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1. Introduction 
The video image quality in digital television systems is subject to quite different effects and 
influences than that in analog television systems. There are mainly two sources which can 
disturb the digital video image quality and which can cause visible degradation of video 
image quality. These are the source coding and the related compression and transmission 
link from the modulator to the receiver. The perturbation, noise, transmission channel 
influence or transmission distortions can cause an increase of channel bit error rate and due 
to the error protection, e.g. FEC (Forward Error Correction) in DVB (Digital Video 
Broadcasting) (Fisher, 2008), included in the signal, most of the bit errors can be repaired up. 
It leads to QEF (Quasi Error Free) transmission conditions, and the errors are not noticeable 
in the video image. If the transmission channel is too noisy, the transmission totally breaks 
down. This situation is well known as the “fall of the cliff”, or simply “cliff off”. The linear 
or nonlinear distortion has no direct effect on the video image, but in an extreme case it can 
also lead to a breakdown. No matter if the picture quality is good, bad or indifferent, 
it needs to be evaluated differently and detected by different means in DTV (Digital 
Television) and DVB systems than in ATV (Analog Television). An example of the video 
image quality in ATV and DTV system is shown in Fig. 1.  
There are several dimensions of digital video image quality evaluation, generally splitted 
into the subjective and objective methods. The subjective evaluation is a result of human 
observers providing their opinion on the video image quality. The objective evaluation is 
performed with the aid of instrumentation, calibrated scales and mathematical algorithms. 
Direct measurements are performed with the video images (picture quality measurement) 
and indirect measurements are made processing specially designed test signals in the same 
manner as the pictures (signal quality measurement) (Tektronix, 1997). The test video image 
sequences are used for both direct measurements, subjective and objective, but in a 
compressed digital video image system, they can not be used for the compression 
encoder/decoder part of the system because a comparison of the codec influence on the 
common test scenes and natural scenes is not possible. To specify, evaluate and compare 
digital video systems with video image artifacts caused by compression or transmission, the 
quality of the digital video and image presented to the observer has to be determined. Video 
image quality is inherently subjective and is affected by many subjective factors. It could be 
difficult to obtain accurate measures and results. Measuring video image quality using 
objective criteria results is an accurate and repeatable evaluation, but there is still no general 
objective evaluation. It should naturally cover the subjective experience of a human observer 
and performance of a video display and viewing conditions (Richardson, 2002). 
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a) PSNRY = 29.85 dB 
 

d) PSNRY = 29.74 dB 

b) PSNRY = 20.65 dB 
 

e) PSNRY = 19.97 dB 

c) PSNRY = 13.58 dB 
 

f) PSNRY = 12.85 dB 

Fig. 1. Examples of typical distortion aftifacts in the video transmission over noisy channels. 
Uncompressed video sequence a) low level of noise, b) average level of noise, c) high level 
of noise. MPEG-2 algorithm compressed video sequence d) low bit-error rate and QEF 
transmission, e) average bit error rate and blockiness, f) high bit-error rate and cliff off effect. 
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2. Subjective test procedures 
The test procedures for subjective test are defined especially in ITU-R recommendation 
BT.500-11 (ITU, 2001). The most popular is evaluation by the DSCQS (Double Stimulus 
Continuous Quality Scale) method. An assessor evaluates a pair of digital video image short 
sequences, called A and B, one after another. Then he is asked to give a score to A and B 
sequences on a continuous scale. The scale is divided into five intervals of the subjective 
quality scores reaching from excellent through good, fair, poor to bad quality. The 
impairment scale related to the mentioned five intervals is in Tab. 1.  
 

Score Quality Impairment 
5 Excellent Imperceptible 
4 Good Perceptible but annoying 
3 Fair Slightly annoying 
2 Poor Annoying 
1 Bad Very annoying 

Table 1. Score and related subjective quality evaluation criteria 

 
Fig. 2. Subjective methods and continuous quality rating forms for DSCQS and SSCQE 

In a typical test session, the assessor is presented a series of sequence pairs and is asked to 
evaluate a grade of each individual pair, as shown in Fig. 2. In each pair of digital video 
image sequences, one is unimpaired (so-called reference sequence) and the other is the same 
sequence modified by a compression algorithm or process under test, e.g. video image 
compression or transmission. A typical example is a video coding system as shown in Fig. 3. 
In this case, the original sequence is compared to the same video image sequence which was 
subject to encoding and decoding. The order of the evaluated sequences is randomized 
during the evaluation, so the assessor does not know which sequence (original or impaired), 
he is currently evaluating. This prevents the assessor from predicting and prejudging the 
results. At the end of the test, the scores are normalized and the result is a score that 
indicates the relative video image quality of the impaired and reference sequences. 
The resulting score is denoted to as MOS (Mean Opinion Score). 
The DSCQS test can be used as a realistic measure of subjective digital video image quality. 
In its application it must be considered that it suffers from several practical problems. The 
evaluation can vary significantly and depends on selection of the assessors and also on the 
characteristics of the video image sequence under test. This variation can be reduced by  
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Fig. 3. General arrangement for the DSCQS method evaluation 

repeating the test with several sequences and several assessors. An expert assessor, who is 
familiar with the digital video image artifacts caused by compression, can give a biased 
score. That is why the non-expert assessors are preferred. Additionally, non-expert assessors 
can quickly learn to recognize compression artifacts in the digital video image sequences. 
Subjective tests are also influenced by the viewing conditions. A test carried out in 
a comfortable environment will be evaluated with a higher score than the same test carried 
out in a less comfortable setting. It has been proved that the “recency effect” (Richardson, 
2002) means that the assessor’s opinion is significantly biased by the last few seconds of 
a video image sequence. The quality of the last section will strongly influence the score of 
a whole longer sequence. That is why the subjective test is really suitable only for short 
video image sequences.  
The second popular subjective test defined by ITU-R BT.500 recommendation is the SSCQE 
(Single Stimulus Continuous Quality Evaluation) method (ITU, 2001). In this subjective test 
the assessor evaluates video image quality without the reference sequence. Since the SSCQE 
deliberately dispenses the reference sequence, this method can be used more widely in 
practice. In this method a group of test persons assesses the processed video image sequence 
only and evaluates the score again from excellent to bad, which also provides a video image 
quality profile over time (see Fig. 2).  
The advantages of subjective testing are in obtaining valid results for conventional and 
compressed television systems and evaluation of scalar MOS that works over a wide range 
of still and motion picture applications. The disadvantages of subjective testing are in a wide 
variety of possible methods which must be considered for the test. Many observers must be 
selected and it is very time consuming in case the procedure respects all the requirements. 

3. Objective tests 
Objective test methods are based on automated, computational approach. Depending on the 
original video image sequence, the objective test results are not always correlated with the 
impression of quality in a subjective observation. The degree of correlation to subjective 
results can be considered a benchmark of subjective tests.  
The first choice when selecting a metric for full-reference quality evaluation is usually the 
peak signal-to-noise ratio (PSNR). For video sequences, it can be easily computed as 
(Winkler, 2005) 

 
MSE

log10PSNR
2

10
m

⋅= , [dB] (1) 

where m is the number of values by which a pixel can be represented (e.g. m = 255 for 8-bit 
luma samples) and MSE is the mean squared error, computed as 
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The constants M, N, T are the horizontal and vertical dimensions in pixels and the number 
of frames (fields), respectively, f and f~ are the sample values (luma or chroma) of the 
degraded and the reference video sequence, respectively. The peak signal-to-noise ratio is 
very simple and easy to implement, but its disadvantage is in poor correlation with 
subjective tests.  
A great effort has been devoted to developing objective video quality metrics in recent 
years. An ideal objective quality metric should closely simulate the results of subjective 
tests. Many approaches have been proposed to achieve this, with different success. To select 
the metrics suitable for real applications, two phases of tests were performed by the Video 
Quality Experts Group (VQEG) in 2000 and 2003, respectively (VQEG, 2000; VQEG, 2003).  
In the first testing phase ten proposed quality evaluation algorithms were considered, and 
the correlation of their results with subjective scores obtained for video sequences with 
different characteristics (different scene contents) and subject to different quality 
degradations (compressed with H.263, MPEG-2 encoders using different settings, Betacam 
with drop-out) was examined. All the tested video sequences were in standard definition, 
considering both 625- and 525-line television systems. The first phase of testing was 
completed only with a limited success - the performance of the proposed quality evaluation 
algorithms was very close to the performance of PSNR. As a result, none of the tested 
algorithms was proposed by the VQEG to be included in an ITU Recommendation. 
Another testing (Phase II) was realized by the VQEG a couple of years later, considering a 
set of six proposed quality evaluation algorithms. The testing procedures were very close to 
those performed in Phase I. However, out of the six proposed algorithms, four were selected 
to be included in an ITU Recommendation, published in 2004 as ITU-R 
Recommendation BT.1683. In the following subsections, the principles of the four 
standardized algorithms will be briefly described (ITU, 2004). 

3.1 The BTFR algorithm 
This metric was designed by the British Telecom, United Kingdom, and is denoted to as the 
BTFR algorithm (British Telecom full-reference automatic video quality assessment tool).  
The algorithm computes several measures comparing the degraded video and the reference 
video, to finally combine the measures together to get a quality prediction. A simple 
diagram of the algorithm operation is shown in Fig. 4. The preprocessing block in the 
diagram consists of several steps. It includes format conversion, cropping, offset and 
matching operations.  These are performed on the luma (Y) as well as chroma (U, V) 
components of both the degraded and the reference video sequences. Matching operations 
are also included in the preprocessing block. They consist in finding the best match for 
blocks within each degraded field from a buffer of neighboring reference fields. A matched 
video sequence is then used instead of the reference sequence in some of the following 
analyses: 
- PSNR analysis – a PSNR calculation is performed using the degraded and matched 

reference sequences. 
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Fig. 4. Operation of the BTFR algorithm 
- Spatial frequency analysis – a pyramid transformation of the degraded and matched 

reference sequences is performed. The differences between pyramid arrays are then 
calculated using SNR. 

- Edge analysis – an edge detector is used to create edge maps of the matched reference 
and degraded video sequences. The total numbers of edge-marked pixels are then 
calculated for both edge maps. 

- Texture analysis – the texture properties are measured by recording the number of 
turning-points in the luma signal along horizontal picture lines. 

Finally, all the parameters gained from the analyses are put together in the Integration block 
to form the final quality measure. The integration is nothing but computing a linear 
combination of the parameters, with specified weights and offset. 

3.2 The EPSNR algorithm 
The second metric described in Rec. BT.1683 was designed in cooperation of the Yonsei 
University, Radio Research Laboratory and SK Telecom, Republic of Korea. It is based on 
the fact that human observers are very sensitive to degradations around edges – when the 
edges are blurred, the subjective scores are likely to be worse. Additionally, many 
compression algorithms tend to produce artifacts around the edges. The metric computes 
a value called Edge PSNR (EPSNR) and uses it as a quality measure after post-processing. 
A block diagram of the metric is shown in Fig. 5. 
Using an arbitrary edge detection algorithm, edge areas are located in the first step using the 
reference video sequence. For each field (or frame when processing progressive video), an 
edge mask image is created – the algorithm operates on a field-by-field basis. Then 
differences between the reference and the degraded video fields are computed, based on 
simple mean squared error evaluation, limited to the edge areas. Finally, PSNR of the edge 
areas (EPSNR) is computed from the mean squared error. 
In the final phase, post-processing is applied to the EPSR value of the actual field, taking 
into account the following: 
- For high PSNR values, the EPSNR overestimates perceptual quality. The solution is in 

piecewise linear scaling (reduction) of EPSNR values over 35. 
- If the degraded video is severely blurred (the number of edges detected in the degraded 

video is significantly lower than the number of edges in the reference video), the 
EPSNR is reduced. 

- Scaling is performed at the end to reach the range of outputs between 0 and 1. 
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Fig. 5. Metric based on Edge PSNR 
 

 
Fig. 6. Simplified block diagram of the IES metric 

3.3 The IES algorithm 
This metric is designed by the Center of Telecommunications Research and Development, 
Brazil (CPqD). It is denoted to as the IES system (image evaluation based on segmentation). 
Its simplified block diagram is shown in Fig. 6.  
Based on analysis of the reference video sequence, each field (frame) is segmented into 
texture, edge, and plane regions. Each of these regions is then processed separately: 
objective quality measures are computed for the reference and the degraded video fields 
after correction (offset, gain). As each of the objective measures is performed for the luma as 
well as both chroma components, it results in nine parameters. 
An interesting approach is in including a block called Codec operations. This is nothing but 
encoding and decoding the reference video sequence using two different codecs in parallel: 
the MPEG-2 4:2:0 and the MPEG-1 CIF algorithms (with fixed encoder settings). The 
resulting video sequences together with the reference video are then subject to the same 
objective analysis as the reference – corrected degraded video sequence pair from the input. 
Thus, for two codecs, three region types, and three components, we get the total of eighteen 
additional objective parameters for the quality estimation. 
The IES system uses a database of impairment models for scenes different from the reference 
video scenes in order to estimate the subjective quality of the degraded video sequence. The 
database consists of information about sequences with different degrees of motion and 
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detail and different context. Together with spatial and temporal attributes extracted from 
the reference video sequence, it forms another input for the quality estimation algorithm. 
Finally, subjective impairment levels are estimated from the objective parameters and the 
resulting predicted quality measure is achieved through a linear combination of the 
estimated impairment levels. 

3.4 The VQM algorithm 
The fourth and the last metric described in Rec. 1683 was designed by the National 
Telecommunication and Information Administration / Institute for Telecommunication 
Science, US. The acronym VQM used by the authors stands for Video Quality Metric. The 
metric is quite complex, involves preprocessing (matching) operations as well as a thorough 
evaluation of video sequence properties. An important feature is that this metric natively 
operates not only on separate fields (frames), but breaks the video sequences into S-T 
(spatial-temporal) sub-regions, including a block of pixels in several consequent fields.  
The metric can also be called a reduced-reference metric, as it extracts a certain information 
(quality feature) from the reference and the degraded video sequences, and then forms a 
quality measure based on the extracted information only – just several values. The quality 
features include information on spatial gradients of the video scenes, chrominance 
information, contrast information, temporal information, etc. Their proper combination 
gives the metric output value. Typically, one output value is calculated for one video clip of 
5 – 15 seconds in length. 
The Fig. 7 shows frame of a video sequence compressed with the H.264/AVC algorithm 
using different settings. An original uncompressed sequence is shown in Fig. 7a).  
The sequence in Fig. 7b) is compressed with high bit rate, fine quantization, and the 
resulting PSNR is almost 35 dB. The output value of the VQM metric is almost zero, which 
means there will be probably no noticeable difference from the original. Indeed, both 
pictures look identical. Now look at the pictures in Fig. 7c) and Fig. 7d). Even though the 
PSNR computed for the whole sequence (100 frames) has almost the same values, the VQM 
differs considerably. By taking a close look at the pictures, especially on the bush in front of 
the house, much more blur is visible on the picture in Fig. 7d). This proves that the different 
degradation was not captured by the peak signal-to-noise ratio, but the VQM metric exhibits 
quite different values showing that the quality in the bottom right picture in Fig. 7d) 
is worse. The PSNR is computed only in the luminance channel, which has the highest 
impact on the perceived quality. The range of the VQM values is from zero to one, and the 
best quality with no degradation is represented by a zero. 

4. Objective tests with no reference 
The no-reference video quality assessment metrics cannot rely on any information about the 
original material. What information is then available at the receiver side and can be used for 
measurement? Usually, no-reference metrics use some a-priori information about the 
processing system. For example, a usual DVB-T broadcasting system using MPEG-2 source 
coding is known to have the block artifacts as the most annoying impairment (Fischer, 2008). 
Tracking these artifacts down in the video image may provide enough information to judge 
the overall quality. In the following text, metrics for still image quality evaluation will be 
considered as well as those for video sequences only. In fact, most of the still image metrics 
can be used for video sequences when applied on each video frame. 
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a) original 

 
b) PSNRY = 34.94 dB; VQM = 0.0629 

 
c) PSNRY = 23.59; VQM = 0.3953 

 
d) PSNRY = 23.23; VQM = 0.4713 

Fig. 7. Frame of a compressed video sequence using the H.264 algorithm. PSNR and 
according VQM video image quality evaluation results are shown. 

 
Fig. 8. Comparison of subjective and objective picture quality (Lauterjung, 1998) 
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a) 

 
b) 

Fig. 9. Example of a real-time objective picture quality analysis using DVQ analyzer. The 
metric DVQL-W is used to demonstrate the achieved video image quality in one frame of 
the a) reference video, b) degraded video with blockiness and cliff-off effect present. 

4.1 No-reference analysis using pixel values 
The block artifact detection approach is used in DVQ analyzer - video quality measurement 
equipment supplied by Rohde & Schwarz and is briefly described in (Fischer, 2008). 
The principle of the method is in assumption that block artifacts create a regular grid with 
constant distances. Neighboring pixel differences are computed for the whole image and 
averaged in such manner that only 16 values remain (since MPEG-2 is supposed to create 
16 x 16 blocks). If the average pixel value difference is significantly larger on block 
boundaries, a statement can be made that block artifacts are present in the image.  
To bring the objective test results closer to the subjectively perceived quality, other 
quantities in the moving picture are also taken into consideration. These are spatial and 
temporal activities (Fischer, 2008). The spatial activity is a measure of the existence of fine 
structures in the video image and temporal activity is a measure of change and movement 
in successive frames. Both activities can render the blocking structure invisible or mask 
them. Such artifacts in the video image are then simply not seen by the human eye.  
If masking is incorporated, the DVQL-W (Digital Video Quality Level – Weighted) metric 
applied in DVQ analyzer delivers a prediction of the MOS. With the masking included, the 
algorithm shows an excellent correlation with subjective assessment results as it is shown in 
the Fig. 8. The results of the subjective evaluation were obtained by the SSCQE method. The 
compiled test sequence consisted of 11 well-known test sequences such as “Flowergarden”, 
etc. The data rates for the sequences varied between 1 MBit/s and 9 MBit/s. From the 
subjective assessment about 1000 measurement values were obtained. Their scaling factor 
was re-based and a fixed delay of 1 second was introduced. With this optimization, an 
overall correlation of more than 94 % was achieved (Lauterjung, 1998). 
An example of a real-time measurement using DVQ analyzer is shown in Fig. 9 and 
numerical results are in the Fig 10. The DVQL-W metric evaluates blocking structure in the 
video image of a selected DTV program in an MPEG-2 TS. It is obvious from Fig. 9 that the 
quality decreases with the blockiness in the video. The temporal and spatial activity and 
evaluation in the luminance and chrominance video channels are considered (Fisher, 2008). 
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Flowergarden MPEG-2 compressed test sequence
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Fig. 10. Video image quality analysis of the „Flowergarden” test sequence. The DVQL-W 
metric and according quality varies with the MPEG-2 compressed test sequence bitrate. 

In (Pan et al., 2004), a no-reference algorithm was presented capable of detecting block 
artifacts in a block-by-block manner and, as an extension, detects flatness of the image. 
A no-reference block and blur detection approach was introduced in (Horita et al., 2004), 
designed to measure quality of JPEG and JPEG2000 images. Another no-reference algorithm 
for block artifact detection was described in (Wang et al., 2000). Another common distortion, 
blur, can also be used for quality evaluation. Of course, depending on the characteristics of 
the processing system (whether or not the system is likely to introduce blur). An interesting 
metric was presented in (Ong et al., 2003). A very similar approach is also used in 
(Marziliano et al, 2002). In principle, these metrics analyze how steep the changes in pixel 
values within the line are. The main difference is that (Ong et al., 2003) analyzes not only the 
horizontal direction, but measures blur in four directions instead.  
An interesting no-reference approach was used in (Tong et al., 2005), using a learning 
algorithm to assess the overall quality of an image. The metric uses pixel values of 
a decoded picture, which was subject to JPEG or JPEG2000 compression. 

4.2 No-reference analysis using transform coefficients and encoded stream values 
In (Sheikh et al., 2005), a metric was presented for JPEG2000 compressed static images. 
The JPEG2000 standard uses wavelet transform. The authors analyze the wavelet 
coefficients to gain a quality measure. An observation was made that in natural images, 
these coefficients have some characteristic properties. If the wavelet coefficients do not 
behave in a desired manner, quality degradation can be expected. However, this metric is 
only applicable for wavelet transform compressed images, and thus not applicable for any 
of the wide-spread present-day video compression standards. Anyway, coefficient analysis 
for video sequences is also possible.  
In (Gastaldo et al., 2002), such analysis was performed for MPEG-2 compressed video 
sequences. First of all, a statistical distribution analysis was performed to say which of the 
features available in the MPEG-2 transport stream may be used for evaluation. Over twenty 
features were then used to feed an artificial neural network for learning and consequently 
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for quality evaluation. For this metric, a correlation as high as 0.85 was achieved by the 
authors.  A different approach was published in (Eden, 2007), where the author computes 
PSNR values of a H.264/AVC using transform coefficient and quantization parameter 
values, which means computation can be done on the encoded bit stream only.  

4.3 No-reference metric developed at the Brno University of Technology 
A no-reference quality metric was recently developed at the Brno University of Technology 
and published in (Slanina & Říčný, 2008). The metric operates on a compressed bit stream 
conforming to the H.264 / AVC standard.  The idea is based on the fact that the encoder can 
adaptively select the sizes of blocks to be coded, and the coarseness of quantization of 
residual transform coefficients. A very simple artificial neural network is then used to 
process the input parameters, represented as ratios of the block sizes used by the encoder,  
the quantization parameter, and information on the quality of the reference frames for the 
inter predicted (using motion compensation) frames.  The metric is not supposed to output 
values simulating subjective tests – the artificial neural network is trained to simulate PSNR 
values for a given compressed video sequence without reference.  
The attainable correlation of the metric with real PSNR values is above 0.95. This value is 
somewhat lower than the correlation achieved in (Eden, 2007).  Anyway, the algorithm is 
designed in such manner that it can be easily changed to predict different values than just 
the PSNR. The authors are currently working on predicting output values of the 
standardized full-reference algorithms. So far, it turns out that to achieve satisfactory 
results, the number of parameters extracted from the bit stream needs to be increased (the 
bit stream carries other low cost information, such as the bit rate, gop format, etc.). 

5. Conclusion 
Measuring video image quality is difficult and very often not precise. There are many 
factors that can affect the results and their interpretation. The advantages of subjective 
testing are in obtaining valid results for conventional and compressed television systems 
and the possibility of evaluating scalar MOS over a wide range of still and motion video 
image applications. Their disadvantages are in a wide variety of possible methods and tests 
to be considered, the high number of observers required and in high time demands. There 
are many objective testing approaches. It can be stated that the algorithms with video image 
feature analysis correlate better with subjective results than just simple pixel-based methods. 
A combination of different measurements and features gives the best results and correlation 
between subjective and objective scores but it is hardly technology independent. 
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