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1. Introduction

The activity of a stock market takes place usually in discrete time. Unfortunately such markets
with discrete time are in general incomplete and so super-hedging a contingent claim requires usually
an initial price two great, which is not acceptable in practice.

The purpose of this work is to propose a simple method for approximate hedging a contingent
claim or an option in minimum mean square deviation criterion.

Financial market model with discrete time:

Without loss of generality let us consider a market model described by a sequence of random
vectors {S,, n = 0,1,...,N}, S, € R? which are discounted stock prices defined on the same
probability space {2, &, P} with {F,, n = 0,1,..., N} being a sequence of increasing sigma-
algebras of information available up to the time n, whereas “risk free ” asset chosen as a numeraire
SY =1,

A Fy-measurable random variable H is called a contingent claim (in the case of a standard call
option H = max(S, — K,0), K is strike price.
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Trading strategy:

A sequence of random vectors of d-dimensiony = (v,, n = 1,2, ..., N)withy, = (7}, ~2,...,
AT (AT denotes the transpose of matrix A ), where % is the number of securities of type j kept by
the investor in the interval [n — 1, n) and +,, is F},,_1 -measurable (based on the information available
up to the time n — 1), then {~,} is said to be predictable and is called portfolio or trading strategy .

Assumptions:

Suppose that the following conditions are satisfied:
i) AS, =S5, —Sp-1, H€ Ly(P), n=0,1,...,N.
ii) Trading strategy 7 is self-financing, i.e. S. v, 1 = ST |
foralln=1,2,..., V.
Intuitively, this means that the portfolio is always rearranged in such a way its present value
is preserved.
iii) The market is of free arbitrage, that means there is no trading strategy y such that 47 Sy :=
v1.50 <0, ynv.Sy >0, Pyn.Sy >0} > 0.
This means that with such trading strategy one need not an initial capital, but can get some profit and
this occurs usually as the asset {Sn} is not rationally priced.
Let us consider

vn, O equivalently 55—1A% =0

N d
GN(Y) =D -ASk with 7. ASy = > 7] ASY.
k=1 j=1
This quantity is called the gain of the strategy ~ .
The problem is to find a constant ¢ and v = (v, n =1,2,..., N) so that

Ep(H —c— Gn(v))* — min. (1)

Problem (1) have been investigated by several authors such as H.folmer, M.Schweiser, M.Schal,
M.L.Nechaev with d = 1. However, the solution of problem (1) is very complicated and difficult for
application if {S,,} is not a {F,, }-martingale under P, even for d = 1.

By the fundamental theorem of financial mathematics, since the market is of free arbitrage, there
exists a probability measure () ~ P such that under Q) {S,} is an {F,, }-martingale, i.e. Eq(S,|Fy) =
Sn—_1 and the measure () is called risk neutral martingale probability measure .

We try to find ¢ and ~y so that

Eq(H — ¢ — Gn(7))? — min over 7. (2)

Definition 1. (7)) = (v;5(c)) minimizing the expectation in (1.2) is called Q- optimal strategy in the
minimum mean square deviation (MMSD) criterion corresponding to the initial capital c.

The solution of this problem is very simple and the construction of the ()-optimal strategy is
easy to implement in practice.

Notice that if Ly = dQ/dP then

EQ(H —c¢—Gn(7))* = Ep[(H — ¢ — Gn)*Ly]

can be considered as an weighted expectation under P of (H — ¢ — Gy)? with the weight Ly. This
is similar to the pricing asset based on a risk neutral martingale measure ().
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In this work we give a solution of the problem (2) and a theorem on martingale representation
in the case of discrete time.

It is worth to notice that the authors M.Schweiser, M.Schal, M.L.Nechaev considered only the
problem (1) with S;, of one-dimension and M.Schweiser need the additional assumptions that {S,,}
satisfies non-degeneracy condition in the sense that there exists a constant § in (0, 1) such that

(E[AS,|F, 1)) < 6E[(AS,)% F,_1] P-as. foralln=1,2,...,N.
and the trading strategies ~,,’s satisfy :
E[v,AS,]? < oo,

while in this article {S,,} is of d-dimension and we need not the preceding assumptions.

The organization of this article is as follows:

The solution of the problem (2) is fulfilled in paragraph 2.(Theorem 1) and a theorem on the
representation of a martingale in terms of the differences AS,, (Theorem 2) will be also given (the
representation is similar to the one of a martingale adapted to a Wiener filter in the case of continuous
time).

Some examples are given in paragraph 3.

The semi-continuous model, a type of discretization of diffusion model, is investigated in para-
graph 4.

2. Finding the optimal portfolio

Notation. Let () be a probability measure such that @) is equivalent to P and under @ {S,, n =
1,2,...,N} is an integrable square martingale and let us denote E,(X) = Eq(X|F,), Hv =
H, H, = Eqg(H|F,) = E,(H); Var,_1(X) = [Cov,—1(Xj, X;)] denotes the conditional variance
matrix of random vector X when F;,_1 is given, I" is the family of all predictable strategies ~.

Theorem 1. If {S,,} is an {F), }-martingale under Q) then
Eq(H — Ho — Gy (7%))? = min{ Eq(H — ¢ — Gx(7))? : 7 € T}, (3)
where ) is a solution of the following equation system:

[Var,—1(ASy)|v, = En—1((AH,AS,)  P-as., (4)

Proof. At first let us notice that the right side of (3) is finite. In fact, with ,, = 1 for all n, we have

2
N d

Eg(H—-c—Gn(Y)*=Eq [H-c-)_ > AS]| <.
n=1 j=1
Furthermore, we shall prove that v*AS,, is integrable square under ().

Recall that (see [Appendix A]) if Y, X1, Xo, ..., X4 are d+1 integrable square random variables
with E(Y) = E(X;)=--- = E(Xy) =0and ifY = b1 X1 +bo X+ +byX, is the optimal linear
predictor of Y on the basis of X1, X», ..., X4 then the vector b = (b1, ba, ..., bg)" is the solution of
the following equations system :

Var(X)b = E(YX), (5)
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and as Var(X) is non-degenerated b is defined by

b= [Var(X)|'E(YX), (6)
and in all cases
V'E(YX) < E(Y?), (7)
where X = (X1, Xo,..., X3)7T.
Furthermore,
Y —Y1X;, ie E[X;(Y =Y)] =0, i=1,... k. (8)

Applying the above results to the problem of conditional linear prediction of AH, on the basis
of AS}, AS2 ... AS? as F, is given we obtain from (5) the formula (4) defining the regression
coefficient vector v*. On the other hand we have from (5) and (7):

E(7; ASn)? = EEn-1(7; ASnAS; ;") = By Vaty_1(ASy)vn)
= E(viE,_1(AH,AS,)) < E(AH,)*

With the above remarks we can consider only, with no loss of generality, trading strategies =y, such
that

En_l(’ynASn)z < o0.
We have:
Hy =Ho+AHi+--- +AHy

and
En_1(AH, —~ITAS,)? = E,_1(AH,)? — 271 E, 1 (AH,AS,) + YL E,_1(AS,AST)~,

This expression takes the minimum value when ~,, = ;..
Furthermore, since {H,, — ¢ — G,(7)} is an {F}, }- integrable square martingale under @,

N 2
Hy—c— ) (AH, - %Asn)]

n=1

EQ(Hy —c—Gn(7))* = Eq

:(H(]—C —I—EQ

N 2
Z ynASn)]

= (Hy—¢)? + Z Eq(AH), — YnAS,)? (for AH,, — v,AS,, being a martingale difference)

n=1

N
= (Ho— )’ + EQ Y En 1(AH, — 1AS,)?
n=1
N
> (Ho— )’ + EQ Y En1(AH, — 1;AS,)?

n=1
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N

= (Ho— )’ + EQ Y _(AH, —7;AS,)?
n=1

N

2
= (HO - C)2 + EQ (AHn - V:LASn)]

n=1
> Eq(Hy — Ho — Gu(7"))*.

So Eg(Hy — ¢ — Gn(7))? > Eg(Hy — Hy — Gpn(7*))? and the inequality becomes the equality if

c¢= Hy and v = ~™.

3. Martingale representation theorem

Theorem 2. Let {H,, n=0,1,2,...}, {S,, n=0,1,2,...} be arbitrary integrable square random
variables defined on the same probability space {Q, 3, P}, F2 = o(So,...,S,). Denoting by
I1(S, P) the set of probability measures Q such that Q ~ P and that {S,} is {F°>Y} integrable square
martingale under Q, then if F = \/S% o F'Y, H,, Sn € L2(Q) and if {H,} is also a martingale under
Q we have:

L H,=Ho+ Y WASk+Cy as., (9)
k=1
where {C,,} is a {F>} — Q-martingale orthogonal to the martingale {S,}, i.e. E,_1((AC,AS,) =0,
foralln =0,1,2,.., whereas {,} is {F> |}- predictable.

n
2.H,=Hy+ ZygASk = Ho+ Gnp(y) P-a.s. (10)
k=1
for all n finite iff the set 11(S, P) consists of only one element.
Proof. According to the proof of Theorem 1, Putting

AC, = AHy — v TAS,, C, = ZACk, Cp =0, (11)
k=1
then AC, LASy, by (8).
Taking summation of (11) we obtain (9).
The conclusion 2 follows from the fundamental theorem of financial mathematics.

Remark 3.1. By the fundamental theorem of financial mathematics a security market has no arbitrage
opportunity and is complete iff II(.S, P) consists of the only element and in this case we have (10)
with ~ defined by (4). Furthermore, in this case the conditional probability distribution of S,, given
F;?_l concentrates at most d + 1 points of R¢ (see [2], [3]), in particular for d = 1, with exception of
binomial or generalized binomial market models (see [2], [7]), other models are incomplete.

Remark 3.2. We can choose the risk neutral martingale probability measure () so that () has minimum
entropy in II(.S, P) as in [2] or ) is near P as much as possible.
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Example 1. Let us consider a stock with the discounted price Sy at t = 0, S1 at t = 1, where

4Sy/3  with prob. py,
S1= 4 5o with prob. p2, p1,p2,p3>0, p1+p2+p3=1
5S50/6  with prob. ps.
Suppose that there is an option on the above stock with the maturity at ¢ = 1 and with strike price
K = Sy. We shall show that there are several probability measures () ~ P such that {Sy, S1} is,
under (), a martingale or equivalently Eg(AS;) = 0.

In fact, suppose that () is a probability measure such that under ) S; takes the values
4S50/3, So, 2Sp/3 with positive probability g1, ¢z, g3 respectively. Then Eg(AS;) = 0 &
So(q1/3 —q3/6) =0 & 2q1 = g3, so Q is defined by (q1, 1 —3q1, 2q1), 0 <1 < 1/3.

In the above market, the payoff of the option is

H = (Sl - K)+ = (A51)+ = maX(ASl, 0)
It is easy to get an (Q-optimal portfolio
v* = Eq[HAS)]/Eq(AS1)? =2/3, Eq(H) = q150/3,
Eq[H — Eq(H) — v*AS1)* = 1S3(1—3q1)/9 — 0 as q1 — 1/3.
However we can not choose q; = 1/3, because ¢ = (1/3, 0, 2/3) is not equivalent to P. It is better

to choose g1 2 1/3 and 0 < ¢; < 1/3.
Example 2. Let us consider a market with one risky asset defined by :

n
Sn = S(]HZZ', or Sn = n_lZn, n = 1,2, . ..,N,

i=1
where Z1, Zs, ..., Zy are the sequence of i.i.d. random variables taking the values in the set () =
{dy,ds,...,dy) and P(Z; = di) = pr >0, k=1,2,..., M. It is obvious that a probability measure
@ is equivalent to P and under @ {S,} is a martingale if and only if Q{Z; = dx) = qx > 0, k =
1,2,...,M and Eg(Z;) =1, ie.

qidi + gada + - - + qudy = 1.
Let us recall the integral Hellinger of two measure () and P defined on some measurable space
{Q*, F}:

H(P,Q)= / (dP.dQ)"/?.

*

In our case we have
H(P,Q) =Y {P(Zy =dn, Zo=dis, ..., Zn = din)*Q(Z1 = dir, Zp =dia, ..., Zn = diny)"/?

= Z{pil(hl Di2qi2 - - -pz'NQiN}l/2

where the summation is extended over all d;1, d;o, . . ., d;n in Q or over all 41, i9,...,ixyin{1,2,..., M}.

Therefore
M N
H(P,Q) = {Z(pi%')l/z} :
i=1
We can define a distance between P and () by

1Q — PI* =2(1 - H(P,Q)).
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Then we want to choose Q* in II(S, P) so that ||Q* — P|| = inf{||Q — P|| : @ € II(S, P)} by solving
the following programming problem:

M
1/2 1/2
Z p;'"q;"” — max
i=1
with the constraints :
) q1dy + qedo + -+ -+ qudy = 1.
i) ¢1+g+- +qu=1
111) i, 92,5 M > 0.
Giving p1, po,..., Py We can obtain a numerical solution of the above programming problem. It is

possible that the above problem has not a solution. However, we can replace the condition (3) by the
condition

111’) q1, 92,---, 4d > 07
then the problem has always the solution ¢* = (¢}, ¢3,..., ¢j;) and we can choose the probabilities
q1,q2, - - -, qn > 0 are sufficiently near to ¢7, ¢35, ..., 43, -

4. Semi-continuous market model (discrete in time continuous in state)

Let us consider a financial market with two assets:
+ Free risk asset {B,,, n =0,1,..., N} with dynamics

n
B, = exp (Zrk> , 0<r, <1. (12)

k=1
+ Risky asset {S,, n=0,1,..., N} with dynamics

Sy = Spexp (Z[/‘(Sk—l) + U(Sk—l)gk]> ) (13)
k=1
where {g,, n=0,1,..., N} is a sequence of i.i.d. normal random variable N (0, 1). It follows from
(13) that
Sp = Sn-1 eXp(#(Sn—l) + U(Sn—l)gn)v (14)

where Sy is given and p(S,_1) := a(S,_1) — 02(S,_1)/2, with a(z), o(z) being some functions
defined on [0, 00) .
The discounted price of risky asset S,, = S,,/B,, is equal to

n

S, = Spexp (Z[,u(Sk_l) — 7+ U(Sk_l)gk]> ) (15)

k=1
We try to find a martingale measure () for this model.
It is easy to see that Ep(exp(\gx)) = exp(A\?/2), for gr ~ N(0, 1), hence

Eexp (Z[ﬁk(sk—l)gk - ﬁk(Sk—1)2/2]> =1 (16)

k=1
for all random variable [ (Sk—1) .
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Therefore, putting

n
L, =exp (Z[ﬁk(sk_l)gk — ﬁk(Sk_1)2/2]> ,n=1,....N (17)
k=1
and if () is a measure such that d@QQ = LydP then @ is also a probability measure. Furthermore,
S,
= = eXp(/‘(Sn—l) —Tn+ U(Sn—l)gn)' (18)
Sn—l
Denoting by  EY, E  expectation  operations  corresponding to P, Q,

E,(.) = E[(.)|F?] and choosing
(a(Sn-1) —n)

ﬁn - - U(Sn—l)

(19)
then it is easy to see that
En—l[gn/SnN—l] = EO[Lngn/Srj—ﬂFf]/Ln—l =1

which implies that {S,} is a martingale under Q.
Furthermore, under ), S, can be represented in the form

Sn = Sn—1exp((1*(Sn-1) + U(Sn—l)g;kz)' (20)

Where p1*(Sy—1) = rn — 02(Sn-1)/2, g = —B, + gn is Gaussian N (0, 1). It is not easy to show the
structure of II(.S, P) for this model.

We can choose a such probability measure £ or the weight function Ly to find a Q- optimal
portfolio.
Remark 4.3. The model (12), (13) is a type of discretization of the following diffusion model:

Let us consider a financial market with continuous time consisting of two assets:

+Free risk asset:
t
B; = exp (/ r(u)du) . (21)
0

+Risky asset: ds; = Sia(Sydt + o(Sy)dWt], Sy is given, where
a(.), o(.): (0,00) — R such that za(x), xo(x) are Lipschitz. It is obvious that

S, = exp {/Ot[a(Su) — 0%(S,)/2)du + /Ot U(Su)qu} 0<t<T (22)
Putting
u(S) = a(S) - *(9)/2, (23)
and dividing [0,7] into N intervals by the equidistant dividing points 0, A, 2A,..., NA with
N =T /A sufficiently great, it follows from (21), (22) that
nA nA
Sna = Sn-1)a €xp / w(Sy)du + / o (Sy)dW,
(n-1)A (n—1)A

= Sin—)a exp{(Sm-1)a) A + (S-1)a) [Wna — Wi—pal}
=~ S(n1ya exp{a(Sin-1)a) A + 0(Sn_1)a) A%, }
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with g, = [Wpa — W(n_l)A]/Al/z, n =1,..., N, being a sequence of the i.i.d. normal random
variables of the law N (0, 1), so we obtain the model :
S:LA = SEkn—l)A eXp{lu(Szkn—l)A)A + U(S?n—l)A)Al/zgn}' (24)
Similarly we have
N szn_l)A exp(r(n-1)al). (25)
According to (21), the discounted price of the stock S is
_ S t t
Sy =2 = Syexp {/ [1(Sy) — ry]dy —I—/ U(Su)qu} . (26)
By 0 0

By Theorem Girsanov, the unique probability measure Q under which {S;, F°, Q} is a martingale
is defined by
T 1 (T
(dQ/dP)|F§ = exp ( / BudWy, — / ﬁgdu> = Lp(w), (27)
0 0
where
B, = _((Q(SS) —Ts)
* a(Ss)
and (dQ/dP)|F3 denotes the Radon-Nikodym derivative of @ w.rt. P limited on F3. Furthermore,
under Q)

t
W= Wi+ / Budu
0

is a Wiener process. It is obvious that LT can be approximated by

N
Ly :=exp (Z BeAY?gy — Aﬁg/2> (28)
k=1
where
[a(Sn-1)a) = Tnal
ﬁn = -
o(Smn-1)a)

Therefore the weight function (25) is approximate to Radon-Nikodym derivative of the risk unique
neutral martingale measure () w.r.t. P and () is used to price derivatives of the market.

(29)

Remark 4.4. In the market model Black- Scholes we have Ly = L. We want to show now that for
the weight function (28)

Eg(H — Hy— Gn(y*))> = 0as N — oo or A — 0.
where v* is (Q-optimal trading strategy.

Proposition. Suppose that H = H(Sr) is a integrable square discounted contingent claim. Then
Eg(H — Hy— Gn(y*)> = 0as N — o0 or A — 0, (30)

provided a, T and o are constant ( in this case the model (21), (22) is the model Black-Scholes ).
Proof. 1t is well known (see[4], [5]) that for the model of complete market (21), (22) there exists a trad-

ing strategy ¢ = (o1 = o(t,S(t)), O = t = T), hedging
H, where ¢ : [0,T] x (0,00) — R is continuously derivable in ¢ and S, such that

T
H(ST) =Hy+ / thdS(t) a.s.
0
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On the other hand we have

N 2
o )
k=1

N 2
< EqQy (H — Hy - Zw(k_nAASnA)
k=1

T N 2
= Eq (/0 PrdS(t) — Z‘p(n—l)AAS(n—l)A> Ly/Lr
k=1
2

T N
= Eq (/0 prdS(t) — Z¢(k—1)AAS(n_1)A> —0as A —0.
k=1

(since Ly = Lt and by the definition of the stochastic integral Ito as a and ¢ are constant ) .

Appendix A
Let Y, X1, Xo, ..., X4 be integrable square random variables defined on the same probability
space {Q), F, P} such that EX; =--- = EX;=FEY =0.
We try to find a coefficient vector b = (by, ..., bs)" so that
E(Y —bX; — —bgXg)?=E(Y —b'X)? = min(Y — o’ X)2 (A1)

a€R?
Let us denote EX = (EXy, ..., EXg)T, Var(X) = [Cov(X;, X;), i,j=1,2,...,d = EXXT.

Proposition. nghieng The vector b minimizing £(Y — a’ X)? is a solution of the following equation

system :
Var(X)b= E(XY). (A2)
Putting U =Y —bTX =Y — Y, with Y = b7 X, then
E({U? =EY? - b'E(XY)>0. (A3)
E(UX;)=0 foralli=1,...,d. (A4)
EY?=EU? + EY? (A5)
N o\ 1/2
_ EBYY = [EY? (A6)
P= (EY2EY?)1/2 ~ \ EY?

(p is called multiple correlation coefficient of Y relative to X).
Proof. Suppose at first that Var(X) is a positively definite matrix. For each a € R We have

Fla)=E(Y —a’X)?=EY? - 2"E(XY)+a"EXX"a (A7)
VF(a) = —2E(XY) + 2Var(X)a.
OF (a)

=1,2,...,d| = 2Var(X).
aalaa‘77 Z?] Y Y Y :| ar( )

It is obvious that the vector b minimizing F'(a) is the unique solution of the following equation:

VF(a) =0 or (A2)
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and in this case (A2) has the unique solution :
b= [Var(X)|'E(XY).
We assume now that 1 < Rank(Var(X)) =r < d.

We denote by e1, e, ..., eq the ortho-normal eigenvectors w.r.t. the eigenvalues A1, Ag, ..., \g
of Var(X) , where Ay > Ao > --- > A\, > 0= Apy1 =--- = A\g and P is a orthogonal matrix with
the columns being the eigenvectors e, eo, . . ., ¢4, then we obtain :

Var(X) = PAPT | with A = Diag(\1, Ao, ..., Ag).

Putting
Z=P'X =[IXelX,. . . eI X|T,
Z is the principle component vector of X, we have

Var(Z) = PTVar(X)P = A = Diag(Ay, A, ..., A, 0, ..., 0).

Therefore
EZ} = =FEZ;=0,80Z41=-=25=0 P-as.
Then
F(a)=E(Y —a"X)?=E(Y — (' P)Z)?
=E(Y —alZ — - —a}Z4)*
=EBY —aiZy — - —a’Z,)>
where
' =(a},...,a}) =ad' P, Var(Z,...,%.) = Diag(\, \a,..., A\r) > 0.
According to the above result (b3, ..., b*)T minimizing E(Y —ajZ; —--- —a}Z,)? is the solution of
AMo... 0 b} EZY
0 ... X\ b EX,Y
or
A1 0 0 0 by EZ,Y EZY
0 A 0 0 by | | EZY | | EZY (A9)
0 0 0 0 1 0 | EZ 1Y
0 0 0 0 b 0 EZ;Y
with by, 1, ..., b} arbitrary .

Let b = (b, ...,bq)T be the solution of b7 P = b*”, hence b = Pb* with b* being a solution of (A9).
Then it is follows from (A9) that

Var(Z)PTb = E(ZY) = PTE(XY)
or
PTVar(X)PPTh = PTE(XY) ( since Var(Z) = P*Var(X)P)

or
Var(X)b = E(XY)
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which is (A2). Thus we have proved that (A2) has always a solution ,which solves the problem (Al).
By (A7), we have
F(b) =min E(Y — ol X)?

= BY? - 20T E(XY) + bT Var(X)b
= EY? - 2TE(XY) + b1 E(XY)
= EY? - b'E(XY) > 0.
On the other hand
EUX; = E(X;Y) - E(X;p'X) =0, (A10)
since b is a solution of (A2) and (A10) is the ith equation of the system (A2).
It follows from (A10) that

E({UY)=0and EY?=E(U+Y)?=EU?+ EY?+2E(UY) = EU? + EY?.

Remark. We can use Hilbert space method to prove the above proposition. In fact, let H be the set of
all random variables £’s such that B¢ = 0, E£? < oo, then H becomes a Hilbert space with the scalar
product (&, ¢) = F&C, and with the norm ||€|| = (E€2)Y/2 . Suppose that X1, Xs,..., Xy, Y € H, L
is the linear manifold generated by X1, Xo,..., Xy . We want to find a Y € H so that ||V — Y|
minimizes, that means ¥ = b7 X solves the problem (A1). It is obvious that ¥ is defined by

Y =Proj;Y =bTXand U =Y - Y € L*.

Therefore (Y —b" X, X;) =0or E(W'X X;) = BE(X;Y) foralli =1,...,dor ' E(XTX) = E(XY)
which is the equation (A2). The rest of the above proposition is proved similarly.
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