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Abstract. Let µ be the probability measure induced by S =
�∞

n=1 3
−nXn, where

X1,X2, ... is a sequence of independent, identically distributed (i.i.d) random variables

each taking values 0, 1, a with equal probability 1/3. Let α(s) (resp.α(s),α(s)) denote

the local dimension (resp. lower, upper local dimension) of s ∈ supp µ, and let

α = sup{α(s) : s ∈ supp µ};α = inf{α(s) : s ∈ supp µ};
E = {α : α(s) = α for some s ∈ supp µ}

.

In the case a = 3k + 1 for k = 1, E = [1− log(1+
√
5)−log 2

log 3 , 1], see [10]. It is conjectured

that in the general case, for a = 3k + 1 ( k ∈ N), the local dimension is of the form as

the case k = 1, i.e., E = [1 − log a
b log 3 , 1] for a, b depends on k. In fact, our result shows

that for k = 2 (a = 7), we have α = 1,α = 1− log(1+
√
3)

3 log 3 and E = [1− log(1+
√
3)

3 log 3 , 1].

1. Introduction

Let X be random variable taking values a1, a2, ..., am with probability p1, p2, ..., pm,

respectively and let X1,X2, ... be a sequence of independent random variables with the

same distribution as X. Let S =
�∞
n=1 ρ

nXn, for 0 < ρ < 1, and let µ be the probability

measure induced by S, i.e.,

µ(A) = Prob{ω : S(ω) ∈ A}.

It is known that the measure is either purely singular or absolutely continuous.

An intriguing case when m = 3, ρ = p1 = p2 = p3 = 1/3 and a1 = 0, a2 = 1, a3 = a.

According to the ”pure theorem” of Lagarias and Wang, in [7], if a ≡ 0 (mod 3) or a ≡ 1
(mod 3) then µ is purely singular.

Let us recall that for s ∈ supp µ the local dimension α(s) of µ at s is defined by

α(s) = lim
h→0+

logµ(Bh(s))

log h
, (1)
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provided that the limit exists, where Bh(s) denotes the ball centered at s with radius h. If

the limit (1) does not exist, we define the upper and lower local dimension, denoted α(s)

and α(s), by taking the upper and lower limits respectively.

Denote

α = sup{α(s) : s ∈ supp µ} ; α = inf{α(s) : s ∈ supp µ};

and let

E = {α : α(s) = α for some s ∈ supp µ}
be the attainable values of α(s), i.e., the range of function α definning in the supp µ.

In the case a = 3k + 1 it is conjectured that the local dimension is of the form as

k = 1, it means that E = [1− log a
b log 3 , 1] for a, b depends on k. Our aim in this note is to

prove that this conjecture is true for k = 2. In fact, our result is the following:

Main Theorem. For a = 7 we have α = 1,α = 1− log(1+
√
3)

3 log 3 and E = [1− log(1+
√
3)

3 log 3 , 1].

The paper is organized as follows. In Section 2 we establish some auxiliary results used in

the proof of the Main Theorem. The proof of the Main Theorem will be given in the last

section.

2. Some Auxiliary Results

Let X1, X2, . . . be a sequence of i.i.d random variables each taking values 0, 1, 7

with equal probability 1/3. Let S =
�∞

i=1 3
−iXi, Sn =

�n
i=1 3

−iXi be the n-partial sum
of S, and let µ, µn be the probability measures induced by S, Sn, respectively. For any

s =
�∞

n=1 3
−nxn ∈ supp µ, xn ∈ D: = {0, 1, 7}, let sn =

�n
i=1 3

−ixi be its n-partial
sum. It is easy to see that for any sn, s

I
n ∈ supp µn, |sn − sIn| = k3−n for some k ∈ N.

Let

�snX = {(x1, x2, ..., xn) ∈ Dn :
n3
i=1

3−ixi = sn}.

Then we have

µn(sn) = #�snX3−n for every n, (2)

where #�snX denotes the cardinality of set �snX.
Two sequences (x1, x2, ..., xn) and (x

I
1, x
I
2, ..., x

I
n) in D

n are said to be equivalent,

denoted by (x1, x2, . . . , xn) ≈ (xI1, xI2, . . . , xIn), if
�n
i=1 3

−ixi =
�n
i=1 3

−ixIi. We have

2.1. Claim. (i) For any (x1, x2, . . . , xn), (x
I
1, x
I
2, . . . , x

I
n) in D

n and sn =
�n
i=1 3

−ixi,
sIn =

�n
i=1 3

−ixIi. If sn − sIn = k
3n , where k ∈ Z, then xn − xIn ≡ k (mod 3).

(ii) Let sn > s
I
n > s

II
n be three arbitrary consecutive points in supp µn. Then either

sn − sIn or sIn − sIIn is not 1
3n and either sn − sIn or sIn − sIIn is not 2

3n .

Proof. (i) Since sn − sIn = k
3n , we have

3n−1(x1 − xI1) + 3n−2(x2 − xI2) + . . .+ 3(xn−1 − xIn−1) + xn − xIn = k,
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which implies xn − xIn ≡ k (mod 3). The claim (i) is proved.

(ii) We can write

sn = sn−1 +
xn
3n
, sIn = s

I
n−1 +

xIn
3n

and sIIn = s
II
n−1 +

xIIn
3n
,

where sn−1, sIn−1, sIIn−1 ∈ supp µn−1 and xn, xIn, xIIn ∈ D. Assume on the contrary that
sn − sIn = sIn − sIIn = 1

3n . Then

sn−1 − sIn−1 =
1 + xIn − xn

3n
=
1 + xIn − xn

3

1

3n−1
,

sIn−1 − sIIn−1 =
1 + xIIn − xIn

3n
=
1 + xIIn − xIn

3

1

3n−1
.

Since sk − sIk = t
3k
, t ∈ Z whenever sk, sIk ∈ supp µk, we have (1 + xIn − xn) ≡ 0 (mod 3)

and (1 + xIIn − xIn) ≡ 0 (mod 3). Because (1 + xIn − xn) ≡ 0 (mod 3) and xn, xIn ∈ D, we
obtain xIn = 0. Then 1 + xIIn − xIn = 1 + xIIn ∈ {1, 2, 8} for any xIIn ∈ D, a contradiction.
Similarly, we have either sn − sIn or sIn − sIIn is not 2

3n . The claim (ii) is proved.

2.2. Claim. (i) Let sn+1 ∈ supp µn+1 and sn+1 = sn +
0

3n+1 , sn ∈ supp µn. We have

#�sn+1X = #�snX, for every n 1.

(ii) For any sn, s
I
n ∈ supp µn if sn − sIn = 1

3n , then x
I
n = 0, xn = 1 or xn = 7 and

#�sInX #�snX. If xn = 1, then sn−1 = sIn−1 and if xn = 7, then sIn−1 = sn−1 + 2
3n−1 ,

where sn = sn−1 + xn
3n , s

I
n = s

I
n−1 +

xIn
3n and sn−1, s

I
n−1 ∈ supp µn−1, xn, xIn ∈ D.

(iii) For any sn, s
I
n ∈ supp µn, if sn − sIn = 2

3n , then xn = 0, xIn = 1 or xIn = 7.

Moreover, if xIn = 1, then sn−1 − sIn−1 = 1
3n−1 and if x

I
n = 7, then sn−1 − sIn−1 = 3

3n−1 ,

where sn = sn−1 + xn
3n , s

I
n = s

I
n−1 +

xIn
3n and sn−1, s

I
n−1 ∈ supp µn−1, xn, xIn ∈ D.

(iv) For any sn, s
I
n, s
II
n ∈ supp µn, if sn − sIn = 1

3n and s
I
n − sIIn = 2

3n , then sn =

sn−1 + 1
3n = s∗n−1 +

7
3n and sIIn = sIIn−1 +

7
3n or sIIn = sIIn−1 +

1
3n = sIIIn−1 +

7
3n and

sn = sn−1 + 1
3n , where sn−1, s

II
n−1, s∗n−1, sIIIn−1 ∈ supp µn−1.

Proof. (i) It follows directly from Claim 2.1.

(ii) Since sn−sIn = 1
3n , by Claim 2.1 (i) xn−xIn ≡ 1 (mod 3). Then xIn = 0, xn = 1

or xn = 7. Therefore sIn = sIn−1 +
0
3n . By Claim 2.1 (i) we have #�sInX = #�sIn−1X and

sn = sn−1 + 1
3n = sIn−1 +

1
3n . If sn has an other representation sn = s∗n−1 +

7
3n , then

#�snX #�sIn−1X = #�sInX. If xn = 1, then sn−1 − sIn−1 = sIn−1 − sIn−1 = 0. If xn = 7,

then sn = s
∗
n−1 +

7
3n , s

I
n = s

I
n−1 +

0
3n . It implies

1

3n
= sn − sIn = s∗n−1 − sIn−1 +

7

3n
.

Therefore

sIn−1 − s∗n−1 =
2

3n−1
.
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(iii) It is proved similarly to Claim 2.2 (ii).

(iv) Since sn − sIn = 1
3n , by Claim 2.2 (ii) we have

sIn = s
I
n−1 +

0

3n
, sn = s

I
n−1 +

1

3n
= s∗n−1 +

7

3n
.

On the other hand

sIn − sIIn =
2

3n
,

so if

sIIn = s
II
n−1 +

7

3n
= sIIIn−1 +

1

3n
,

then

sIn−1 − sIIIn−1 = sIIIn−1 − s∗n−1 =
1

3n−1
,

a contradiction to Claim 2.1 (ii). Therefore sIIn = sIIn−1 +
7
3n . Similarly, we get the last

assertion.

Remark 1. 1) By Claim 2.1 (i), it follows that if sn+1 ∈ supp µn+1 and sn+1 = sn+ 0
3n+1 ,

then it can not be represented in the forms

sn+1 = s
I
n +

1

3n+1
, or sn+1 = s

II
n +

7

3n+1
,

where sn, s
I
n, s
II
n ∈ supp µn. Thus, any sn+1 ∈ supp µn+1 has at most two representations

through points in supp µn.

2) Assume that sn, s
I
n ∈ supp µn, if sn − sIn = 1

3n or sn − sIn = 2
3n , then sn, s

I
n are

two consecutive points in supp µn.

2.3. Lemma. For any two consecutive points sn and s
I
n in supp µn, we have

µn(sn)

µn(sIn)
n.

Proof. By (2) it is sufficient to show that #�snX
#�sInX n. We will prove the inequality by

induction. Clearly the inequality holds for n = 1. Suppose that it is true for all n k.

Let sk+1 > s
I
k+1 be two arbitrary consecutive points in supp µk+1. Write

sk+1 = sk +
xk+1
3k+1

, sk ∈ supp µk, xk+1 ∈ D.

We consider the following cases for xk+1.

Case 1. If xk+1 = 7 then sk+1 = sk+
7

3k+1
. Assume that sk+1 has an other representation

sk+1 = s
∗
k +

xk+1
3k+1

, xk+1 ∈ D. Then s∗k > sk, where s∗k ∈ supp µk.
Let sIk ∈ supp µk be the smallest value larger than sk. Then sIk > sk are two consecutive
points in supp µk.
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a) For sIk = sk +
1
3k
. If sIIk sIk then s

II
k − sk 3

3k
= 9

3k+1
. We have

sk+1 = sk +
7

3k+1
< sk +

9

3k+1
sIIk ,

so sk+1 has the unique representation through point sk in supp µk. Hence #�sk+1X =
#�skX.

Since sk+1 > s
I
k+1 are two arbitrary consecutive points in supp µk+1 and sk+1 = sk+

7
3k+1

= sIk+
4

3k+1
, we have sIk+1 = s

I
k+

1
3k+1

. Assume that sIk+1 has an other representation
sIk+1 = s

III
k +

7
3k+1

. Then sIk−sIIIk = 2
3k
. It implies sIk−sk = sk−sIIIk = 1

3k
, which contradicts

to Claim 2.1 (ii). Hence #�sIk+1X = #�sIkX. Therefore

#�sk+1X
#�sIk+1X

=
#�skX
#�sIkX

k < k + 1.

b) For sIk = sk +
2
3k
= sk +

6
3k+1

. We have

sk+1 = sk +
7

3k+1
= sIk +

1

3k+1
.

It follows that

#�sk+1X = #�skX+#�sIkX and sIk+1 = s
I
k +

0

3k+1
.

Hence #�sIk+1X = #�sIkX. Therefore

#�sk+1X
#�sIk+1X

=
#�skX+#�sIkX

#�skX k + 1.

c) For sIk sk +
3
3k
= sk +

9
3k+1

. We have

sk+1 = sk +
7

3k+1
< sk +

9

3k+1
sIk,

so sk+1 has the unique representation through point sk in supp µk. Hence #�sk+1X =
#�skX.

Since sk+1 > s
I
k+1 are two consecutive points in supp µk+1 and sk+1 = sk+

7
3k+1

<

sk +
9

3k+1
sIk, s

I
k+1 only represents through points not bigger then sk in supp µk. Let

s∗k < sk be the consecutive point for sk in supp µk. We consider following three cases.
c1) If sk = s

∗
k +

1
3k
, then sIk+1 = s

∗
k +

7
3k+1

is the unique representation through point s∗k
in supp µk. It implies #�sIk+1X = #�s∗kX. Therefore

#�sk+1X
#�sIk+1X

=
#�skX
#�s∗kX

k < k + 1.

c2) If sk = s
∗
k +

2
3k
, then sIk+1 = s

∗
k +

7
3k+1

= sk +
1

3k+1
. So

#�sIk+1X = #�s∗kX+#�skX.



12 Truong Thi Thuy Duong, Vu Hong Thanh

Therefore
#�sIk+1X
#�sk+1X =

#�s∗kX+#�skX
#�skX k + 1.

c3) If sk s∗k +
3
3k
, then sIk+1 = sk +

1
3k+1

is the unique representation through point sk
in supp µk. Hence #�sIk+1X = #�skX. Therefore

#�sk+1X
#�sIk+1X

=
#�skX
#�skX = 1 < k + 1.

Case 2. If xk+1 = 0, then sk+1 = sk +
0

3k+1
. By Claim 2.2 (i), we have #�sk+1X = #�skX.

Then sIk+1 = s
∗
k +

x∗k+1
3k+1

< sk+1 = sk. It implies s
∗
k < sk.

Let sIk ∈ supp µk be the biggest value smaller than sk. Then sIk < sk are two consecutive
points in supp µk.

a) If sk = s
I
k +

1
3k
, then by Claim 2.2 (ii)

#�sIkX #�skX. (3)

We have

sk+1 = sk = s
I
k +

3

3k+1
> sIk +

1

3k+1
.

Hence

sIk+1 = s
I
k +

1

3k+1
sIIk +

7

3k+1
,

where sIk > s
II
k are two consecutive points in supp µk( Because by Claim 2.1, sk−sIk 2

3k
).

Thus, #�sIk+1X #�sIkX+#�sIIkX. Therefore

#�sIk+1X
#�sk+1X

#�sIkX+#�sIIkX
#�skX

#�sIkX+#�sIIkX
#�sIkX

(k + 1).

b) If sk = s
I
k +

2
3k
, then

sk+1 = sk = s
I
k +

2

3k
= sIk +

6

3k+1
sIIk +

1

3k
+

6

3k+1
= sIIk +

9

3k+1
,

with sIk > s
II
k are two consecutive points in supp µk and s

I
k − sIIk = 1

3k
or sIk − sIIk 3

3k
.

b1) If sIk = s
II
k +

1
3k
, then #�sIIkX #�sIkX, sIk+1 = sIIk + 7

3k+1
and it is the unique represen-

tation of sIk+1 through points in supp µk. (If it is not the case, s
I
k+1 = s∗k +

1
3k+1

, then

sk−s∗k = s∗k−sIk = 1
3k
, a contradictions to Claim 2.1). Hence #�sIk+1X = #�sIIkX. Therefore

#�sIk+1X
#�sk+1X =

#�sIIkX
#�skX

#�sIkX
#�skX k < k + 1.

To show that #�sk+1X#�sIk+1X k + 1, we note that

sk+1 = sk = sk−1 +
xk
3k
, sIIk = s

II
k−1 +

xIIk
3k
.
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Since sIk − sIIk = 1
3k
, we have xIIk = 0 and #�sIIkX = #�sIIk−1X.

Since sk − sIIk = 3
3k
, we have xk − xIIk ≡ 0 ( mod 3). By xIIk = 0, we get xk = 0. It

implies #�skX = #�sk−1X.Moreover, sk−1−sIIk−1 = 1
3k−1 , so sk−1, s

II
k−1 are two consecutive

points in supp µk−1. Therefore, by the inductive hypothesis we have

#�sk+1X
#�sIk+1X

=
#�skX
#�sIIkX

=
#�sk−1X
#�sIIk−1X

k − 1 < k + 1.

b2) If sIk sIIk +
3
3k
then

sk+1 = sk = s
I
k +

6

3k+1
sIk +

1

3k+1
> sIIk +

10

3k+1
.

Hence sIk+1 = sIk +
1

3k+1
and this is the unique representation of sIk+1 through points in

supp µk. Hence #�sIk+1X = #�sIkX. Therefore

#�sIk+1X
#�sk+1X =

#�sIkX
#�skX k < k + 1.

c) If sk sIk +
3
3k
= sIk +

9
3k+1

, then sIk+1 = s
I
k +

7
3k+1

is the unique representation

of sIk+1. So #�sIk+1X = #�sIkX. Therefore

#�sk+1X
#�sIk+1X

=
#�skX
#�sIkX

k < k + 1.

Case 3. If xk+1 = 1, then sk+1 = sk+
1

3k+1
. Note that if sk+1 has an other representation

then sk+1 = s
∗
k+

7
3k+1 and sk−s∗k = 2

3k . It implies s
∗
k, sk are two consecutive points in supp

µk. Clearly #�sk+1X #�skX +#�s∗kX. Since sk+1 > sIk+1 are two arbitrary consecutive
points in supp µk+1, we have s

I
k+1 = sk +

0
3k+1

. Hence #�sIk+1X = #�skX. Therefore

#�sk+1X
#�sIk+1X

#�skX+#�s∗kX
#�skX k + 1.

The lemma is proved.

The following proposition provides a useful formula for calculating the local dimen-

sion and it is proved similarly to the proof of Proposition 2.3 in [10] and using Lemma

2.3.

2.4. Proposition. For s ∈ supp µ, we have

α(s) = lim
n→∞

| logµn(sn)|
n log 3

,

provided that the limit exists. Otherwise, by taking the upper and lower limits respectively

we get the formulas for α(s) and α(s).
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For each infinite sequence x = (x1, x2, . . . ) ∈ D∞ defines a point s ∈ supp µ by

s = S(x) :=
∞3
n=1

3−nxn.

We denote

�x(k)X = {(y1, . . . , yk) ∈ Dk : (y1, . . . , yk) ≈ (x1, . . . , xk)},

where x(k) = (x1, . . . , xk). It is easy to check that

(1, 0, 1) ≈ (0, 1, 7), (0, 7, 0, 1) ≈ (1, 1, 7, 7) and (1, a, 0, 1) ≈ (0, a, 7, 7)

for any a ∈ D. We call each element in the set

{(1, 0, 1), (0, 1, 7), (0, 7, 0, 1), (1, 1, 7, 7), (1, a, 0, 1), (0, a, 7, 7)}

a generator.

2.5. Claim. Let

x(3n) = (x1, x2, . . . , x3n) = (1, 0, 1, . . . , 1, 0, 1)

y(3n+ 1) = (y1, . . . , y3n+1) = (1, x1, . . . , x3n) and

z(3n+ 2) = (z1, . . . , z3n+2) = (1, 1, x1, . . . , x3n), (4)

where x3k+1 = x3k+3 = 1, x3k+2 = 0, for k = 0, 1, 2, . . . . Putting

sj =

j3
i=1

3−ixi,

we have

(i) #�s3X = 2,#�s6X = 6, #�y(4)X = 3, #�y(7)X = 8 and #�z(5)X = 4, #�z(8)X =
10. and

(ii)

#�s3(n+1)X = 2#�s3nX+ 2#�s3(n−1)X,

#�y(3(n+ 1) + 1)X = 2#�y(3n+ 1)X+ 2#�y(3(n− 1) + 1)X

and #�z(3(n+ 1) + 2)X = 2#�z(3n+ 2)X+ 2#�z(3(n− 1) + 2)X,

for n = 1, 2, . . . .

Proof. (i) Claim (i) is clear.
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(ii) We only prove the case #�s3(n+1)X = 2#�s3nX+2#�s3(n−1)X, the other cases are proved
similarly. We have

s3n+3 = s3n +
1

33n+1
+

0

33n+2
+

1

33n+1

= s3n +
0

33n+1
+

1

33n+2
+

7

33n+1

= sI3n +
1

33n+1
+

7

33n+2
+

7

33n+1

= sII3n +
7

33n+1
+

7

33n+2
+

7

33n+1
, (5)

where s3n, s
I
3n and s

II
3n ∈ supp µ3n. Therefore #�s3n+3X = 2#�s3nX + #�sI3nX + #�sII3nX.

Using Claim 2.2, we have

sI3n = s3n−3 +
1

33n−2
+

0

33n−1
+

0

33n
, sII3n = s3n−3 +

0

33n+1
+

0

33n+2
+

7

33n+1
.

So #�sII3nX = #�s3n−3X. Assume that sI3n = sI3n−3 + 7
33n−2 +

0
33n−1 +

0
33n . Then x3n−3 = 0,

a contradiction to x3n−3 = 1. Hence #�sI3nX = #�s3n−3X. Thus

#�s3n+3X = 2#�s3nX+ 2#�s3n−3X.

The claim is proved.

Putting F3n = #�s3nX, G3n+1 = #�y(3n+1)X and H3n+2 = #�z(3n+2)X, from Claim 2.5

we have

F3n =
1

2
√
3
[(1 +

√
3)n+1 − (1−

√
3)n+1],

G3n+1 =
1

4
√
3
[(1 +

√
3)n+2 − (1−

√
3)n+2] and

H3n+2 =
1

2
[(1 +

√
3)n+1 + (1−√3)n+1].

2.6. Claim . Let x = (x1, x2, . . . ) = (1, 0, 1, . . . , 1, 0, 1, . . . ) or x = (1, 1, 0, 1, . . . , 1, 0, 1, . . . )

or x = (1, 1, 1, 0, 1, . . . , 1, 0, 1, . . . ) ∈ D∞ and s =
�∞
i=1 3

−ixi ∈ supp µ, we have

α(s) = 1− log(1 +
√
3)

3 log 3
.

Proof. The proof of the claim is similar to the proof of Claim 2.6. in [10].

We say that x = (x1, x2, . . . , xn) ∈ Dn is a maximal sequence if

#�tnX #�snX for any tn ∈ supp µn,

where sn =
�n
i=1 3

−ixi.
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The following fact will be used to estimate the greatest lower bound of local dimen-

sion.

2.7. Proposition. For every n ∈ N, let t3n+j =
�3n+j
i=1 3−iti be an arbitrary point in supp

µ3n+j, for j = 0, 1, 2. Then #�t3nX F3n,#�t3n+1X G3n+1 and #�t3n+2X H3n+2.

Proof. We will prove the proposition by induction. It is straightforward to check that the

assertion holds for n = 1, 2, 3. Suppose that it is true for all n k(k 3). We show that

the proposition is true for n = k+1. Let t3(k+1) be an arbitrary point in supp µ3k+3. We

consider the following cases.

Case 1. (y3k+1, y3k+2, y3k+3) is a generator. Without loss of generality, we assume that

(y3k+1, y3k+2, y3k+3) = (1, 0, 1). 1.1. If y3k = 0, then �t(3k + 3)X = (t(3k − 1), 0, 1, 0, 1) ∪
(t(3k − 1), 0, 0, 1, 7).
Hence

#�t3k+3X 2H3(k−1)+2 +G3k+1 F3(k+1).

1.2. If y3k = 7 or y3k = 1, then t(3k + 3) = (t(3k), 1, 0, 1) ∪ (t(3k), 0, 1, 7). It implies

#�t3k+3X F3k +H3k+2 = F3(k+1).

Case 2. (y3k+1, y3k+2, y3k+3) is not a generator.

2.1. If y3k+3 = 0 then by Claim 2.2.(i), inductive hypothesis and (6) we have

#�t3k+3X = #�t3k+2X H3k+2 F3(k+1).

2.2.1. Similarity as above, we have if y3k+3 = 1 and y3k+2 = 1 or 7, then

#�t3k+3X = #�t3k+2X H3k+2 F3(k+1).

2.2.2. If y3k+3 = 1, y3k+2 = 0 and (y3k, y3k+1, 0, 1) is not a generator, then

#�t3k+3X G3k+1 F3(k+1).

2.2.3. If (y3k, y3k+1, 0, 1) is a generator, then

(y3k, y3k+1, 0, 1) ∈ {(0, 7, 0, 1), (1, 0, 0, 1), (1, 7, 0, 1)}.

a) If (y3k, y3k+1, 0, 1) = (0, 7, 0, 1) or (1, 0, 0, 1), then #�t3k+3X 2F3k F3(k+1).

b) If (y3k, y3k+1, 0, 1) = (1, 7, 0, 1). We consider two cases

b1) If y3k−1 = 7 or y3k−1 = 1, then #�t3k+3X 2F3k F3(k+1).

b2) If y3k−1 = 0, then (0, 1, 7, 0, 1) ≈ (1, 0, 1, 0, 1), hence

�t(3k + 3)X = �(y(3k), 1, 0, 1)X

for y(3k) ∈ D3k. According to the Case 1, we have

#�t(3k + 3)X = #�(y(3k), 1, 0, 1)X F3(k+1).
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2.3. If y3k+3 = 7. By similar argument as above cases, we get #�t3k+3X F3(k+1).

Thus, by using inductive hypothesis and the formula for calculating for F3n,H3k+2
and G3k+1, we finished the proof of the first inequality, that means #�t3nX F3n, for all

n.

Similar argument and using the result #�t3nX F3n, for all n, we have #�t3n+1X G3n+1
for all n.

By repeating the above argument and using the two above results we have the last of the

assertion.

The proposition is proved.

3. Proof of The Main Theorem

We call an infinite sequence x = (x1, x2, . . . ) ∈ D∞ a prime sequence if #�snX = 1
for every n, where sn =

�n
i=1 3

−ixi.

3.1. Claim. α = 1, α = 1− log(1+
√
3)

3 log 3 .

Proof. For any prime sequence x = (x1, x2, . . . ), for example x = (x1, x2, . . . ) = (7, 7, . . . )

or x = (x1, x2, . . . ) = (0, 0, . . . ), we have #�snX = 1 for every n, where sn =
�n
i=1 3

−ixi.
Therefore, by Proposition 2.4 we get

α = α(s) = lim
n→∞

| logµn(sn)|
n log 3

= 1,

where s = S(x).

From Claim 2.6 we have

α 1− log(1 +
√
3)

3 log 3
.

For any t ∈ supp µ, by Claim 2.5 and Proposition 2.7, we have #�t3nX #�s3nX =
1

2
√
3
((1 +

√
3)n+1 − (1−√3)n+1) for every n. Hence

lim
n→∞

| logµ3n(t3n)|
3n log 3

lim
n→∞

| log 1
2
√
3
((1 +

√
3)n+1 − (1−√3)n+1)3−3n|
3n log 3

= 1− log(1 +
√
3)

3 log 3
,

where tn be n - partial sum of t.

Similar argument as above, we have

lim
n→∞

| logµ3n+1(t3n+1)|
(3n+ 1) log 3

1− log(1 +
√
3)

3 log 3
, lim
n→∞

| logµ3n+2(t3n+2)|
(3n+ 2) log 3

1− log(1 +
√
3)

3 log 3
.

So we get

α 1− log(1 +
√
3)

3 log 3
.

Therefore

α = 1− log(1 +
√
3)

3 log 3
.

The claim is proved.
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Now we will show that for any β ∈ (1 − log(1+
√
3)

3 log 3 , 1) there exists s ∈ supp µ for
which α(s) = β. Let r = 3(1− β) log 3

log(1+
√
3)
. Clearly 0 < r < 1. For i = 1, 2, . . . , define

ki =

F
3i if i is odd;

[3i(1−r)r ] if i is even,

where [x] denotes the largest integer x. Let nj =
�j
i=1 ki and let

Ej = {i : i j and i is even} ; Oj = {i : i j and i is odd},
ej =

3
i∈Ej

ki ; oj =
3
i∈Oj

ki.

Then nj = oj + ej .

3.2. Claim. With the above notation we have

lim
j→∞

j

nj
= 0 ; lim

j→∞
nj−1
nj

= 1 and lim
j→∞

oj
nj
= r.

Proof. The proof of the claim is similar to the proof of Claim 3.2. in [10].

We define s ∈ supp µ by s = S(x), where

x = (1, 0, 1� ,� 1
k1=3

0, 0, . . . , 0� ,� 1
k2

1, 0, 1, 1, 0, 1, 1, 0, 1� ,� 1
k3=9

0, 0, . . . , 0,� ,� 1
k4

. . . ). (6)

Note that, for i ∈ Oj ,

#�skiX =
1

2
√
3
[(1 +

√
3)

ki
3 +1 − (1−√3) ki3 +1]

⎧⎨⎩ > 1
2
√
3
(1 +

√
3)

ki
3 +1

< 1
2
√
3
(1 +

√
3)

ki
3 +2.

(7)

Let s ∈ supp µ be defined (6) and let nj−1 n < nj . By the multiplication principle, we

have �
i∈Oj−1

#�skiX #�snX
�
i∈Oj

#�skiX.

Hence, by (7) yield

(
1

2
√
3
)
j−1
2 (1 +

√
3)

oj−1
3 + j−1

2 #�snX (
1

2
√
3
)
j+1
2 (1 +

√
3)

oj
3 +(j+1),

which implies

log[( 1
2
√
3
)
j−1
2 (1 +

√
3)

oj−1
3 + j−1

2 ]

nj log 3

log#�snX
n log 3

log[( 1
2
√
3
)
j+1
2 (1 +

√
3)

oj
3 +(j+1)]

nj−1 log 3
.
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From the latter and Claim 3.1 we get

lim
n→∞

log#�snX
n log 3

=
r

3

log(1 +
√
3)

3 log 3
.

Therefore

α(s) = lim
n→∞

| log#�snX3−n|
n log 3

= 1− lim
n→∞

log#�snX
n log 3

= 1− r
3

log(1 +
√
3)

log 3
= β.

The Main Theorem is proved.
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