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ABSTRACT: One of main assumption for solving wave equation either numerically or analytically is to compensate the 

anisotropic properties those are usually observed in the earth materials. Consequently, most conventional prestack depth 

migration techniques based on wave equation solution, are not sufficient for these anisotropic media. Asymptotic 

analysis of wave propagation in vertical transversely isotropic (VTI) media yields a dispersion relation of couple P- and 

SV wave modes that then can be converted to fourth order scalar partial difference (PDE) wave equation. By setting the 

shear velocity equal 0 and defining the auxilary function, the fourth order PDE acoustic wave equation for VTI media 

can be reduced to a system of coupled second order PDEs and then can be solved numerically by finite difference 

method (FDM). The result of this P wavefield simulation is kinematically similar to the one of elastic VTI wavefield 

simulation. Since the FDM approach can simulate the wavefield propagation in the VTI media, and reverse time 

migration (RTM) images the reflectors by using time extrapolation to synthesize source and receivers wavefield in the 

subsurface by FDM, the RTM technique is then promptly suggested to image the subsurface. The proposed algorithm 

has been shown the accuracy of subsurface imaging by VTI Marmousi synthetic example. 
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I�TRODUCTIO� 

Seismic anisotropy occurs naturally in the earth materials 

due to i) Intrinsic anisotropy due to preferred orientation 

of anisotropic mineral grains or the shapes of isotropic 

minerals; ii) thin bedding of isotropic layers on a scale 

small compared to the wavelength (the layers may be 

horizontal or tilted) and iii) vertical or dipping fractures or 

micro-cracks. The certain anisotropy of a medium is 

produced by the combination of these factors (Thomsen, 

1986). The transversely isotropic (TI) media is considered 

as the most common case to represent the shale formation 

that is composed of more than 75\% of the clastic fill of 

sediment basin in seismic exploration. Most shale 

formations are horizontally layered, yielding the a 

transversely isotropic medium with a vertical symmetric 

axis (VTI). Another common reason for TI symmetry is 

periodic thin layering on a small scale comparing to the 

predominant wavelength. The existence of anisotropy is 

hard to image the boundary below the TI layers and tends 

to shift the boundary up (Alkhalifah and Larner, 1994; 

Larner and Cohen, 1993; Vestrum et al., 1999; Isaac and 

Lawton, 1999), thus the consideration of anisotropy to the 

migration algorithm will overcome this limitation. 

Prestack reverse time migration (RTM) requires zero lag 

cross correlation between the back propagating wavefields 

and virtual sources those are directly computed from finite 

difference method for solving wave equation (Chang and 

McMechan, 1986, Jang, 1996). By setting the shear 

velocity equal zero, Alkhalifah (2000) introduced an 

acoustic wave equation for VTI media from the dispersion 

relationship. Then, rotating the symmetric axis of VTI 

media to the angle of ν yields the acoustic wave equation 

for the most general TI media (Fletcher et al., 2008). The 

wavefields resulted from finite difference solution of VTI 

acoustic wave equation show kinematically accurate to the 

one of real elastic wavefields. Consequently, the RTM for 

VTI media will be promptly suggested for overcoming the 

anisotropic effect to the isotropic RTM. The proposed 

algorithm will be verified by synthetic data. 

 

ACOUSTIC VTI WAVE EQUATIO� 

In the elastic anisotropic media, the wave equation (Aki 

and Rechards, 1980) is given as  

 

                   (1) 
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where cijkl is stiffness tensor, fi is external force, ρ is 

density and ui is particles displacement vector. 

To give an analytical description of plain waves in 

anisotropic media, the source term fi is dropped down, 

thus the wave equation eq. (1) will be 

 

                    (2) 

The trial solution of eq. (2) is 

 

                     (3) 

where Uk are the components of the polarization vector U, 

ω is angular frequency, V is velocity that is usually called 

phase velocity, and n is unit vector orthogonal to plain 

wavefront (the wavefront satisfies njxj-Vt=const). 

Substitute plane wave in eq. (3) to plane wave equation eq. 

(2) leads to the equation called  Christoffel equation for 

phase velocity V and polarization vector U 

 

 

      (4) 

Here Gik is the Christoffel matrix, which depends on the 

medium properties (stiffness tensor) and direction of wave 

propagation.  

  

                           (5) 

 

Using Kronecker 's symbolic δij (δij=1 if i=j, otherwise 

=0), the form of Christoffel equation eq. (4) can be 

rewritten as 

 

.                  (6) 

The Christoffel eq. (4) or (6) describes a standard 3×3 

eigen value ρV
2
 and eigen vector U problem for the 

symmetric matrix G. The eigen values are found from  

 

                    (7) 

which leads to the cubic equation for ρV
2
. 

For the case of VTI media, the Christoffel matrix elements 

will be 

 

G11=c11n1
2+ c66n2

2+ c55n3
2,                  (8) 

G11=c66n1
2+ c11n2

2+ c55n3
2,      (9) 

G11=c11n1
2
+ c66n2

2
+ c55n3

2
,   (10) 

G11=(c11-c66)n1n2,    (11) 

G11=(c13+c55)n1n3,    (12) 

G11=(c11+c55)n2n3.    (13) 

Since in the VTI media all planes containing the symmetry 

axis are equivalent, it is sufficient to study wave 

propagation in a single vertical plane. Choosing the [x1,x3] 

plane and expressing unit vector n in terms of phase angle 

θ with the symmetry axis (n1=sinθ, n2=0, n3=cosθ) and 

substituting equations from (8) to (13) into the Christoffel 

equation (6) yields the phase velocity of the transversely 

polarized mode U2≠0, U1=U3=0 

 

,      (14) 

and in-plane polarized modes (P-SV) are described by the 

first and third equation of eq. (6) 

 

.            (15) 

Using the Fourier domain representation of the wavefront 

normal vector n1=Vkx/ω and n3=Vkz/ω, where kx, kz and ω 

is wave number along x, z axises and angular frequency, 

respectively, and defining the normalized the stiffness 

aij=cij/ρ, the coupled P-SV wave system from eq. (15) 

becomes 

 

.      (16) 

Setting the determinant of eq. (16) to zero yields 

 

       (17) 

Because the rotational symmetry of VTI media is around 

the vertical axis, eq. (17) can be rotated into any other 

vertical plane by just replacing kx
2
 by kx

2
+ky

2
, the 

dispersion relation will be the velocities can be substituted 

for stiffness using the following relationship 

 

  
      (18) 
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,      (19) 

,  (20) 

,      (21) 

    (22) 

where Vp0 is vertical P-wave velocity; 

 is horizontal P-wave velocity; 

  is the P-wave normal move out 

velocity; Vs0 is vertical SV wave velocity; ε and δ is 

dimensionless Thomsen’s parameters.  

With these substitution and multiplying both two sides 

with wavefield in frequency wave number domain, eq. 

(18) becomes 

 

 

      (23) 

Taking the inverse Fourier transform of eq. (23) by using 

the relations and yields the 

4
th

 order partial derivative equation (PDE) 
 

      (24) 

By setting the shear velocity equal to zero and adding the 

source function f, the wave equation eq. (24) becomes 

 

 
      (25) 

that is called acoustic wave equation for VTI media. Eq. 

(25) will be the scalar acoustic equation for istropic media 

if the ε and δ equals to 0.  

 

Introducing the auxiliary function eq. (25) in 

two dimentions becomes a coupled equations 

 

.       (26) 

Using the second-order finite difference approach, the 

partial derivative wavefield can be approximated, 

therefore the wavefield can be estimated. 

Figure 1 shows the wavefield at 0.25 time step generated 

from acoustic wave equation eq. (25), while figure 2 

shows the wavefield at 0.25 time step of vertical 

component of wavefield generated directly by numerical 

solution of elastic anisotropic wave equation eq. (1) for 

VTI media. The VTI media has the P wave velocity of 

3000m/sec, epsilon of 0.2 and delta of 0.1 and the Ricker 

wavelet with 20Hz peak frequency is used as source 

fuction and located at the center of the model. 

Comparatively, the P waves generated from acoustic and 

elastic wave equation are kinematically similar. 

Dynamically, they differ considerably. Both elastic and 

acoustic wavefields have secondary arrival. The elastic 

wavefield secondary arrival is S wave wavefront while the 

diamond shaped acoustic one is a quasi S wave wavefront 

(Grechka et al., 2004). 

 

 

Figure 1 Wavefield generated from VTI acoustic wave 

equation at the 0.25 second 
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REVERSE TIME MIGRATIO� FOR VTI MEDIA 

The principle of RTM is zero lag cross correlation 

between the virtual source and back propagating 

wavefields those are directly calculated from FDM for 

acoustic wave equation (Jang, 1996; Shin et al., 2001). 

Since the FDM can be applied to simulate the acoustic 

wave equation for VTI media and following the same 

approach of RTM for acoustic media, the RTM can be 

further developed for the VTI media as derived in the 

follows.  

The general assembled system of finite element or finite 

difference equations can be written as (Marfurt, 1984) 

 

               (27) 

 

where M, C and F is the global mass matrix, global stiff 

matrix and load vector. The subsurface image created by 

zero lag crosscorrelation between the partial derivative 

wavefield and shot gathers leads to the mathematical 

derivation of isotropic RTM (Shin and Chung, 1999; Shin 

et al., 2001; Tarantola, 1984; Pratt, 1994). The same 

approach can be used for the VTI media and generalized 

to the other kinds of anisotropic media.  

In the frequency domain, the discretized wave equation 

eq. (27) is written as 

 

,                 (28) 

 

where ω is angular frequency; , is Fourier transform 

of U and f, respectively. Eq. (28) suggests to recover the  

 

wavefield 

   

,                  (29) 

where  

 

S(p)=K(p)-ω
2
M(p) 

 

Taking the partial derivative both side of eq. 28 respect to 

single physical parameter, say p1, yields 

 

      (30) 

Taking a look on eq. (30) and comparing to the wave eq. 

(29), we may see that these two equations have the same 

form of the Laplacian operator, the difference is the 

source function. The source function of eq. (29) is 

normally given or assumes to be known, on the other the  

hand, the expression , 

calculated by wavefield and physical parameters, is called 

virtual source term. Consequently, partial derivative wave 

field can be calculated by FDM and virtual source that is 

calculated by wavefields and physical parameters.   

 

Figure 2 Wavefield generated from VTI elastic wave 

equation at the 0.25 second 

Multiplying eq. (30) by the inverse of K(p)-ω2M(p) gives 

 

,    (31) 

The subsurface are normally divided into grid size with 

NN nodals as shown in figure 3, and the partial derivative 

of wavefield respect to physical parameters has to be 

calculated at each grid points, thus the matrix notation of 

eq. (31) is given by 

 

,    (32) 

 

where the virtual sources distribution f1 is given by 

 

.  

Taking the transpose of eq. (32) results in: 
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 (33) 

Similarly, the partial derivative of wavefield respect to the 

other physical parameters p2, p3,…,pm are given as 

 

 (34) 

 

 

 (35) 

 

 

Figure 3. Conversation of nodal connection, Nx, Nz indicate for the number grids in x and z direction, NN indicates for total number 

of grids (after Shin (1988)) 

 

In summary, the partial derivative matrix will be  

 

    (36) 

The number of observation data are much smaller than the 

number of grids, thus the null values should be added to 

observation data vector to handle zero lag crosscorrelation 

of partial derivative wavefield and observation data that is 

given as the follows 

 

 

 

                               (37) 

To demonstrate the accuracy of imaging condition for VTI 

media by zero lag crosscorrelation of partial derivative 

wavefield and observation data, the simple VTI media 

(figure 4) is used. The fist layer with the P wave velocity 

of 1500 m/s is isotropic, while the second layer is VTI 

with the P wave velocity of 2500 m/s, epsilon of 0.25 and 

delta of 0.1. Figure 5 shows the shot gather that is 

achieved from the numerical solution of eq. \ref{vti-

acwe}. For imaging of this shot gather, the partial 

derivative of wavefields respect to P wave velocity at 

every grid points have to be calculated. Figure 7 shows 

some examples of the partial derivative calculation at six 

dot points given in figure 4. Before that the virtual sources 

calculation results are shown in figure 6. The zero lag 

crosscorrelation of partial derivative of wavefield respect 

to P wave velocity and shot gathers at the grid points 

along the center lines of the model is shown in figure 8a, 

while figure 8b show the remaining part of image profile 

after cutting all the value shallower than 100m. The figure 

8b shows very clearly that at the boundary of two layer 

where the velocity changes, the value of zero lag 

crosscorrelation changes significantly or it creates the high 

amplitude in the profile comparatively to the surrounding 

points. Gathering these zero lag crosscorrelation results at 

all grid points of the velocity model enables to image the 

subsurface as seen in figure 9. The image shows very 

clearly the velocity boundary.  

The zero lag crosscorrelation of partial derivative 

wavefield and observation data method enables to image 

clearly the subsurface for not only the acoustic isotropic 

media but also for the VTI media, however it requires 

extremely high computing cost. Thus, it is not sufficient 

for the real data set which the velocity models consist of 

much larger number of grids than the example one.  

Because the is symmetric, thus the zero lag 
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crosscorrelation of partial derivative wavefields and shot 

gathers can be rewritten as 

 

   

                   (38) 

where 

 

is called back propagating wavefield. Thus, the zero lag 

cross correlation of virtual source and back propagation, 

that is principle of reverse time migration for VTI media, 

is able to image the subsurface. Figure 10 shows the result 

of this imaging method for the physical parameters and 

shot gather given in figure 4 and figure 5, respectively. As 

seen in figure 10, the boundary is very clear to allocate 

and the image looks similar to the one in figure 9 and 

accurately matches to the physical parameters model 

(figure 4). 

 

REVERSE TIME MIGRATIO� FOR VTI 

MARMOUSI MODEL 

Marmousi model is wel-known with the phase of complex 

geological structure. The huge amount of folding and 

faulting induced in this model have created a rather 

interesting distribution of velocity anomalies and 

discontinuities. Thus, the Marmousi model served as a 

calibration tool (Audebert et al., 1994; Versteeg and 

Lailly, 1991; Rekdal and Biondi, 1994; Shin and Min, 

1996) used to verify the various migration and inversion 

algorithms through the years. The Marmousi data set was 

generated at the Institute Francais du Petrole (IFP), and 

used for the workshop on practical aspects of seismic data 

inversion at the 1990 EAEG meeting in Copenhagen, 

where different groups (contractors, universities, and oil 

companies) applied their proffered imaging tools on this 

data set. Detailed accounting  of what transpired at the 

workshop is given by (Versteeg and Grau, 1990) and 

(Versteeg and Lailly, 1991). The original Marmousi data 

set was generated using a 2-D acoustic finite-difference 

modeling program. The Marmousi model is, however, 

based on the simplistic assumption that the Earth 

subsurface is isotropic, despite the many arguments 

(Banik, 1984; Harris et al., 1994; Alkhalifah, 1997) that 

suggest otherwise.  

The existence of such an acoustic wave equation (eq. (25)) 

for VTI media allows us to generate realistic synthetic 

data in the VTI complex models. An example of the ever 

popular VTI Marmousi model (Alkhalifah, 1997) was 

created by introducing new two dimensionless Thomsen's 

parameters and shear wave velocity model as shown in 

figure 11. Here we can see, the deepest part of Marmousi 

model, below the discontinuities where the anticline trap 

consists of low velocity zone representing for hydrocarbon 

is kept as isotropic layer. The hydrocarbon accumulation 

anticline trap is target of most of migration algorithms. 

Consequently, to apply the proposed algorithms to migrate 

the VTI Marmousi model data set is very significant to 

verify the accuracy of proposed algorithm.  

 

 

Figure 4 Input velocity and Thomsen's parameters. The dots 

indicate for example of positions to calculate the virtual source and 

partial derivative wavefields 

 

Figure 5 Shot gather generated by FDM for VTI media given in 

figure 4 
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Figure 6 Virtual shot calculation at different positions showing in figure 4 
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Figure 7  Partial derivative wavefield calculation at different locations showing in figure 4 
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Figure 8  Result of zero lag crosscorrelation between partial derivative wavefields respect to P wave velocity showing examples in 

figure 6 and shot gather data showing in figure 5 

 

Figure 9 Result of zero lag crosscorrelation of partial derivative 

wavefields and shot gathers data 

Figure 10 Result of zero lag crosscorrelation of virtual source and 

back propagating wavefields 

Since the Thomsen's parameters are given, the horizontal 

P wave and NMO P wave velocity are simply calculated. 

Then, the FDM method can be adopted to the given VTI 

Marmousi model. The model is divided into 240×737 

grids; both horizontal and vertical grid size is 12.5 m for 

forward modeling. The VTI Marmousi dataset consists of 

240 shots with 135 traces per shot. The near offset is 200 

m; both receiver and shot interval is 25 m. The first shot 

location is at the position of 3000 m. Figure 12 shows 

common shot gathers #50, 100, 150 and 200 

corresponding to shot locations of 3750, 4500, 5250 and 

6000 m, respectively. In the shot gathers data, the 

moveout no longer appears hyperbolic, which directly 

reflects the complexity of the model. Alkhalifah, 1997 use 

Kirchhoff prestack depth migration for isotropically 

migrating the VTI Marmousi data set. The migrated 

section showed the reservoir location slightly shifted and 

many shallow faults were improperly imaged as a result of 

ignoring anisotropy. Here, applying the VTI RTM for the 

VTI Marmousi data set shot by shot then summing up all 

240 single imaging gather of 240 shot create full migrated 

section of VTI Marmousi data as displayed in figure 13. 

The reservoir and other geological structures including 

main faulting and folding systems are very clearly imaged. 

However, the sediment layers of the shallow part is rather 

poorly imaged. This limitation can be ignored if the 

preprocessing steps such as filtering and deconvolution 

before and after migration are applied. 
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Figure 11. Input velocities and Thomsen's parameter of VTI Marmousi model 
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Figure 12 Examples of shot gathers from forward modeling as input for back propagating wavefield 

Figure 13 Result of VTI RTM as after summation of 240 single image gathers 

CO�CLUSIO� 

Setting shear velocities equal 0 of the dispersion 

relationship yields the acoustic anisotropic wave equation 

for VTI media that can be solved numerically faster than 

elastic anisotropic wave equation. The result of numerical 

simulation of acoustic anisotropic wave equation shows 

kinematically reasonable to the elastic anisotropic one. 

Thus, it can be used for migration purpose since the 

primary events in the recorded shot gathers are almost 

recognized the P waves. 

Both zero lag crosscorrelation methods enable to image 

the subsurface not only for acoustic isotropic media but 

also for VTI media. The computing time of RTM is much 

less than the zero lag crosscorrelation of partial derivative 

and observation data, so it can handle bigger size of 

velocity model of the real seismic data set.  

The principle of reverse time migration by zero lag 

crosscorrelation of virtual shot and back propagating 

wavefields for VTI media has been proven 

comprehensively and verified by VTI Marmousi model. 
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Thus, this imaging method can be further developed for 

the other complicated anisotropic media and it should be 

recommended for further study. 
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