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ABSTRACT: This paper presents the results of a research on uncertainty interval estimation of WetSpa model for flood 

simulation in Ve watershed. The method applied to uncertainty estimation is the GLUE methodology. The initial results 

show that uncertainty intervals obtained are reasonably capture the observations with the use of Nash-Sutcliff as 

likelihood measure. Over-estimation often occur with the low flow, which is acceptable in case of flood simulation. To 

estimate the prediction interval, the model should be run in prediction mode.  
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I�TRODUCTIO�  

Recent advances in the field of hydrological modelling 

have brought the great benefits to the human lives and one 

of these is the application of hydrological simulation 

models to flood forecasting. A hydrological simulation 

model is defined by Klemes (1986) as a mathematical 

model aimed at synthesizing a (continuous) record of 

some hydrological variable Y, for a period T, from 

available concurrent records of other variables X, Z, ... . In 

contrast, a hydrological forecasting model is aimed at 

synthesizing a record of a variable Y (or estimating some 

of its states) in an interval ∆T, from available records of 

the same variable Y and/or other variables X, Z, ... , in an 

immediately preceding period T.  

A notable approach to enhance the quality of flood 

simulation and flood forecasting is to estimate the 

uncertainty interval or prediction interval. Wagener, T. 

and Gupta, H.V. (2005) discussed in detail about the 

uncertainty in input data, parameters, initial and boundary 

conditions, structural uncertainty and raised the need for 

incorporating these uncertainty into the simulation and 

prediction results. Numerical experiments have proven 

that there are many parameter sets of a model which may 

give similar results (Uhlenbrook et al., 1999). This author 

as well as others emphasised that predictions should be 

given in the form of uncertainty intervals instead of single 

values.   

Generalized Likelihood Uncertainty Estimation (GLUE) 

methodology is one of efforts to estimate and present the 

uncertainty interval using Monte Carlo analysis and 

Bayesian/Fuzzy logic estimation. The starting point for the 

GLUE concepts is the rejection of the idea of an optimum 

parameter set in favour of the concept of equifinality of 

model structures and parameter sets (Beven K. J., 1998). 

Recent researches have been focusing on the improvement 

of sampling methods in Monte Carlo simulation to reduce 

computational efforts in uncertainty estimation under 

GLUE methodology (Uhlenbrook. S. and Sieber A. , 

2005; Roberta-Serena Blasone et al., 2008). Beven, K. J. 

(2007)  gave a detailed discussion on the use of 

uncertainty interval in flow and flood forecasting.  

A flood forecasting project for the Ve river basin, an area 

in central Vietnam was stated in 2009 at Hanoi University 

of Science, funded by Vietnam National University - 

Hanoi. The main goal of the project is to develop a 

procedure which takes the uncertainty of input and model 

parameters into prediction results in order to raise the 

degree of reliability in flood forecasting. To this aim a 

sensitivity and an uncertainty analysis of the WetSpa 

model are made. This paper describes the uncertainty 

estimation applied to the Ve river using WetSpa model 

and GLUE methodology in the simulation mode. The 

application of this procedure in prediction mode will be 

presented in latter papers.  

This paper is divided into 4 sections. Section 1 is involved 

with the problem overview. Section 2 is devoted to the 

description of the study area and the applied model. 

Section 3 describes methods for calibration of WetSpa 

model with the two flood events in Ve watershed when 

uncertainty estimation using GLUE was taken into 

consideration. Finally, section 4 presents the results and 

discussions. 
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STUDY AREA A�D HYDROLOGICAL SIMULATIO� 

MODEL 

 

Brief description of the study area 

The Quang Ngai province is in the south central coast 

region of Vietnam. It is located 883 km south from Hanoi 

and 838 km north of Ho Chi Minh City. The Ve river is 

located south in the Quang Ngai province, which is shown 

in Figure 1. The total Ve river basin has a surface area of 

1300 km
2
; the main stream is 91 km long. Within this 

project only the upstream part from An Chi is taken into 

account, which has a surface area of 757,32 km2. The Ve 

River rises from the mountainous region Truong Son in 

the south and leaves the study area at An Chi. The study 

area is shown in the right part of Figure 1. 

 

 

Figure 1 Location of the Quang Ngai Province in Vietnam (Wikipedia), and the Ve river upstream of An Chi inside                     

Quang Ngai Province (Son, 2008) 

 

- Topographical and Lithological Characteristics 

The study area consists of many different lithological 

structures. The most conspicuous lithological 

characteristic of Ve river basin is a rapid change in 

topographical gradient in profile from the south to the 

north, shown in the DEM (Digital Elevation Model) in 

Figure 2. Figure 3 shows the soil of the river basin. There 

are six different types of soil. In the mountainous region, 

sandy loam is the most common soil type and in the plain, 

sandy clay loam is the most common soil type (Son, 

2008). 

- Landuse 

The dominant landuse of the study is deciduous shrub. In 

the mountainous regions in the south evergreen broad leaf 

tree covers the surface. There is also a substantial amount 

of irrigated crop in the study area. An overview of the 

landuse is shown in Figure 4. 

- Climatic Conditions 

The Ve river basin is situated to the south of the Hai Van 

pass, which separates the two main climate regions of 

Vietnam. South of the Van Hai pass, there is a moderate 

tropical climate. In this region of Vietnam the average 

annual temperature is about 26
0
C. 

The precipitation in the plain is about 2000-2200 mm 

yearly, upstream it exceeds 3000 mm. During the year 

there are approximately 140 rainy days. The rainy season 

starts in September and ends in December. The amount of 

rainfall during this rainy season is 65-85% of the total 

amount of annual precipitation. So during the eight dry 

months there is only 15-35% precipitation of the total 

amount. 
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Figure 2 DEM of the study area                   Figure 3 Soil type map of the study area 

 

 

 

Figure 4 Landuse map of the study area 
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Simulation Model 

For detailed information about the WetSpa model, the user 

manual of Liu & De Smedt (2004) and Giang & Thuy 

(2009) are referred to. Only brief description of the model 

is given here for purpose of illustration. 

- WetSpa model 

The WetSpa (extension) model is a GIS based distributed 

hydrological model for flood prediction and water balance 

simulation on catchment scale (Bahremand and De Smedt, 

2008). WetSpa is an acronym for “Water and Energy 

Transfer between Soil, Plants and Atmosphere”. It is a 

physically based model, and the hydrological processes 

considered in the WetSpa model are precipitation, 

depression storage, snowmelt, surface runoff, infiltration, 

evapotranspiration, percolation, interflow, groundwater 

flow, and water balance. WetSpa consists of two models: 

a semi-distributed model, and a fully-distributed model. 

The fully-distributed model has a large processing time. 

This complex fully-distributed model is used here in this 

paper. 

- ArcView and WetSpa 

The WetSpa model is a GIS-based model, and consists of 

two parts. The first part, ArcView, is used to read the geo-

information data. This must be done before the second 

part of the model, the calculation with the WetSpa model, 

can be used. The process of loading the data in ArcView is 

time-consuming, because the model has to save all the 

data of the study area. The maps loaded are used to 

calculate the values for new maps that are built in 

ArcView. This process is also time-consuming, because 

all steps must be taken manually. During this loading 

process a few input values have to be set.  

- Grid cell 

The model calculates the different types of discharges and 

the evapotranspiration for every grid cell separately. In 

Figure 5 the structure is presented at grid cell level.  

 

 

Figure 5 Structure of WetSpa Extension at a pixel cell level (Liu & De Smedt, 2004) 

 

METHODS A�D DATA 

 

Methods 

The GLUE methodology, Generalized Likelihood 

Uncertainty Estimation, is a way to calibrate and estimate 

the uncertainty of models based on generalized likelihood 

measures, proposed by Beven and Binley (1992). They 

came up with this method originally to provide a strategy 

to calibrate and estimate uncertainty for physically-based 

distributed modelling. But as stated by Blasone et al 

(2008), the GLUE framework has found widespread 

application for uncertainty assessment in environmental 

modelling, including rainfall-runoff modelling, soil 

erosion modelling, groundwater modelling, flood 

inundation modelling and distributed hydrological 

modelling. As concluded by Beven and Freer (2001) the 

GLUE methodology implicitly takes into account all 

sources of uncertainty, i.e., input uncertainty, structural 

uncertainty, parameter uncertainty and response 

uncertainty. 

The basis of the GLUE-method is the premise that all 

model structures must, to some extent, be in error, and all 

observations and model calibration must also be subject to 

error. So there is no reason to expect that any one set of 

parameter values within a model will represent the true 

parameter set. When applying the GLUE-method one does 

not look for the optimum parameter set, but one makes an 

assessment of the likelihood of many parameter sets in a 

Monte Carlo analysis (Beven and Binley, 1992). 



 203 

These likelihoods are used in a GLUE-procedure to 

determine the uncertainty. It is also possible to update 

these likelihood values when new data sets become 

available, and determine the value of these new data sets. 

The GLUE methodology requires five steps, which are: 

i) Specify a formal definition of a likelihood measure or a 

set of likelihood measures. 

ii) Make an appropriate definition of the initial range or 

distribution of parameter values. 

iii) A procedure for using likelihood weights in 

uncertainty estimation. 

iv) A procedure for updating likelihood weights as new 

data become available. 

v) A procedure for evaluating uncertainty in such a way 

that the value of additional data can be assessed. 

These steps are explained in detail in Putten (2009) and 

Giang et al.(2009). This paper only briefly describes a part 

of these steps, which would facilitate reader to follow the 

contents. 

- Formal definition of likelihood 

A likelihood measure calculates the likelihood of a 

simulation, which is a way to evaluate how well the 

simulation simulates the study area. A likelihood measure 

is also named a goodness-of-fit index. In the past several 

goodness-of-fit indices are used within the context of 

GLUE. They mostly exist of two parts. The first is a 

goodness-of-fit formula; the second is a cut-off threshold.  

Goodness-of-fit formula: Within the context of GLUE 

several goodness-of-fit indices were used in the past. The 

Nash-Sutcliffe coefficient (NS), the model efficiency 

(ME), the variance of the residuals or called error variance 

(EV) are used within this research.  

Cut-off threshold: A cut-off threshold is used to separate 

behavioural from non-behavioural simulations. The 

likelihood values of non-behavioural simulations are set to 

zero, which means that they are not used in the procedure 

to estimate uncertainty. In literature the most common cut-

off thresholds are a certain likelihood value (for example: 

NS > 0,8) or a certain percentage of the observations (for 

example: best 10% of all simulations). For this research, 

NS value of 0.7 ; ME value of 10%; EV value of zero are 

used following Andersen, Refsgaard, and Jensen (2001), 

Beven and Myrabo (1998), Beven and Binley (1992), 

respectively. 

- Initial parameter range and distribution 

Parameter selection: The parameters in the WetSpa model 

are divided into two parts: parameters during set-up time 

in ArcView and global parameters. The parameters in 

ArcView could not be taken into account within the 

uncertainty estimation, because ArcView cannot run 

automatically. From the twelve global parameters seven 

are taken into account. The time step is the first parameter 

that is not taken into account. Three parameters, T0, 

K_snow and K_rain, are only used when snow melting 

occurs, therefore omitted. The fifth parameter not taken 

into account is K_ep, a correction factor for 

evapotranspiration since evapotranspiration is very small 

during the whole flood period.  

Ranges and distributions: Defining the prior ranges and 

distributions of parameters is done by prior knowledge 

about realistic parameter values. These are often defined 

purely subjectively. In case of little prior knowledge, a 

uniform distribution function over a chosen wide range 

will be appropriate (Beven and Binley, 1992). Therefore 

the distributions of the parameters are chosen uniform 

within this research. The range of parameters are 

determined from literature and sensitivity analysis as 

shown in Table 1 (Doldersum, 2009). 

 
Table 1 Ranges for the global parameters 

Parameter Range Description 

Ki 0 - 10 Scaling factor for interflow computation (-) 

Kg 0 - 0.07 Groundwater recession coefficient (-) 

K_ss 0- 1.5 Initial soil moisture (-) 

G0 0 - 50 Initial groundwater storage in water depth(mm) 

Gmax 50 - 100 Maximum groundwater storage in water depth (mm) 

K_run 0 - 12 Surface runoff exponent when the rainfall intensity is very small 

P_max 0 - 500 The threshold rainfall intensity (mm/d or mm/hour; depending on 

the time step) 

Parameter Prior range Final range 

-  Sampling method 

For determining the parameter ranges, Latin Hypercube 

Sampling (LHS) is used with the fully-distributed model. 

LHS is a stratified sampling approach which efficiently 

estimates the statistics of an output. The probability 

distribution of each parameter is subdivided into N ranges 

with an equal probability of occurrence (1/N). Random 

values of the parameters are simulated such that each 

range is sampled just once. The order of selecting the 

ranges is randomized and the model is executed N times 
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with a random combination of parameter values from each 

prior defined range. (Yu, Yang, and Chen, 2001). Within 

this research N is set to five, and 200 parameter sets were 

evaluated for defining the parameter ranges. The 

processing time of the fully-distributed model for 200 

model simulations took approximately two hours (mesh 

size is equal to 90x90 m). 

- The procedure of using likelihoods for uncertainty 

estimation 

After determining the formal definition of the likelihood 

measure and the initial range and distribution of 

parameters, a Monte Carlo analysis is done to evaluate 

many parameter sets. For this aim LHS is used, because 

the uncertainty analysis is done in the fully-distributed 

model. For every parameter set created by LHS, the 

WetSpa model calculates the discharges. This output of 

the model gets a likelihood value from the likelihood 

measure used. Within this research three likelihood 

measures are used, so every output gets three (different) 

likelihoods. However, in this paper only NS is used as the 

likelihood measure. After the calculation of the 

likelihoods, the behavioural and nonbehavioural 

simulations are separated by the cut-off threshold. Only 

the behavioural simulations are taken into account in the 

assessment of the uncertainty. For the non-behavioural 

simulations the likelihood is set to zero, so they are not 

taken into account in the uncertainty analysis. The 

likelihoods of the behavioural simulations are rescaled so 

their sum is one, calculated as 

 

( )1 2/ ...i i nRL L L L L= + + +       (1) 

 

where RLi is the rescaled likelihood of the ith simulation, 

Li is the original likelihood of the ith simulation, L1 and L2 

are the likelihoods of the 1st and 2nd behavioural 

simulation respectively, and Ln the likelihood of the last 

simulation qualified as behavioural. At every time step, 

the discharges of the behavioural simulations are sorted 

from low to high. The likelihoods, associated with the 

simulations, are also sorted per time step, in the same way 

as simulated discharges per time step. Notice that for 

every time step the sequence of likelihoods, and therefore 

the distribution of likelihoods, can be different. For every 

time step, the discharge value of the 5% and 95% of the 

cumulative likelihood distribution are the uncertainty 

bounds of the prediction. (Beven and Binley, 1992). 

The n% cumulative likelihood is found by the weighted 

average of the cumulative likelihoods of the nearest 

neighbours (of behavioural simulations) above and below 

the n% cumulative likelihood, calculated as 

 

( )%
%

n nnb
n nnb nna nnb

nna nnb

CL CL
Q Q Q Q

CL CL

−
= + −

−
             (2) 

where Qn% is the discharge calculated belonging to the 

n% cumulative likelihood, CLn% is the n% step of the 

cumulative likelihood distribution, CLnnb and CLnna 

respectively are the cumulative likelihood of the 

simulation just below and above the n% cumulative 

likelihood, and Qnnb and Qnna respectively the discharge 

simulated, belonging to CLnnb and CLnna respectively. 

The uncertainty bound are then plotted in resulting 

figures. 

 

Data 

- Streamflow data 

The streamflow data are provided by the Hydro 

Meteorological Service. The data are measured at An Chi, 

where the Ve River leaves the study area. The discharge 

was measured hourly in November 1999 and December 

1999. During the October 2003 flood not hourly 

discharges were measured, but only hourly water level 

data. For fifteen measurements discharges were also 

available. To convert water level data to discharges, a 

trend line was added. This power-function had a R2 of 

0,9569, which indicates a good fit. The formula of the 

trend line was used to create discharges from the water 

level data.  

- Rainfall data 

The rainfall data are provided by the Hydro 

Meteorological Service, and also from the Hydro 

Meteorological Forecasting Centre. For the rainfall five 

stations should be taken into account, because they cover 

the study area. However, one station lacks data, so it is not 

taken into account. The covering of this station is very 

small, about 0,02 % of the study area. So the effect of 

eliminating this station on the model output is very small. 

Figure 6 shows how the other four stations cover the study 

area. 

At three stations (An Chi, Son Giang and Gia Vuc) the 

rainfall was measured with a six-hourly time step, at one 

station (Ba To) it was measured one-hourly. The data must 

be in accordance with the other ones, and therefore the 

data of the three six-hourly stations are changed into one-

hourly data. The temporal (one-hourly) rainfall pattern of 

Ba To is used as a format for the temporal pattern of the 

three other rainfall stations. In reality the temporal 

patterns of rainfall at the four stations are probably not 

exactly the same. To compensate this, a random factor 

could be implemented. However, the result of this can 

model reality better or worse. Therefore no random factor 

is implemented within this research 

- Temperature 

Temperature data in the WetSpa model are used only for 

the snowmelt and snow accumulation process (Liu and De 

Smedt, 2004). Within the study area snow melting does 

not occur, so the temperature values are irrelevant. 
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Figure 6 Meteorological stations surrounding the study area 

 

- PET 

PET-data (Potential EvapoTranspiration) were not 

available within this research. However, PET is so small 

during floods that it is almost negligible (Gash and 

Stewart, 1977). Therefore it is reasonable to use a PET of 

0 during the flood period. 

- Maps 

There are five digital maps available for this project. 

These maps deal with DEM (Figure 2), soil type (Figure 

3), landuse (Figure 4), measurement locations and the 

stream network. The DEM, landuse and soil type were 

available on a 90 m by 90 m grid cell size. Some 

improvements of the available data needed to be made, 

before using them in the model. The improvements made 

are described in the next part. 

- Boundaries 

The original files of DEM, landuse and soil type covered a 

square around the study area. But the WetSpa model does 

not work when an area bigger than the study area is 

implemented. Therefore the maps were initially clipped by 

a boundary. However, this boundary was drawn in straight 

lines. This does not correspond with reality, because a 

watershed is a natural phenomenon. Therefore a second 

option is used to calculate the boundary. This is done by a 

function in ArcView, to calculate the boundary of a 

watershed from a DEM-map. This boundary is used to clip 

every map.  

 

RESULTS A�D DISCUSSIO�S 

Figure 7 and 8 show the results of uncertainty estimation 

for the two flood events occurring in November 1999 and 

October 2003 respectively. Those figure shows that the 

uncertainty intervals are reasonably capture the 

observations with the use of Nash-Sutcliff as likelihood 

measure. Over-estimation often occur with the low flow, 

which is acceptable in the case of flood prediction. 

Meaning of uncertainty intervals: the width of uncertainty 

interval is an indicator of precision of a model prediction. 

As the width increases the precision decreases. In the 

sense of model usefulness, if the model is used to inform 

the decision makers for their action, there are two 

situations would happen when the uncertainty interval are 

well surrounding observations: i) The width of interval is 

large enough to capture observations but small enough to 

give meaningful prediction (precise) – this is an ideal 

case; and ii) The width of the intervals are so large that the 

interval are meaningless – there is a need to improve the 

simulations to reduce the uncertainty interval.  
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Figure 7 The uncertainty bounds for the November 1999 flood, calculated with NS 

 

 
Figure 8 The uncertainty bounds for the October 2003 flood, calculated with NS 

 

The width of uncertainty intervals are widely perceived to 

dependent on the choice of likelihood measure and 

shaping factor. We have tried with all three above-

mentioned likelihood measures and see that NS is still the 

best measure among three. It is interesting to note that, NS 

has been claimed to be a bad measure used for GLUE 

methodology.  

In conclusion, this paper presents a part of our research on 

the use of GLUE methodology for flood simulation and 

prediction in Ve watershed, Quang Ngai Province. The 
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initial results shows that the method can give uncertainty 

interval which are in reasonable range and would be 

useful for decision making purposes. To estimate the 

prediction interval, the model should be run in prediction 

mode. This will be the next step of our research. The 

DEM model used in this research is 90x90 m in spatial 

resolution which was obtained from web. This resolution 

would be reduced by adopting more reliable DEM. As 

claimed by some authors, the choice of likelihood function 

is crucial to the success of GLUE methodology, more 

likelihood functions should be tested in the future. 
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