời gian hữu hạn (Finite Timed Automata) bằng 
phương pháp giải bài toán qui hoạch tuyến tính nguyên. 

− Kiểm chứng công thức LDI đối với các lớp con của ôtômat 
thời gian bằng phương pháp giải bài toán qui hoạch tuyến tính. 

− Kiểm chứng công thức LDP, TDP đối với lớp ôtômat thời gian 
bằng phương pháp duyệt đồ thị vùng nguyên. 

Các kết quả trên hoặc chỉ xét với các lớp con của ôtômat thời 
gian hoặc với ôtômat thời gian tổng quát nhưng về ngữ nghĩa của 
công thức khoảng vẫn chỉ được xét trên lớp mô hình M0(A).  

Từ đó, luận án này quan tâm đến lớp hệ thống tổng quát hơn đó 
là ôtômat thời gian và ngữ nghĩa của công thức được xét trên tập mô 
hình M(A). Trên cơ sở đó luận án đã đạt được một số kết quả sau: 

• Đề xuất toán tử ⊗ dùng để biểu diễn tính đồng bộ hoá của hệ 
thống (định nghĩa 3.1 trang 29, định nghĩa 3.2 trang 32) thông 
qua biểu thức chính quy thời gian TRE. 
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• Trên cơ sở biểu thức chính quy thời gian, đề nghị thuật toán 
kiểm chứng lớp hệ thống biểu diễn được bởi hợp song song 
các ôtômat thời gian thực bằng phương pháp đưa về giải bài 
toán qui hoạch tuyến tính (định lý 3.3 trang 36). Phân tích ưu 
khuyết điểm của phương pháp. 

• Chứng minh công thức LDP, LDI là rời rạc hoá được (định lý 
4.1 trang 60).  

• Mở rộng đồ thị đạt được nguyên của ôtômat thời gian bằng 
cách trang bị các cận thời gian cho đồ thị. Trên cơ sở đó xây 
dựng đồ thị trọng số phục vụ kiểm chứng công thức LDP 
(thuật toán Checking-LDP trang 71). 

• Xây dựng đồ thị trọng số là "rời rạc hóa" của đồ thị vùng 
nguyên phục vụ kiểm chứng công thức LDI (thuật toán 
Traverse(vstart) và Checking-LDI trang 83). 

Ngoài những kết quả đã đạt được, trong thời gian tới đề tài của 
luận án có thể được tiếp tục với các hướng nghiên cứu sau:  

1. Giảm độ phức tạp của thuật toán kiểm chứng LDI bằng cách 
tìm thêm các mối quan hệ tương đương giữa các lớp mô hình. 
Cải tiến thuật toán kiểm chứng LDI trên cơ sở nhận xét đồ thị 
phục vụ kiểm chứng rất thưa cung (và chỉ có trọng số 0/1). 
Mở rộng phương pháp kiểm chứng trên cho một số công thức 
rời rạc hoá được có liên quan đến công thức khoảng tuyến tính. 
Xây dựng bộ kiểm chứng mô hình hoàn chỉnh cho LDP, LDI.  

PHỤ LỤC A. Bộ kiểm chứng mô hình LDP, LDI 
Một chương trình kiểm chứng đơn giản được viết bằng ngôn ngữ 

C++ thể hiện các thuật toán đưa ra trong luận án. Chương trình đã 
chạy và cho kết quả trên các ví dụ về ôtômat cho trong hình 2.2 và hệ 
chắn tàu trong hình 3.1. Với mỗi trường hợp chúng tôi cho chương 
trình chạy với một bộ dữ liệu cụ thể và đưa ra các kết quả chi tiết, 
ngoài ra phụ lục cũng trình bày kết quả cuối cùng (thỏa hay không 
thỏa) khi cho chương trình chạy với 20 bộ dữ liệu sinh ngẫu nhiên. 

$ o % 
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