
NETWORK MANAGEMENT IN WIRED AND WIRELESS NETWORKS

Tejinder S. Randhawa
Stephen Hardy

KLUWER ACADEMIC PUBLISHERS

NETWORK MANAGEMENT IN WIRED AND WIRELESS NETWORKS

by

Tejinder S. Randhawa

Acterna, Canada

Stephen Hardy

Simon Fraser University, Canada

KLUWER ACADEMIC PUBLISHERS
Boston / Dordrecht / London

**THE KLUWER INTERNATIONAL SERIES
IN ENGINEERING AND COMPUTER SCIENCE**

NETWORK MANAGEMENT IN WIRED AND WIRELESS NETWORKS

by

Tejinder S. Randhawa

Acterna, Canada

Stephen Hardy

Simon Fraser University, Canada

KLUWER ACADEMIC PUBLISHERS
Boston / Dordrecht / London

Distributors for North, Central and South America:

Kluwer Academic Publishers
101 Philip Drive
Assinippi Park
Norwell, Massachusetts 02061 USA
Telephone (781) 871-6600
Fax (781) 681-9045
E-Mail < kluwer@wkap.com>

Distributors for all other countries:

Kluwer Academic Publishers Group
Distribution Centre
Post Office Box 322
3300 AH Dordrecht, THE NETHERLANDS
Telephone 31 78 6392 392
Fax 31 78 6546 474
E-Mail < services@wkap.nl>

Electronic Services < <http://www.wkap.nl>>

Library of Congress Cataloging-in-Publication Data

A C.I.P. Catalogue record for this book is available
from the Library of Congress.

Copyright © 2002 by Kluwer Academic Publishers

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher, Kluwer Academic Publishers, 101 Philip Drive, Assinippi Park, Norwell, Massachusetts 02061

Printed on acid-free paper.

Printed in the United States of America

Table of Contents

List of Figures	ix
List of Tables	xii
Preface	xiii
1. Introduction	1
1.1 Motivation for Performance Control	3
1.2 Related Work	8
1.2.1 Packet Level Control	8
1.2.2 Call Level Control	11
1.2.3 Network Level Control	15
1.2.4 The Proposed Framework.....	15
2. Performance Management in Broadband Networks	18
2.1 Performance Monitoring.....	19
2.1.1 Performance Monitoring Functions.....	20
2.1.2 Role of Performance Monitoring.....	20
2.1.3 Performance Monitoring Requirements	21
2.2 Performance Control.....	22
2.3 Performance Monitoring in T-Carrier Systems.....	23
2.3.1 T-Carrier System: an Overview	24
2.3.1.1 T1 Fundamentals	24
2.3.2 T3 Fundamentals	27
2.3.2.1 M13 Frame	28
2.3.3 Performance Monitoring.....	29
2.3.3.1 Performance Monitoring Data.....	29
2.4 Performance Monitoring in SDH/SONET based Networks ...	30
2.4.1 SDH/SONET: an Overview	31
2.4.1.1 Layered Overhead Structure.....	32
2.4.2 Performance Monitoring.....	34
2.4.2.1 Performance Monitoring Locations	34
2.4.2.2 Performance Monitoring Data.....	35
2.4.2.3 SDH/SONET Performance Primitives	35
2.4.2.4 SDH/SONET Performance Parameters.....	37

2.4.2.5 SONET Maintenance Signals.....	38
2.5 Performance Monitoring in ATM Networks.....	38
2.5.1 ATM: an Overview	39
2.5.2 Operations, Administrations, and Maintenance (OAM) Flows.....	41
2.5.3 Performance Monitoring.....	42
2.5.3.1 Monitoring Locations	43
2.5.3.2 Performance Monitoring at TC sublayer.....	43
2.5.3.3 Performance Monitoring at ATM layer.....	44
2.6 Performance Monitoring in Frame Relay Networks.....	47
2.6.1 Frame Relay Protocol and Protocol Architecture	48
2.6.1.1 Frame Relay Protocol Architecture.....	48
2.6.1.2 Frame Relay Protocol.....	49
2.6.2 Performance Monitoring.....	52
2.6.2.1 Performance Monitoring Locations	52
2.6.2.2 Performance Monitoring Data.....	53
2.7 Transmission Quality Assurance	53
2.7.1 Nature of Impairments	54
2.7.2 Determination of QoS and Facility Performance	56
2.7.3 Proactive Maintenance	57
2.7.3.1 Thresholding.....	58
2.7.3.2 Trending	58
2.7.3.3 Pattern matching.....	59
2.8 Traffic Management.....	59
2.8.1 Network Status and Monitoring.....	61
2.8.1.1 Circuit Groups	61
2.8.1.2 Switching nodes	62
2.8.1.3 Network Performance Monitoring/Control Requirements.....	62
2.9 Summary	64
3. Performance Management in Cellular Networks	65
3.1 Cellular Networks: an Overview	66
3.1.1 RF Channels	67
3.1.2 Terrestrial Channels	69
3.1.3 Signaling Channels	69
3.2 Performance Monitoring in GSM/GPRS Networks	71
3.2.1 Network Architectures and Signaling Protocol Stacks.....	72
3.2.2 The Proposed Framework.....	75

3.2.3	GSM Performance Estimation	77
3.2.3.1	Resource Utilization	79
3.2.3.2	Error performance	82
3.2.4	GPRS Performance Estimation	85
3.2.4.1	Resource Utilization	86
3.2.4.2	Radio Resource Error Performance	89
3.3	Summary	91
4.	Estimation & Prediction of Multiplexed VBR Traffic ..	93
4.1	The System Model	95
4.2	Video-Conferencing or Video-Phone Sources	96
4.2.1	Estimating Current Traffic State	99
4.2.1.1	Deterministic Arrival	100
4.2.1.2	Poisson Arrival	101
4.2.2	Predicting Future Traffic States	102
4.3	MPEG Sources	103
4.3.1	Time-Sequenced Adaptive Filters	104
4.4	Predicting Time of Congestion	105
4.5	Results	107
4.6	Summary	116
5.	Channel Access Control	118
5.1	Call Model	119
5.2	CS (Complete Sharing)	119
5.3	CP (Complete Partitioning)	122
5.4	PS (Partial Sharing)	122
5.5	CD (PS with Call Dropping)	123
5.5.1	DQ (Dropped Calls Queued)	126
5.5.2	LQ (Low Priority Calls Queued)	130
5.6	DA (PS with Discouraged Arrivals)	131
5.7	Numerical Results	132
5.8	Summary	140

6. Bandwidth Optimization in Broadband Networks	142
6.1 The Network Model	143
6.2 Bandwidth Optimization Procedure.....	144
6.3 Summary	150
7. Capacity Optimization in Cellular Networks	152
7.1 Network Model	153
7.2 Capacity Optimization Procedure	157
7.3 Soft Capacity of CDMA Cells	160
7.3.1 Cell Capacity Estimation	162
7.3.1.1 Channel Utilization Models	163
7.3.1.2 Statistical Multiplexing Gain	167
7.3.2 Cell Level QoS Evaluation	168
7.3.2.1 Complete Sharing.....	169
7.3.2.2 Complete Partitioning	172
7.3.2.3 Partial Sharing	172
7.4 Results.....	173
7.5 Summary	184
A. Transient State Analysis of an (S+1) State Birth-Death Markov Process	185
B. Properties of Exponential Random Variables	189
B.1 Transition Rates in CD Policy	190
B.2 Handover Probability	192
B.3 Non-Exponential Call Durations	192
C. Capacity Optimization Procedure	195
D. List of Abbreviations and Symbols	200
References	213
Subject Index	221

List of Figures

Figure. 1-1.	A Multi-Service Multi-Resource Broadband Network.	4
Figure. 1-2.	The Proposed Framework.	17
Figure. 2-1.	STS-1 frame format and overhead layers	33
Figure. 2-2.	Section, Line, and Path overheads with network elements	34
Figure. 2-3.	B-ISDN Protocol Reference Model, and ATM Cell Headers	46
Figure. 2-4.	Frame and Address Field Format.....	51
Figure. 2-5.	Transmission Performance Impairments	55
Figure. 3-1.	Logical Architecture of a GSM/GPRS Network ...	73
Figure. 3-2.	Logical Architecture of an SS7 Signaling Network	75
Figure. 3-3.	Functional Framework of the Proposed System	76
Figure. 3-4.	GSM Signaling Plane.....	78
Figure. 3-5.	GPRS Signaling Plane	86
Figure. 4-1.	Model of the Proposed Scheme.	96
Figure. 4-2.	Input Traffic and Time Sequenced Adaptive Predictor Structure.	105
Figure. 4-3.	Estimation Performance of Least Mean-Square Filter (a) Deterministic Arrival (b) Poisson Arrival.....	109
Figure. 4-4.	(a) A Sample Function of $x(j)$ (b) Prediction over 1 Frame Interval (c) Prediction over 2 Frame Intervals (d) Prediction over 5 Frame Intervals ..	110
Figure. 4-5.	Traffic Prediction (a) Single Source (Terminator Trace) (b) Three Sources Multiplexed with Random Starting Times (c) Five Sources Multiplexed with Random Starting Time.	112
Figure. 4-6.	Transient Behavior in Response to Sources Turning Off and On (a) using LMS (b) using RLS.	115
Figure. 4-7.	Probability Distribution to Overload.	116

Figure. 5-1.	Two Dimensional Markov chain for (a) Complete Sharing (b) Complete Partitioning (c) Partial Sharing.....	121
Figure. 5-2.	Priority Based Policies (a) PS with Call Dropping (b) PS with Discouraged Arrivals.....	124
Figure. 5-3.	PS with Call Dropping with (a) Dropped Calls Queued (b) Low Priority Calls Queued.....	129
Figure. 5-4.	(a) Blocking Probability of Service 1 for CS (Complete Sharing), CP (Complete Partitioning), PS (Partial Sharing), and CD (Call Dropping). (b) Blocking Probability of Service 2 for CS, CP, PS, CD, and DA (Discouraged Arrivals).	134
Figure. 5-5.	Call Blocking Probability of s_1 under CD, DQ and LQ policies.....	136
Figure. 5-6.	(a) Call Dropping Probability of s_1 calls under PS with Call Dropping scheme (b) Average System Time of dropped calls under Dropped-Calls-Queued scheme (c) Average System Time of low priority calls under Low-Priority-Calls-Queued scheme with $K=60$	137
Figure. 5-7.	Performance evaluation of CD when traffic characteristics of s_1 and s_2 are similar.	138
Figure. 5-8.	Performance evaluation of CD (a) Call Blocking Probability of s_1 (b) Call Blocking Probability of s_2 (c) Call Dropping Probability of s_1	139
Figure. 6-1.	The Network Model.....	143
Figure. 6-2.	Network revenue as a function of (C_1, C_2, C_s) for a two service single link case with specified traffic load.....	149
Figure. 7-1.	Channel Activity Models (a) VBR Video Source (b) Voice Source.	166
Figure. 7-2.	Acceptable states for $\epsilon = 0$ and	170
Figure. 7-3.	Two Dimensional Markov chain when $\epsilon = 0$ for (a) Complete Sharing (b) Complete Partitioning (c) Partial Sharing.....	171

Figure. 7-4.	Blocking Probability when $\epsilon = 0$ for (a) Service 1 (b) Service 2.....	178
Figure. 7-5.	Dropping Probability when $\epsilon = 0$ for (a) Service 1 (b) Service 2.....	179
Figure. 7-6.	Blocking Probability when $\epsilon = 10^{-5}$ for (a) Service 1 (b) Service 2.....	180
Figure. 7-7.	Dropping Probability when $\epsilon = 10^{-5}$ for (a) Service 1 (b) Service 2.....	181
Figure. 7-8.	Call Dropping Probability vs. size of Guard Band.....	182
Figure. 7-9.	Effect of reserving Channels for s_1 and s_2 on Network Revenue.....	183
Figure. C-1.	The Main Functional Blocks.....	197
Figure. C-2.	Iterations of Step 1.....	198
Figure. C-3.	Iterations of Step 2.....	199

time, which may result in lost revenue for the service providers and, perhaps, lost productivity for the end users. An intelligent management strategy is, therefore, needed to anticipate, detect and subsequently overcome these problems. Network management is thus being given the spotlight it deserves.

Most of the existing books on this subject elaborate on the definitions, functional requirements and architectures of network management. This book, however, has been written with a focus on describing various methods of network management. With an emphasis on the performance management aspects of telecommunication networks, this book addresses various open issues related to management function, performance management and performance models. The book makes two key contributions. Firstly, it covers the performance management aspects of broadband wired and wireless networks in an integrated fashion. Secondly, it highlights the role of performance management in assisting network control processes to achieve their end objectives. The end objectives are the high revenue of telecommunication service providers and an acceptable QoS for the end users.

The first half of the book provides details of performance monitoring in broadband wired and wireless cellular networks. Various parameters

List of Tables

TABLE 4-1. Relative Performance of NLMS and RLS. The metric used is SNR-1. [x,y] means the range. ...	113
TABLE 7-1. Channel Utilization Model Parameters for VBR Video Sources.	174