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ON THE STABILITY OF ELASTOPLASTIC THIN TRIANGULAR

PLATES MADE IN COMPRESSIBLE MATERIAL

Dao Van Dung, Chu Thi Tam

Department of Mathematics, College of Sciences, VNU

Abstract. The stability problem of thin triangular plates by the small elastoplastic
deformation theory, was studied in [3]. Basing on the theory of elastoplastic processes,
this problem again has been investigated in [4] with incompressible material.

In this paper we continue to study the mentioned problem with compressible
material. The relation for determining critical forces is established. In particular
the explicit expression of the critical force for the linear hardening material is found.
Some numerical calculations have been given and discussed.

1. Problem setting and fundamental stability equations

Let’s consider a isosceles right triangular thin plate with the right side a and thick-

ness h. We choose a orthogonal coordinate system Oxyz so that the axis x and y coincide

with two right sides of plate, the axis z in direction of the normal to the middle surface.

Assume that a material is compressible and the plate is subjected to the compress-

ible forces with the intensity uniformly distributed p = p(t) at the sides x = 0, y = 0 and

x + y = a, where t - loading parameter. Moreover we suppose don’t take into account

the unloading in the plate. The problem is to have to find the critical value t = t∗ and
respectively the critical load p∗ = p(t∗) which at that time t∗ an instability of the struc-
ture appears. We use the crirerion of bifurcation of equilibrium state to investigate the

proposed problem.

1.1. Pre-buckling state

At any moment t in the plate, there exists the plane stress state

σxx = −p(t) ≡ −p, σyy = −p(t) ≡ −p,
σxy = σxz = σyz = σzz = 0. (1.1)

So that

σ = −2
3
p; σu = σ2xx + σ2yy − σxxσyy = p. (1.2)

The material is assumed to be compressible, i.e σ = 3Kε. So ε =
σ

3K
= − 2p

9K
, K =

E

3(1− 2ν) , E = 2G(1+ν), whereK is compressible coefficient of material. The components
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of the strain velocity tensor detemined by the stress-strain relationship of elastoplastic

process theory [1, 7] are of the form

ε̇xx = ε̇yy = − 1

2φI
+

2

9K
ṗ, ε̇xy = ε̇yz = ε̇xz = 0,

ε̇zz =
1

φI
− 2

9K
ṗ; φI = φI(s), (1.3)

where s is the arc-length of the strain trajectory calculated by the formula

ds

dt
=

√
2

3
(ε̇xx − ε̇yy)2 + (ε̇yy − ε̇zz)2 + (ε̇zz − ε̇xx)2

1/2

=
ṗ

φI(s)

or φI(s)ds = dp.
That yields

p = σu = φ(s), (1.4)

or with the hardening material, s = φ−1(p).

nn1.2. Post-buckling state

At the moment an instability occurs, a bifurcation of equilibrium states is assumed

to appear. The system of stability equations of the compressible thin plates presented in

[7] is written in form as follows

α1
∂4δw

∂x4
+ α3

∂4δw

∂x2∂y2
+ α5

∂4δw

∂y4
+

9p

h2N

∂2δw

∂x2
+
∂2δw

∂y2
= 0. (1.5)

where

α1 = α5 =
1

C

1

4
+
3φI

4N
+

φI

9K
; α3 =

1

C

1

2
+
3φI

2N
− 2φ

I

9K
,

N =
σu
s
=
p

s
, C = 1 +

4φI

9K
, φI = φI(s). (1.6)

1.3. Boundary conditions

We consider the thin plate with the simply supported boundary conditions. In this

case we have

δw = 0,
∂2δw

∂x2
= 0, at x = 0,

δw = 0,
∂2δw

∂y2
= 0, at y = 0,

δw = 0,
3φI

C
(∆δw) + 2N

∂2δw

∂x∂y
= 0, at x+ y = a. (1.7)
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2. Solving method

We choose the deflection δw satisfing the boundary condition (1.7) in the form

δw = Amn sin
mπx

a
sin

nπy

a
+ (−1)m+n+1 sin nπx

a
sin

mπy

a
, (m,n ∈ N+;m W= n) (2.1)

Calculating partial derivatives of δw and substituting those expressions into the stability

equation (1.5) and taking into account the existence of non-trivial solution i.e Amn W= 0,
we receive the expression

α1
mπ

a

4

+ α2
mπ

a

2 nπ

a

2

+ α5
nπ

a

4

− 9p

Nh2
(m2 + n2)

π2

a2
= 0. (2.2)

By putting i =
3a

h
(called the slenderness of the plate) and α1 = α5, the relation (2.2)

becomes

i2 =
9a2

h2
=
Nπ2

p

α1(m
2 + n2)2 + (α3 − 2α1)m2n2

m2 + n2
· (2.3)

Substituting the values of α1 and α3 into (2.3) we get

i2 =
9a2

h2
=
π2

s

1

C

1

4
+
3φIs
4p

+
φI

9K
(m2 + n2)− 4φIm2n2

9KC(m2 + n2)
. (2.4)

This equation (2.4) permits us to determine a critical load p∗. Because of the force p is
non-linear function of s, then the relation (2.4) is too non-linear to s.

We can solve this equation by using the modified elastic solution method [2].

First of all, choosing m = 1, n = 2, the equation (2.4) can be rewritten in the other

form

s =
5π2

4

h

a

2

1 +
3sφI

φ

K

9K + 4φI
+
π2

5

h

a

2

· φI

9K + 4φI
(2.5)

or

s =
5π2

4

h

a

2

1 + 3
Et(s)

Ec(s)

K

9K + 4Et(s)
+
π2

5

h

a

2 Et(s)

9K + 4Et(s)
, (2.6)

where Et(s) = φI(s) - the tangential modulus, Ec(s) - the secant modulus of the material.
The problem determining critical loads of a plate reduces to seek the critical value s∗.
Finally the critical load can be found from

p∗ = φ(s∗). (2.7)

Now we presente in detail this iterative method.

On the first iteration by putting Ec(s) = Et(s) = 3G, from (2.6) we get

s1 = 5π
2 h

a

2 K

9K + 12G
+
π2

5

h

a

2 G

3K + 4G
· (2.8)

If s1 εs (elastic limit), the iteration is finished and the critical force is given by

p
(1)
∗ = 3Gs1 = 5Gπ

2 h

a

2 K

3K + 4G
+
3π2

5

h

a

2 G2

3K + 4G
· (2.9)
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If s1 > εs, we proceed to the second iteration by the formula

s2 =
5π2

4

h

a

2

1 + 3
Et(s1)

EC(s1)

K

9K + 4Et(s1)
+
π2

5

h

a

2 Et(s1)

9K + 4Et(s1)
· (2.10)

The calculations are realized analogously as the first iteration.

A procedure of the iterative method for solving the relation (2.6) can be written as

following

sn =
5π2

4

h

a

2

1 + 3
Et(sn−1)
Ec(sn−1)

K

9K + 4Et(sn−1)
+
π2

5

h

a

2 Et(sn−1)
9K + 4Et(sn−1)

(2.11)

and the critical force for n-th iteration, is determined by

p
(n)
∗ = φ(sn), (2.12)

where sn−1 is considered to be known at (n− 1)-th iteration.
Practically, the iterative process will be finished when

sn − sn−1
sn−1

< ε, (2.13)

where ε is a given forward positive and small value.

3. Linear hardening material

The general case for hardening material is presented in the above part, now we

consider the problem for linear hardening material.

3.1. If the function σu = φ(s) is represented by graph in figure 1.

In this case we have φI = g = const, σu = p = 3Gs0 + (s − s0)g. It is seen from
here that

s =
p− (3G− g)s0

g
≡ p− λ

g
(3.1)

where λ = (3G− g)s0 = 1− g

3G
σs; 0 λ σs, σs is an upper limit of elastic stress.

Figure 1
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Substituting the expression of s from (3.1) into (2.4), we obtain the equation for

finding the critical force p as follows

36a2p2 − 36λa2 +
4gπ2h2

C2
(m2 + n2) 1 +

g

9K

m2 − n2
m2 + n2

2

p

+
3h2π2gλ

C
(m2 + n2) = 0. (3.2)

Putting the left side of (3.2) equal to f(p), we notice that f(p) is the continuous function to

s and f(λ) 0. So that the equation (3.2) gives us two solutions satisfying the conditions

p1 λ p2. Solving the equation (3.2), finally we have

p =
1

18a2
9λa2 +

gπ2h2

C
(m2 + n2) 1 +

g

9K

m2 − n2
m2 + n2

2

+ (3.3)

9λa2 +
gπ2h2

C
(m2 + n2) 1 +

g

9K

m2 − n2
m2 + n2

2 2

− 27π
2h2gλa2

C
(m2 + n2) .

Remarks

+ If material is elastic i.e g = 3G, the expression (3.3) becomes

p =
π2G

3C
(m2 + n2)

h2

a2
1 +

G

3K

m2 − n2
m2 + n2

2

(3.4)

+ If material is incompressible i.e K →∞, the expression (3.3) is given

p =
1

18a2
9λa2 + gh2π2(m2 + n2)

+ 9λa2 + gh2π2(m2 + n2)
2 − 27gπ2h2λa2(m2 + n2) . (3.5)

Deduces from here

p∗ = min p = p m2+n2=5

=
1

18a2
9λa2 + 5gπ2h2 + (9λa2 + 5gπ2h2)2 − 135gλa2π2h2 . (3.6)

This result coincides with one presented in [4].

3.2. If the function σu = φ(s) is represented by graph in figure 2.

We have

σu = σs + (s1 − s0)tgα1 + · · ·+ (sk−1 − sk−2)tgαk−1 + (s− sk−1)tgαk

= 3Gs0 +
k−1

i=1

(si − si−1)gi + (s− sk−1)gk, (3.7)
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where s0 =
σs
3G
; gi = tgαi = φI(s) with si−1 s si; i = 1, k − 1; gk = tgαk = φI(s)

with s sk.

Because σu = p, so (3.7) leads

p = (3G− g1)s0 +
k−1

i=1

(gi − gi+1)si + gks. (3.8)

Figure 2

Deduces from here

s =

p− (3G− g1)s0 +
k−1

i=1
(gi − gi+1)si

gk
≡ p− λ

gk
, (3.9)

where

λ = (3G− g1)s0 +
k−1

i=1

(gi − gi+1)si.

Substituting (3.9) into (2.4) and calculating analogously as the part 3.1, we get

p =
1

18a2
9λa2 +

gkπ
2h2

C
(m2 + n2) 1 +

gk
9K

m2 − n2
m2 + n2

2

+ (3.10)

9λa2 +
gkπ

2h2

C2
(m2 + n2) 1 +

gk
9K

m2 − n2
m2 + n2

2 2

− 27π
2h2gkλa

2

C
(m2 + n2) .

This is the relation for determining the critical force p∗. It is seen that if g1 = g2 = · · · =
gk = g, the expression (3.10) returns to the result (3.3).
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4. Numerical calculations and discussion

4.1. Linear hardening material

We consider a plate with the characteristics as follows 3G = 2.6 · 105 (MPa), σs =
400 (MPa), φI(s) = g = 0.208 · 105 (MPa), m,n from 1 to 10 (m W= n). The ratio a

h
varies

from 22 to 49 with the arithmetical ratio equal to 3, K =
E

3(1− 2ν) , E = 2G(1 + ν), ν

from 0.20 to 0.50 with arithmetical ratio equal to 0.04. We use the formula (3.3).

Hereafter we give the numerical results which are represented by graphs

a) Plastic σ∗u and elastic σ∗u in the cases ν = 0.2 (table 3, figure 3)
b) Plastic σ∗u and elastic σ∗u with ν = 0.44 (table 4, figure 4)
c) Plastic σ∗u and elastic σ∗u with ν = 0.5 (table 5, figure 5)

Table 3

a/h σ∗u(plastic)(MPa) σ∗u(elastic)(MPa)

22 455.571 2972.747

25 429.571 2303.095

28 413.315 1835.216

31 403.517 1497.200

34 396.405 1244.644

37 391.282 1050.993

40 387.462 899.255

43 384.531 778.156

46 382.229 679.967

49 380.386 599.254

Figure 3
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Table 4

a/h σ∗u(plastic)(MPa) σ∗u(elastic)(MPa)

22 461.854 2950.319

25 433.693 2284.473

28 416.628 1821.370

31 405.552 1485.905

34 397.952 1235.255

37 392.500 1043.063

40 388.447 892.471

43 385.345 772.285

46 382.915 674.837

49 380.972 594.733

Figure 4
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Table 5

a/h σ∗u(plastic)(MPa) σ∗u(elastic)(MPa)

22 436.246 2945.474

25 434.589 2280.975

28 417.244 1818.379

31 406.000 1483.456

34 398.292 1233.226

37 392.767 1041.351

40 388.662 891.006

43 385.532 771.016

46 383.064 673.728

49 381.099 593.756

Figure 5

4.2. Hardening material

We consider a plate made of the stell 30XΓCA with an elastic modulus 3G =

2.6 · 105MPa, an yield point σu = 400MPa and the table de dates given in [1]. The

Poisson coefficient is equals to 0.2; 0.32; 0.44. The calculations are realized by the formula
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(2.6) and the iterative method represented in part 2. Finally we receive the results in the

table 6 and the figure 6.

Table 6

a/h σ∗u(ν = 0.2) σ∗u(ν = 0.32) σ∗u(ν = 0.44)

22 531.498 544.375 568.888

25 511.295 528.059 544.254

28 497.993 510.571 529.782

31 481.474 498.883 515.507

34 466.801 485.054 502.241

37 451.065 472.045 489.882

40 435.384 456.226 476.926

43 407.437 444.688 466.564

46 367.182 426.108 452.499

49 323.597 397.762 443.272

Figure 6

Discussion

The above received results lead us to some remarks as follows

a) The more the plate is thin, the more the value of critical stress intensity σ∗u is
small (see Figures 3, 4, 5, 6).
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b) The compressibility of material has an influence on the stability of structure.

The more the Poisson coefficient ν decreases, the more the value of σ∗u diminishes when
the ratio

a

h
is constant. This remark is deduced from the results in Table 6 and Figure 6.

c) When a material is incompressible, the obtained results return to the previous

well-known ones (see [3, 4, 5, 6, 8]).

This paper is completed with financial support from the National Basic Research

Program in Natural Sciences.
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