DSpace
 

Tai Nguyen So - Vietnam National University, Ha Noi - VNU >
ĐHQGHN - TẠP CHÍ KHOA HỌC >
TOÁN - VẬT LÝ - MATHEMATICS - PHYSICS >
NĂM 2005 >
Vol. 21, No.2 >

Search

Please use this identifier to cite or link to this item: http://tainguyenso.vnu.edu.vn/jspui/handle/123456789/463

Title: A new numerical invariant of Artinian Modules over Noetherian local rings
Authors: Nguyen, Duc Minh
Keywords: Artinian module
Multiplicity
Issue Date: 2005
Publisher: ĐHQGHN
Citation: VNU. JOURNAL OF SCIENCE, Mathematics - Physics. T.XXI, N02 - 2005
Abstract: Let (R,m) be a commutative Noetherian local ring the maximal ideal m and A an Artinian R-module with Ndim A = d. For each system of parameters x = (x1, ...,xd) of A, we denote by e(x,A) the multipility of A with respect to x. Let n = (n1, n2, ...,nd) be a d-tuple of positive integers. The paper concerns to the function of d-variables I(x(n);A) := 􀁦R(0 :A (xn1 1 , ..., xnd d )R) − e(xn1 1 , ...,xnd d ;A), where 􀁦R(−) is the length of function. We show in this paper that this function may be not a polynomial in the general case, but the least degree of all upper-bound polynomials for the function is a numerical invariant of A. A characterization for co Cohen-Macaulay modules in term of this new invariant is also given.
Description: VNU. JOURNAL OF SCIENCE, Mathematics - Physics. Vol. 21, No. 2 - 2005
URI: http://hdl.handle.net/123456789/463
ISSN: 0866-8612
Appears in Collections:Vol. 21, No.2

Files in This Item:

File Description SizeFormat
Bai_5.pdf204.69 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback