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Abstract. We present the percolation-theory model for explanation of conductivity
of perovskites based on the scaling property of grain boundary formation. Assuming
a two-layer simple effective medium model, composed of the grain itself as a first layer
and the boundary as a second layer, it was modeled that the net resistivity r of the
medium depends on the average grain size L, boundary thickness L’ and boundary
fractal dimension D. The obtained formula was tested specifically for the perovskite
system Ca0.85Pr0.15Mn1−xRuxO3 (x=0.00, 0.03, 0.05 and 0.07) whose structures and
electric properties were reported earlier by these authors [VNU J. of Sci., XX, No.3
AP, 2004, p. 130-132]. The determination of fractal dimension was based on the
standard length-area technique and was carried out using SEM images which were
photographed at three magnification scales 2, 5 and 10µm. This dimension showed
good correspondence to the small polaron hoping energy in high temperature region
and gave very good fits to experimental data for T< TN .
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1. Introduction

The application of the fractal techniques to study the conduction mechanism in

the perovskite superconductors [1-3] is not new, but for the manganate perovskites there

is a lack of studies dealing directly with the grain boundary conductivity. We know

only one work from Dobrescu et al. reporting the fractal dimension determination for

La1−xSrxCoO3 [4]. Although many studies showed the essential effects of grain boundary
on the macroscopic resistivity of perovskite [5], up-to-date there is still absent the knowl-

edge about the boundary geometry. For the perovskites, one may adopt the fractal model

and the method for determination of dimension from the studies for metal oxides, such as

for the iron quartizites [6]. Here the measurement of the voltage drop distribution across

the square matrix settled by the Werner arrays was performed. The apparent resistivity

was expected to depend on the electrode separation l according to:

ρ ∝ lD (1)

with D is the critical exponent related to the fractal dimension of the mozaic bound-

ary system underlying the measured matrix. It is also known that near the threshold

concentration xc, the effective resistivity of the percolation system behaves as:

ρ ∝ (x− xc)D (2)
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with DI is another critical exponent. The above relations, however, do not include the
term for the temperature dependence. The common approach for T < Tc was to consider

(see Rao and Raychaudhury in [5]):

ρ = ρ0 + ρ1T
n (3)

with the exponent n ≈ 2.5 and the ratio ρ1/ρ0 ≈ 10−6. For T > Tc, the usual attitude

was to suggest either the small polaron hoping or the bandgap conduction model. Both

rely on the exponential development of ρ according to T : Small polaron:

ρ ∝ T exp(Wp/kBT ) (4)

Bandgap:

ρ ∝ exp(Ea/kBT ), (5)

where theWp stands for the polaron hoping energy and Ea for the activation energy. Some

authors reported the variable hoping model with ρ ∝ exp[(T0/T )1/4] to be suitable for the
manganate perovskites, but we found this relation to be fitted worse in the tested samples

(see Section 3).

2. Boundary resistivity from fractal viewpoint

We now adopt the two-layer simple effective medium model for the resistivity as

has been used in Gupta et al. [7]. Consider two homogeneous media, the grain itself with

size L and resistivity ρG and the boundary with thickness L’ and resistivity ρB . The net

resistivity is:

ρ = ρG + (L
I/L)ρB (6)

Since the grains consist of the disordered single crystal pieces, it is evident to suggest

that above Tc the intra-grain resistivity ρG evolutes according to (4) or (5). This resistivity

may be influenced by the intra-grain single crystal boundary but it is not expected to

depend on the inter-grain boundary. The boundary resistivity ρB may be given, according

to (1) - (3), as:

ρB = (ρ0 + ρ1Tn)(x− xc)D lD

= (ρ0 + ρ1T
n)(x− xc)D (kL)D = fρ0 + fρ1Tn (7)

with f = (kDLILD−1)(x−xc)D . For each percolation system, the constant factor f is de-
termined by the system composition and geometry. By fitting (7) to the experiment data,

the exponent n and ρ0, ρ1 could be found. The ρ0 refers to the temperature-independent

part of the boundary resistivity whereas the ρ1 to the temperature-dependent part. The

problem was not, however, the determination of n,D or DI but their physical foundation.
The procedures that were involved to estimate D, e.g. in [6], do not strictly relate D to
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the boundary resistivity. As the measured resistivity heavily depends on the method and

the apparature settlement, the obtained D only refers to the applied apparent resistivity.

At this moment there is no way to prove that D really corresponds to the true boundary

resistivity. For the purpose of the first approximation, we must adopt the asumption that

the D, estimated by the procedure described below, closely conforms to the D obtained

by measuring the apparent resistivity ρ.

To estimate D we used the classical length-area relation, e.g. described in [8]. For

each SEM magnification (each yardstick) G, the ratio lG = LS/LA of the linear extents

LS , determined on the basis of the grain domain perimeter G− length (in unit of image
size) and LA, determined on the basis of the grain domain area G−area (in unit of image
area), is a constant:

lG = LS/LA = (G− Length)1/D/(G− area)1/2 ≈ constant (8)

with D be interpreted as the fractal dimension of the grain boundary. Reasonably, for the

two different magnifications GI and G the ratio:

lG /lG = (G
I/G)1/D−1 (9)

Evidently, the log-log plot from the relations (8)-(9) reveals the fractal dimension D.

3. Test samples: Ca0.85Pr0.15Mn1−xRuxO3

Let us review the structure determination of the test samples that has been reported

in [9]. The Ca0.85Pr0.15Mn1−xRuxO3 (x=0.00, 0.03, 0.05 and 0.07) samples were prepared
using the standard ceramic technique. All samples exhibit the orthorhombic space group

Pbnm with the unit cell volumes slightly increased as Ru content grows. The average

single crystal size was: 24.0, 24.5, 25.3 and 26.1nm for the growing x. The typology of

surfaces was studied by SEM where images with different magnification (of order 2, 5 and

10µm) were taken at different surface positions. Fig.1 shows one image at 10-µm scale for

x = 0.03, the rest was omitted for clarity. The determined average grain size was 3750,

1030, 2360 and 3300nm for x from 0.00 to 0.07 sequentially (which means approx. 156,

42, 93 and 126 single crystal pieces within each grain, respectively).

Fig.1. SEM image of surface for the sample x=0.03 at the 10µm scale (a). A sample

segmentation into the squares for calculation of the fractal dimension (b).
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We have re-measured the electric resistance by the standard four electrode technique

in the temperature range from 10 to 350K for each 5K step. The results for the conductivity

measurement is shown in Fig.2. These compounds showed the constant semiconductor

character with quite low resistivity at the room temperature (of order 1 − 10Ωcm). The
FC magnetization curves reported in [10] showed TN ≈ 120K. In the high temperature
region, the fitted results against the small polaron model showed a little better linear

correlation (R2 > 0.98) compared to that of the band gap model (R2 > 0.96). It is really

difficult to distinguish between the two models in the limited temperature region.

Fig.2. The development of resistivity from 10K to 350K for x = 0.03 − 0.07. The inset
shows x = 0.00.

For the whole temperature range, both models showed the sharp declines from the

linearity at the temperature near TN , whereas the variable hoping model showed relatively

good fit (R2 > 0.95), both above and below TN (Fig.3).

Fig.3. The fits for the small polaron hoping model for two cases x = 0.03 and 0.05 (other

two cases are omitted for clarity) show the sharp declines from the linearity at the

temperatures near TN . The linear approximation in the high temperature region

has R2 > 0.98.The inset shows the fit due to the variable hoping model. Although

the linearity was less, this fits the whole temperature range well.
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In Fig.4 we show the differential curve dln(ρ)/d(1/T ) drawn together with the

original ln(ρ) vs. 1000/T curve for x = 0.03. As seen, the ln(ρ) drops at the lower

T. Since the dln(ρ)/d(1/T ) corresponds to the activation energy, its drop signifies the

variation of this energy and for our case, this means the change in conduction mechanism.

The estimation for WP from the slopes of log(ρ/T ) vs. 1000/T yields 0.52, 0.43, 0.27 and

0.17eV for x = 0.00− 0.07, in sequence.

Fig.4. The differential curve dln(ρ)/d(1/T ) drawn against 1/T for x = 0.03 reveals the

drop of the activation energy when the temperature decreases. This argues for the

change in conduction mechanism away from the bandwidth-controlled conduction

to the possible boundary-controlled percolative conduction.

To fit the data in the low temperature region we estimated the fractal dimension

D, needed in relation (7), according to the following procedure. First, measure the total

area of each SEM photograph, then divide this area into the smaller squares and use them

to fill each grain area. The number of squares filled into one grain is just the G − area
and the number of squares that cross-over the grain or run over the grain boundary is just

the linear extend G − Length. The log-log plot from these two quantities determines D

(Fig.5).

Fig.5. The log(G−Area) vs. log(G− Length) plot.
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Table 1 summarizes the measurement details and results (D, f, L and LI). For the
calculation of f , the percolation threshold concentration xc was set to zero since all samples

are above threshold; the concentration x was set equal to theMn4+/Mn3+ ratio estimated

by the Rietveld refinement [9] (also see Rao and Raychaudhury in [5]) and DI was assumed
equal to D. A larger grain size L tends to the smaller D. These D-s correspond well to

the WP , except for x = 0.00, as seen in Fig.7.

Fig.6 shows the fit results for two cases x = 0.03 and 0.05 (the inset). The dotted

lines denote the fit according to the small polaron model (4) whereas the lines are according

to (7). The least square figure of merit R < 0.02. The temperature at which the lines and

the dotted lines cross over is 120K (x = 0.03) and 110K (x = 0.05). This temperature

drops to 100K for x = 0.07. Compared to FC curves [10], these temperatures correspond to

the Neel temperature TN of the charge-ordering antiferromagnetic-to-paramagnetic phase

transitions. Table 2 lists the power factor n, the constant ρ0 and ρ1 that were determined

from the fits. The n grew linearly with WP better than D with WP (Fig.7).

Fig.6. The fit examples for x = 0.03 and 0.05 (the inset) according to (4) (high T region)

and (7) (low T region). The least square figure of merit R < 0.02. The cross points

showed the estimated TN for each case to be 120K (x = 0.03) and 110K (x = 0.05).

Recall the approximation for the boundary resistivity was 6 × 102Ωcm [5,7] (con-

firmed to the very low boundary conductivity of 10−5 in unit of e2/ ). Our model esti-
mated the pure boundary resistivity to be ρ0 of order 50 × 10−5Ωcm (Table 2), which

suggests the conductivity of order 10 e2/ . Since the (e2/ ) corresponds to the minimal
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Mott conductivity, the value of 10 is a much better estimation for the boundary conduc-

tivity than the one 10−5 reported earlier.

Fig.7. The relations between D, n and Wp show almost linearity between n and Wp,

whereas this linearity holds for D only if excluding the case x = 0.00.

Conclusions

This work is the first of its kind to apply the fractal analysis to study the boundary

conduction in perovskites. The use of the fractal technique in perovskites faces several

limitations due to the small size of the samples that usually do not allow the manufacture

of the Werner array electrode matrix. We showed that by using the SEM images, the

boundary fractal dimension and the related boundary geometric properties, such as the

average size and thickness, might be well estimated, and that the estimated values suc-

cessfully described the temperature behaviours of the resistivity for the tested samples.

Furthermore, the fractal dimension showed very good correspondence to the small polaron

hoping energy in the high temperature region. They also developed linearly with the crit-

ical exponents n in the low temperature region; this fact argues for the fractal nature of

n, but the confirmation needs further investigation. In contrast to the fractal dimension

determined on the basis of the voltage drop distribution across the Werner array matrix,

the dimension measured using the SEM images really belongs to the boundary system but

it lacks to bind to the apparent resistivity by its nature. At this stage, their incorporation

into the relation (7) was purely a model. To confirm this model, one needs to arrange the
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Werner array matrix on the samples, that is to build at least 40 × 40 electrodes onto a
surface area approx. 1cm2. We leave this experiment for the future consideration.
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