Introduction to LINEAR ALGEBRA FOURTH EDITION

GILBERT STRANG

INTRODUCTION TO LINEAR ALGEBRA

Fourth Edition

GILBERT STRANG

Massachusetts Institute of Technology

WELLESLEY - CAMBRIDGE PRESS Box 812060 Wellesley MA 02482

Introduction to Linear Algebra, 4th Edition

Copyright ©2009 by Gilbert Strang ISBN 978-0-9802327-1-4

Fourth International Edition Copyright ©2009 by Gilbert Strang ISBN 978-0-9802327-2-1

All rights reserved. No part of this work may be reproduced or stored or transmitted
by any means. including photocopying. without written permission from
Wellesley - Cambridge Press. Translation in any language is strictly prohibited —
authorized translations are arranged by the publisher.
Typeset by Valutone Inc.98765432QA184.S782009512'.593-14092

Other texts from Wellesley - Cambridge Press Computational Science and Engineering, Gilbert Strang 978-0-9614088-1-7 Wavelets and Filter Banks, Gilbert Strang & Truong Nguyen 978-0-9614088-7-9 Introduction to Applied Mathematics, Gilbert Strang 978-0-9614088-0-0 An Analysis of the Finite Element Method, Gilbert Strang & George Fix (2008) 978-0-9802327-0-7

Calculus, Gilbert Strang, Second edition (2010) 978-0-9802327-4-5 Highlights of Calculus, Gilbert Strang (2010) 978-0-9802327-5-2 Algorithms for Global Positioning, Kai Borre & Gilbert Strang (2011)

978-0-9802327-3-8

Wellesley - Cambridge Press Box 812060 Wellesley MA 02482 USA www.wellesleycambridge.com gs@math.mit.edu math.mit.edu/~gs phone (781) 431-8488 fax (617) 253-4358

The website for this book is **math.mit.edu/linearalgebra**. A Solutions Manual is available to instructors by email from the publisher.

Course material including syllabus and Teaching Codes and exams and also videotaped lectures are available on the teaching website: web.mit.edu/18.06 Linear Algebra is included in MIT's OpenCourseWare site ocw.mit.edu. This provides video lectures of the full linear algebra course 18.06. MATLAB® is a registered trademark of The MathWorks. Inc.

The front cover captures a central idea of linear algebra. Ax = b is solvable when b is in the (orange) column space of A. One particular solution y is in the (red) row space: Ay = b. Add any vector z from the (green) nullspace of A: Az = 0. The complete solution is x = y + z. Then Ax = Ay + Az = b. The cover design was the inspiration of a creative collaboration: Lois Sellers (birchdesignassociates.com) and Gail Corbett.

Table of Contents

1	Introduction to Vectors				
	1.1	Vectors and Linear Combinations	2		
	1.2	Lengths and Dot Products	11		
	1.3	Matrices	22		
2	Sol	Solving Linear Equations			
	2.1	Vectors and Linear Equations	31		
	2.2	The Idea of Elimination	45		
	2.3	Elimination Using Matrices	56		
	2.4	Rules for Matrix Operations	67		
	2.5	Inverse Matrices	81		
	2.6	Elimination = Factorization: $A = LU$	95		
	2.7	Transposes and Permutations	107		
3	Vec	ctor Spaces and Subspaces			
	3.1	Spaces of Vectors	120		
	3.2	The Nullspace of A: Solving $Ax = 0$	132		
	3.3	The Rank and the Row Reduced Form	144		
	3.4	The Complete Solution to $A\mathbf{x} = \mathbf{b}$	155		
	3.5	Independence, Basis and Dimension	168		
	3.6	Dimensions of the Four Subspaces	184		
4 Orthogonality		nogonality	195		
	4.1	Orthogonality of the Four Subspaces	195		
	4.2	Projections	206		
	4.3	Least Squares Approximations	218		
	4.4	Orthogonal Bases and Gram-Schmidt	230		
5	Determinants				
(a)	5.1	The Properties of Determinants	244		
	5.2	Permutations and Cofactors	255		
	5.3	Cramer's Rule, Inverses, and Volumes	269		

6	Eigenvalues and Eigenvectors			
	6.1 Introduction	n to Eigenvalues	205	
	6.2 Diagonalizi	is to Differential Fourtiens	312	
	6.4 Symmetric	Matrices	330	
	6.5 Positive De	finite Matrices	342	
	6.6 Similar Ma	rices	355	
	6.7 Singular Va	lue Decomposition (SVD)	363	
7	Linear Transformations			
	7.1 The Idea of	a Linear Transformation	375	
	7.2 The Matrix	of a Linear Transformation	384	
	7.3 Diagonaliza	tion and the Pseudoinverse	399	
8	Applications			
	8.1 Matrices in	Engineering	409	
	8.2 Graphs and	Networks	420	
	8.3 Markov Ma	trices. Population, and Economics	431	
	8.4 Linear Prog	ramming	440	
	8.5 Fourier Seri	es: Linear Algebra for Functions	447	
	8.6 Linear Alge	bra for Statistics and Probability	453	
	8.7 Computer C	jraphics	459	
9	Numerical Linear Algebra			
	9.1 Gaussian El	imination in Practice	465	
	9.2 Norms and	Condition Numbers	475	
	9.3 Iterative Me	thods and Preconditioners	481	
10 Complex Vectors and Matrices				
	10.1 Complex N	umbers	493	
	10.2 Hermitian a	nd Unitary Matrices	501	
	10.3 The Fast Fo	urier Transform	509	
So	olutions to Selec	ted Exercises	516	
Co	Conceptual Questions for Review			
GI	Glossary: A Dictionary for Linear Algebra			
Ma	Matrix Easterizations			
Te	Teaching Codes			
Inc	Index			
Lir	Linear Algebra in a Nutshell			