
VNU. JOURNAL OF SCIENCE, Mathematics - Physics, T.xXI, n02, 2005 
 

26 

Correlation Effects in Atomic Thermal Vibration 
of fcc Crystals 

Nguyen Van Hung 

Department of Physics, College of Science, VNU 

Abstract: Analytical expression for the Displacement-displacement Correlation 
Function (DCF) RC  has been derived based on the derived Mean Square Relative 

Displacement (MSRD) 2σ and the Mean Square Displacement (MSD) 2u for fcc 

crystals. The effective interaction potential of the system has been considered by 

taking into account the influences of nearest atomic neighbors, and it contains the 

Morse potential characterizing the interaction of each pair of atoms. Numerical 

calculations have been carried out  for  2u , 2σ and CR  functions of Cu and Ni. The 

ratio 2/uCR  is 40% and 2/σRC 25% at high temperatures. They are found to be in 

good agreement with experiment and with those calculated by the Debye  model. 

1. Introduction 

In the X-ray Absorption Fine Structure (XAFS) procedure it is of great 
interest to characterize the local atomic environment of the substances as 
completely as possible, i.e., we would in principle like to determine the position, 
type, and number of the central atoms and their neighbors in a cluster and to 
determine such interesting properties as the relative vibrational amplitudes and 
spring constants of these atoms. At any temperature the positions jR of the atoms 

are smeared by thermal vibrations. The photoelectron emitted from the absorber in 
the XAFS process is transferred and scattered in this atomic vibrating 
environment. Therefore, in all treatments of XAFS the effect of this vibrational 
smearing has been included in the XAFS function [1] 

 ( ) ( ){ }jjj kRikikR

j

eeekFk j
2/2 Im)(~)( Φλ−∑χ ,  (1) 

where )(kF  is the real atomic backscattering amplitude,Φ  is the net phase shift, 
k , λ  are the wave number and the mean free path of the photoelectron, 

respectively. This function contains the averaging value jkRie 2  leading to the 

Debye-Waller factor 
222 jkeDWF σ−= . Since this factor is meant to account for the 

thermal vibrations of the atoms about their equilibrium sites 0
jR , one usually 

assumes that the quantity 2
jσ  is identical with the MSD [2]. But the oscillatory 

motion of nearby atoms is relative and including the correlation effect is necessary 
[1, 3-9]. In this case 2

jσ  is the MSRD containing the MSD and DCF. 
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The purpose of this work is to study the correlation effects in atomic 
vibrations of fcc crystals in XAFS, i.e., to develop a new procedure for calculation of 
the DCF (CR)  for atomic vibration in the fcc crystals. Expression for the MSD (u2) 

has been derived. Using it and the MSRD ( 2σ ) we derive CR. The effective 
interaction potential of the system has been considered by taking into account the 
influences of the nearest atomic neighbors based on the anharmonic correlated 
Einstein model [4]. This potential contains the Morse potential characterizing the 
interaction of each pair of atoms. Numerical calculations have been carried out for 
Cu and Ni. The calculated 2u , 2σ , CR  functions and the ratio 2/uCR , 2/σRC  of these 

crystals are analysed. They are found to be in good agreement with those calculated 
by the Debye model [3] and with experiment [7-9]. 

2. Formalism 

For the purpose of this investigation it is better to rewrite the XAFS function 
Eq. (1) in the form [2] 

 ( ) RRRuuR /ˆ,ˆ; 0
02
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∆

jjj
jik

e , (2) 

where ju  and 0u  are the jth atom and the central-atom displacement, respectively. 

To valuate Eq. (2) we make use of the well-known relation [11] 

 
2222
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and obtain 

 
222

0
σ−χ=χ ke , (4) 

so that the thermal vibration effect in XAFS is defined by 2σ . 

For perfect crystals with using Eq. (2) the MSRD is given by 

 Rjjj Cu −=∆=σ 222 2 .  (5) 

Here we defined the MSD function as 

 ( ) ( )2020
0

2 ˆˆ
jjjju RuRu ⋅=⋅=   (6) 

and the DCF  

 ( )( ) 2200
0 2ˆˆ2 jjjjjR uC σ−=⋅⋅= RuRu .  (7) 

It is clear that all atoms vibrate under influence of the neighboring 
environment. Taking into account the influences of the nearest atomic neighbors 
the Einstein effective interaction potential for  single vibrating atom is given by 
(ignoring the overall constant) 
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where 0M  is the central atomic mass; D and α  are the parameters of the Morse 

potential  

 ( ) ( )L+α−α+−≅−= α−α− 33222 12)( xxDeeDxU xx ,  (10) 

and the other parameters have been defined as follows 

 00 ,, rrarrxaxy −=−=−= ,  (11) 

with r and 0r  as the instantaneous and equilibrium bond length between absorber 
and backscatterer, respectively. 

Using Eqs. (8-11) we obtained the Einstein frequency 0
Eω  and temperature 0

Eθ  

 ( )[ ] BEEE kMaD /,/22 002/1
0

20 ω=θα−α=ω h ,  (12) 

where kB  is Boltzmann constant. 
The atomic vibration is quantized as phonon, that is why we express y in 

terms of annihilation and creation operators, â and +â , i. e., 
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and use the harmonic oscilator state n  as the eigenstate with the eigenvalue 
0
En nE ω= h , ignoring the zero-point energy for convenience. 

Using the quantum statistical method, where we have used the statistical 
density matrix Z and the unperturbed canonical partition function 0ρ  
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we determined the MSD function  
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In the crystal each atom vibrates in the relation to the others so that the 
correlation must be included. Based on quantum statistical theory with the 
correlated Einstein model [4] the MSRD function for fcc crystals has been 
calculated and is given by 
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where aM and SM  are the masses of absorbing and backscattering atoms; and in 

Eqs. (15, 16) 2
0u , 2

0σ  are the zero point contributions to 2u and 2σ ; Eω , Eθ  are the 

correlated Einstein frequency and temperature, respectively. 

From the above results we obtained the DCF CR , the ratio 2/ uCR  and 2/ σRC  
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It is useful to consider the high-temperature (HT) limit, where the classical 
approach is applicable, and the low temperature (LT) limit, where the quantum 
theory must be used. 

In the HT limit we use the approximation  

 ( ) Tkzz BEE /1)( 0
0 ωω−≈ h   (21) 

to simplify the expressions of the thermodynamic parameters. In the LT limit 

( ) 00 ⇒zz , so that we can neglect ( )2
0

2 zz  and higher power terms. These results are 

written in Table 1. 

Note that from this table the functions 22 ,, σRCu  are linearly proportional to 

the temperature at high-temperatures and contain the zero-point contributions at 
low-temperatures, satisfying all standard properties of these quantities [12, 13]; 

the ratio 2/ uCR  approaches a constant value of 40%. These results agree with those 

calculated by the Debye model [3].  
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Table 1: Expressions of 2/,/,,, 222 σσ RCuCCu RR  in the LT and HT limits . 

  
Function 0→T  ∞→T  

2u  ( )0
2
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3. Numerical results  

Now we apply the expressions derived in the previous section to numerical 
calculations for Cu and Ni. The Morse potential parameters D and α  of these 
crystals have been calculated by using the procedure presented in [10]. The 

calculated values of ,, αD  E
o
EE

o
Eeff

o
effo kkr θθωω ,,,,,,  are presented in Table 2. 

They show a good agreement of our calculated values with experiment [7-9] and 
with those calculated by another procedure [14]. 

Table 2: Calculated values of E
o
EE

o
Eeff

o
effo kkrD θθωωα ,,,,,,,,  for Cu  and Ni 

compared to experiment [7-9] and to those of other procedure [14]. 

 

Crystal 
D(eV) α (Å-1) ro(Å) 

o
effk  

(N/m)

effk  

(N/m)

o
Eω  

)10( 13 Hz  

Eω  

)10( 13 Hz

 
o
Eθ (K) 

 

Eθ (K)

Cu, 
present 

0.337 1.358 2.868 79.659 49.787 2.739 3.063 209.25 233.95

Cu, 

exp.[7] 

0.330 1.380 2.862  50.345  3.082  235.26

232[9]

Cu, 
[14] 

0.343 1.359 2.866 81.196 50.748 2.766 3.092 211.26 236.20

Ni, 
present 

0.426 1.382 2.803 104.29 65.179 3.261 3.646 249.12 278.53

Ni, 

exp.[7] 

0.410 1.390 2.804  63.460  3.600  274.83

Ni, 
[14] 

0.421 1.420 2.780 108.81 68.005 3.331 3.725 254.46 284.50
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The effective spring constants, the Einstein frequencies and temperatures 
change significantly when the correlation is included. The calculated Morse 
potentials for Cu and Ni are illustrated in Figure 1 showing a good agreement with 
experiment [7]. Figure 2 shows the temperature   

Figure 1: Calculated Morse potential of 
Cu and Ni compared to experiment [7]. 

Figure 2: Temperature dependence of 

the calculated 22, uσ  for Cu and Ni 

compared to experiment [7,8]. 

dependence of the calculated MSRD 2σ of Cu and Ni compared to their MSD u2 and 
to experiment. The MSRD are greater than the MSD, especially at high 
temperature. The temperature dependence of our calculated correlation function 
DCF RC  of Cu and Ni is illustrated in Figure 3 and their ratio with function u2 and  

 

Figure 3: Temperature dependence of 
the calculated DCF RC  of Cu and Ni 

compared to experiment [7]. 

Figure 4: Temperature dependence of 

the calculated ratio 2/ uCR , 2/ σRC  for 

Cu and  Ni  compared to experiment [7]. 
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2σ  in Figure 4. All they agree well with experiment [7, 8]. The MSRD, MSD and 
DCF are linearly proportional to the temperature at high-temperatures and contain 
zero-point contributions at low-temperatures showing the same properties of these 
functions obtained by the Debye model [3] and satisfying all standard properties of 
these quantities [12, 13]. Hence, they show the significance of the correlation effects 
contributing to the Debye-Waller factor in XAFS. Figure 4 shows significance of the 
correlation effects described by CR in the atomic vibration influencing on XAFS. At 

high temperatures it is about 40% for 2/ uCR and 25% for 2/ σRC . 

4. Conclussions 

In this work a new procedure for study of correlation effects of the atomic 
vibration of fcc crytals in XAFS has been developed. Analytical expressions for the 
effective spring constants, correlated Einstein frequency and temperature, for DCF 

( RC ), MSD ( 2u ) and their ratio 2/ uCR , 2/ σRC  have been derived for absorbing and 

backscattering atoms in XAFS with the influence of their nearest neighbors. 

Derived expressions of the mentioned thermodynamic functions show their 

fundamental properties in temperature dependence. The functions 22 ,, σuCR  are 

linearly proportional to temperature at high-temperatures and contain zero-point 

contributions at low temperatures. The ratio 2/ uCR  accounts for 40% coinsiding 

with the result obtained by the Debye method and the ratio 2/ σRC  25% at high-

temperatures, thus showing the significance of correlation effects in the atomic 
vibration in fcc crystals. 

Properties of  our derived functions agree with experiment and with those 
obtained by the Debye model thus denoting a new procedure for study of Debye-
Waller and of the atomic correlated vibration in XAFS theory.      
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