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CORRELATION EFFECTS IN ATOMIC THERMAL VIBRATION
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Abstract: Analytical expression for the Displacement-displacement Correlation
Function (DCF) CR has been derived based on the derived Mean Square Relative
Displacement (MSRD) cZand the Mean Square Displacement (MSD) u?for fec
crystals. The effective interaction potential of the system has been considered by
taking into account the influences of nearest atomic neighbors, and it contains the
Morse potential characterizing the interaction of each pair of atoms. Numerical
calculations have been carried out for u? , cZand Cy functions of Cu and Ni. The

ratio Cp /u? is 40% and Cy /62 25% at high temperatures. They are found to be in

good agreement with experiment and with those calculated by the Debye model.

1. Introduction

In the X-ray Absorption Fine Structure (XAFS) procedure it is of great
interest to characterize the local atomic environment of the substances as
completely as possible, i.e., we would in principle like to determine the position,
type, and number of the central atoms and their neighbors in a cluster and to
determine such interesting properties as the relative vibrational amplitudes and
spring constants of these atoms. At any temperature the positions R ;of the atoms

are smeared by thermal vibrations. The photoelectron emitted from the absorber in
the XAFS process is transferred and scattered in this atomic vibrating
environment. Therefore, in all treatments of XAFS the effect of this vibrational
smearing has been included in the XAFS function [1]

(k) ~ ZFj(k)eszj/x(k)Im{eiq>j(k)<ei2kRj >} , (1)

where F(k) is the real atomic backscattering amplitude, ® is the net phase shift,
k,\. are the wave number and the mean free path of the photoelectron,

respectively. This function contains the averaging value <ei2kR-f> leading to the

2 2
Debye-Waller factor DWF =e 2 | Since this factor is meant to account for the
0

thermal vibrations of the atoms about their equilibrium sites R},

one usually

assumes that the quantity 63- is identical with the MSD [2]. But the oscillatory

motion of nearby atoms is relative and including the correlation effect is necessary
[1, 3-9]. In this case 03 is the MSRD containing the MSD and DCF.
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The purpose of this work is to study the correlation effects in atomic
vibrations of fcc crystals in XAFS, i.e., to develop a new procedure for calculation of
the DCF (Cy) for atomic vibration in the fcc crystals. Expression for the MSD (u?)
has been derived. Using it and the MSRD (o”) we derive Ci. The effective
interaction potential of the system has been considered by taking into account the
influences of the nearest atomic neighbors based on the anharmonic correlated
Einstein model [4]. This potential contains the Morse potential characterizing the
interaction of each pair of atoms. Numerical calculations have been carried out for
Cu and Ni. The calculated UZ,GZ, Cy functions and the ratio CR/uZ, Cy /62 of these

crystals are analysed. They are found to be in good agreement with those calculated
by the Debye model [3] and with experiment [7-9].

2. Formalism

For the purpose of this investigation it is better to rewrite the XAFS function
Eq. (1) in the form [2]

2ikA ;

X:X0<e 1>; A;=R%-(u,-u,), R=R/R|, @)
where u; and u, are the jth atom and the central-atom displacement, respectively.

To valuate Eq. (2) we make use of the well-known relation [11]
<e2ikAj> _ ) 3)

and obtain
o262
1= ", (4)

so that the thermal vibration effect in XAFS is defined by c°.
For perfect crystals with using Eq. (2) the MSRD is given by

o = (N} =2u} - Cy. (5)
Here we defined the MSD function as
= (fuy R3F) = (w5 ©
and the DCF
Cr = 2{[ug RS Ju; -R) = 2% - o2 ™

It is clear that all atoms vibrate under influence of the neighboring
environment. Taking into account the influences of the nearest atomic neighbors
the Einstein effective interaction potential for single vibrating atom is given by
(ignoring the overall constant)
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N
o @)= Ulkky, R} N=12, ®)

j=1
U;’ff(y)zéké’ffyz, k;’f =4Doc2(2—(xa)=M0(o(2), 9)

where M, is the central atomic mass; D and o are the parameters of the Morse

potential
Ux) = Dle 2 —2¢7 )= D1+ a2x? - 0x® +-), (10)
and the other parameters have been defined as follows
y=x-a, x=r-r,,a=(r—-r), 11

with r and r, as the instantaneous and equilibrium bond length between absorber
and backscatterer, respectively.

Using Egs. (8-11) we obtained the Einstein frequency ®% and temperature 69

/2
0% =2Da?(2-aa) M,]"*, 0% =0l /ky, (12)
where kp is Boltzmann constant.
The atomic vibration is quantized as phonon, that is why we express Yin
terms of annihilation and creation operators, & and a", i. e.,

" hoj
yzao( +a+), al = (DOE

; 13)

and use the harmonic oscilator state |n> as the eigenstate with the eigenvalue
E, = nhoy , ignoring the zero-point energy for convenience.

Using the quantum statistical method, where we have used the statistical
density matrix Z and the unperturbed canonical partition function p,

1

1-2,

B=1/kgT, zo=e%'T  (14)

n _
2y =

s

Z =Trp, = Zexp(— np hm%):

i
(=}

we determined the MSD function

u? = <y2> ~ %Tr(poyz)z %Zexp(— thcoOEXn|y2|n> =

hod 1+z hob 1+z
=2a2(1-z El+nz”: 2 0 — E 0 _ 15
il O)n( ki 2k, 1-2, 16Da’ 1-2z, (1%)
:ugl+20, u(g)_ h(,OOE

 16Da?

1-2z,
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In the crystal each atom vibrates in the relation to the others so that the
correlation must be included. Based on quantum statistical theory with the
correlated Einstein model [4] the MSRD function for fcc crystals has been
calculated and is given by

1+z ho - ho
62(T)26‘2’1—z’ Gg:lOD};Z ; oz=e T, Op ==, (16)
B
k ) 1/2
o= |Fr _|3De* (1 8 N o MM, 17
“ l_,l, 2 Ma+Ms

where M, and Mg are the masses of absorbing and backscattering atoms; and in
Eqgs. (15, 16) ug , Gg are the zero point contributions to u? and o”; oy , 0 are the

correlated Einstein frequency and temperature, respectively.

From the above results we obtained the DCF Cy, the ratio Cy/u* and Cy/c*

_ 2081+ 20)1-2)- o8 (L- 270 )1+2)

C , 18
R 1= 20)1-2) (18
C_E o a§(l+ z)1- 20)’ 19)

u Uo(l—Z)(1+ Zo)
Cr _ 2021+ 2)1-29) - 02(1— 2, N1+ 2) 20)

o? c2(1-2,)1+72)

It is useful to consider the high-temperature (HT) limit, where the classical
approach is applicable, and the low temperature (LT) limit, where the quantum
theory must be used.

In the HT limit we use the approximation
2(20) ~ 1 - hog 0} )/ kyT 1)

to simplify the expressions of the thermodynamic parameters. In the LT limit
z(zy)= 0, so that we can neglect z* (zg) and higher power terms. These results are

written in Table 1.
Note that from this table the functions uz,CR ,o> are linearly proportional to

the temperature at high-temperatures and contain the zero-point contributions at
low-temperatures, satisfying all standard properties of these quantities [12, 13];
the ratio Cp /u® approaches a constant value of 40%. These results agree with those

calculated by the Debye model [3].



30 Nguyen Van Hung

Table 1: Expressions of u? ,GZ,CR ,Cp /uz,CR /62 in the LT and HT limits .

Function T-0 T — o

u® ul(l+2z,) kpT 18Do”
c? o2(1+22) kyT | 5Da”
Cr 2u2(1+22,)-o2(1+22) kT /20Da”
C_R 0(2)(1 + 22)

u’ u2(l+2z,) 040

Cr ui(l+2z2,)

v 2 0 o) _1

o’ o2(1+ 22) 025

3. Numerical results

Now we apply the expressions derived in the previous section to numerical
calculations for Cu and Ni. The Morse potential parameters D and o of these
crystals have been calculated by using the procedure presented in [10]. The

calculated values of D, o, 1, kg, ky,0F, of, 03, 05 are presented in Table 2.

They show a good agreement of our calculated values with experiment [7-9] and
with those calculated by another procedure [14].

Table 2: Calculated values of D, a, 1,, kg, by, 0%, 0f, 0%, 05 for Cu and Ni

s Too

compared to experiment [7-9] and to those of other procedure [14].

DEV) | o (AI) ro( A) kgff keff Q)] Q)

Crystal (N/m) | (N/m) (10 Hz) (103 Hz) | 0%(K) | 05K
Cu, 0.337 | 1.358 | 2.868 | 79.659 | 49.787 | 2.739 3.063 209.25 | 233.95
present

Cu, 0.330 | 1.380 | 2.862 50.345 3.082 235.26
exp.[7] 232091
Cu, 0.343 | 1.359 | 2.866 | 81.196 | 50.748 | 2.766 3.092 211.26 | 236.20
[14]

Ni, 0.426 | 1.382 | 2.803 | 104.29 | 65.179 | 3.261 3.646 249.12 | 278.53
present

Ni, 0.410 | 1.390 | 2.804 63.460 3.600 274.83
exp.[7]

Ni, 0.421 | 1.420 | 2.780 | 108.81 | 68.005 | 3.331 3.725 254.46 | 284.50
[14]
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The effective spring constants, the Einstein frequencies and temperatures
change significantly when the correlation is included. The calculated Morse
potentials for Cu and Ni are illustrated in Figure 1 showing a good agreement with
experiment [7]. Figure 2 shows the temperature
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Figure 1: Calculated Morse potential of Figure 2: Temperature dependence of
Cu and Ni compared to experiment [7]. the calculated o2, u? for Cu and Ni

compared to experiment [7,8].

dependence of the calculated MSRD 6%of Cu and Ni compared to their MSD #? and
to experiment. The MSRD are greater than the MSD, especially at high
temperature. The temperature dependence of our calculated correlation function
DCF C; of Cu and Ni is illustrated in Figure 3 and their ratio with function «” and
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Figure 3: Temperature dependence of Figure 4: Temperature dependence of
the calculated DCF Cp of Cu and Ni the calculated ratio Cp/u®, Cr/c® for

compared to experiment [7]. Cu and Ni compared to experiment [7].
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0% in Figure 4. All they agree well with experiment [7, 8]. The MSRD, MSD and
DCF are linearly proportional to the temperature at high-temperatures and contain
zero-point contributions at low-temperatures showing the same properties of these
functions obtained by the Debye model [3] and satisfying all standard properties of
these quantities [12, 13]. Hence, they show the significance of the correlation effects
contributing to the Debye-Waller factor in XAFS. Figure 4 shows significance of the
correlation effects described by Cy in the atomic vibration influencing on XAFS. At
high temperatures it is about 40% for Cp /u®and 25% for Cy/c”.

4. Conclussions

In this work a new procedure for study of correlation effects of the atomic
vibration of fcc crytals in XAFS has been developed. Analytical expressions for the
effective spring constants, correlated Einstein frequency and temperature, for DCF
(Cg), MSD (u?) and their ratio Cp lu?, Cr / 6% have been derived for absorbing and
backscattering atoms in XAFS with the influence of their nearest neighbors.

Derived expressions of the mentioned thermodynamic functions show their
fundamental properties in temperature dependence. The functions CR,uZ,cs2 are
linearly proportional to temperature at high-temperatures and contain zero-point
contributions at low temperatures. The ratio Cp/u” accounts for 40% coinsiding
with the result obtained by the Debye method and the ratio Cjp /6 25% at high-

temperatures, thus showing the significance of correlation effects in the atomic
vibration in fce crystals.

Properties of our derived functions agree with experiment and with those
obtained by the Debye model thus denoting a new procedure for study of Debye-
Waller and of the atomic correlated vibration in XAFS theory.
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