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The parameter-dependent cyclic inequality
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Abstract. In this paper we will construct a parameter-dependent cyclic inequality that can
be used to prove a lot of hard and interesting inequalities.

1. Introduction

The cyclic inequality is a type of inequality that may be right in just some particular cases but

not in genenal. In this paper, we propose one type of parameter-dependent cyclic inequality from a

special inequality. Thanks to this inequality, we can obtain many inequalities by choosing α and n.

Note that it can be proved by some ways in particular case. However in order to prove it in general

case, we have to use the method that is mentioned in the paper.

2. The general case

Denote R+ = {x ∈ Rx > 0}.

Lemma 1.1. Assume that xi ∈ R, (i = 1, n) we have

∑

1≤i<j≤n

xixj ≤
n − 1
2n

( n∑

i=1

xi

)2
.

Proof. We have
∑

1≤i<j≤n

xixj ≤
∑

1≤i<j≤n

x2
i + x2

j

2
.

Since 1 + 2 + · · ·+ (n− 1) =
n(n − 1)

2
, hence the number of terms of

∑
1≤i<j≤n xixj is

n(n − 1)
2

.

It follows

2
∑

1≤i<j≤n

xixj ≤
∑

1≤i<j≤n

(x2
i + x2

j ) = (n − 1)(
n∑

i=1

x2
i ).
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Adding both sides of the above inequality by 2(n− 1)
∑

1≤i<j≤n xixj , we obtain the inequality as

was to be proved.

The proof of Lemma 1.1 is complete.

Theorem 1.1. Assume that xi (i = 1, n), n > 3 are positive number. Then there holds the
following inequality

x1

x1 + α(x2 + · · ·+ cnxk+1)
+

x2

x2 + α(x3 + · · ·+ cnxk+2)
+ · · ·+

+ · · ·+ xn

xn + α(x1 + · · ·+ cnxk)
>

2n

2 + α(n − 1)
(1.1)

Where cn =
(n mod 2 + 1)

2
, k = [

n

2
] and α is an arbitrary real number satisfies α > 2.

Proof. First, for the sake convinience, we set

P =
x1

x1 + α(x2 + · · ·+ cnxk+1)
+

x2

x2 + α(x3 + · · ·+ cnxk+2)
+ · · ·+

+ · · ·+ xn

xn + α(x1 + · · ·+ cnxk)
>

2n

2 + α(n − 1)
.

Now let’s consider the case n = 2k + 1 it gives

P =
x2

1

x2
1 + α(x1x2 + · · ·+ x1xk+1)

+
x2

2

x2
2 + α(x2x3 + · · ·+ x2xk+2)

+

+ · · ·+ x2
n

x2
n + α(xnx1 + · · ·+ xnxk)

.

Using the fact that
n∑

i=1

x2
i

ai
>

(
∑n

i=1 xi)2∑n
i=1 ai

(1.2)

with ai ∈ R+ (i = 1, n) , it implies

P >
(
∑n

i=1 xi)2∑n
i=1 x2

i + α
∑

1≤i<j≤n xixj
.

Since α > 2,it can be rewritten as α = 2 + β with β > 0. This leads to

P >
(
∑n

i=1 xi)2

(
∑n

i=1 xi)2 + β
∑

1≤i<j≤n xixj
.

Applying Lemma (1.1) we obtain

P >
(
∑n

i=1 xi)2

(
∑n

i=1 xi)2 +
β(n − 1)

2n
(
∑n

i=1 xi)2

or P >
2n

2 + α(n − 1)
.
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Next, for n = 2k, we get

P =
x2

1

x2
1 + α(x1x2 + · · ·+ x1xk +

1
2
x1xk+1)

+
x2

2

x2
2 + α(x2x3 + · · ·+ x2xk+1 +

1
2
x2xk+2)

+

+ · · ·+ x2
n

x2
n + α(xnx1 + · · ·+ xnxk−1 +

1
2
xnxk)

.

Applying the inequality (1.2), we get

P >
(
∑n

i=1 xi)2∑
i=1 x2

i + α
∑

1≤i<j≤n xixj
=

(
∑n

i=1 xi)2

(
∑

i=1 xi)2 + β
∑

1≤i<j≤n xixj

Using the Lemma 1.1 once more, we come to the following inequality

P >
(
∑n

i=1 xi)2

(
∑n

i=1 xi)2 +
β(n − 1)

2n
(
∑n

i=1 xi)2
=

2n

2 + α(n − 1)
.

Thus Theorem 1.1 is proved.

3. The special cases

For n = 3, we obtain the following inequalities.
Example 1.1. Let a, b, c be positive numbers, α > 2, prove that

a

a + αb
+

b

b + αc
+

c

c + αa
>

3
1 + α

.

Take α = 2 we obtain
Example 1.2. Let a, b, c be positive numbers, prove that

a

a + 2b
+

b

b + 2c
+

c

c + 2a
> 1.

Take α =
1

abc
> 2 ⇔ abc ≤ 1

2
, we yield

Example 1.3. Let a, b, c be positive numbers satisfy abc ≤ 1
2
, prove that

a2c

1 + a2c
+

b2a

1 + b2a
+

c2b

1 + c2b
> 3abc

1 + abc
.

For n = 4 we yield the inequality
Example 1.4. Assume that a, b, c, d ∈ R+, α > 2, prove that

a

2a + α(2b + c)
+

b

2b + α(2c + d)
+

c

2c + α(2d + a)
+

d

2d + α(2a + b)
>

4
2 + 3α

.

Take α = 2 we obtain
Example 1.5. Assume that a, b, c, d ∈ R+, prove that

a

2a + 4b + 2c
+

b

2b + 4c + 2d
+

c

2c + 4d + 2a
+

d

2d + 4a + 2b
>

1
2
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Take a = b, b = c we get

Example 1.5. Assume that a, b ∈ R+, α > 2, prove that
a((α + 2)a + 2αb)

[2a + α(2a + b)][2a + 3αb]
+

b((α + 2)b + 2αa)
[2b + α(2b + a)][2b + 3αa]

>
2

2 + 3α
.

For n = 5 we yield the inequality

Example 1.7. Give a, b, c, d, e ∈ R+, α > 2, prove that

P =
a

a + α(b + c)
+

b

b + α(c + d)
+

c

c + α(d + e)
+

d

d + α(e + a)
+

e

e + α(a + b)
>

5
1 + 2α

.

Take c = d = e, α = 2 we yield the inequality
Example 1.8. Given a, b, c ∈ R+, prove that

a

a + 2b + 2c
+

b

b + 4c
+ 2c

( 2a + 2c + b

[c + 2(c + a)][c + 2(a + b)]

)
> 4

5
.

For n = 6 we yield

Example 1.9. Given ai ∈ R+ (i = 1, 6), α > 2, prove that
a1

a1 + α(a2 + a3 +
1
2
a4)

+
a2

a2 + α(a3 + a4 +
1
2
a5)

+
a3

a3 + α(a4 + a5 +
1
2
a6)

+

+
a4

a4 + α(a5 + a6 +
1
2
a1)

+
a5

a5 + α(a6 + a1 +
1
2
a2)

+
a6

a6 + α(a1 + a2 +
1
2
a3)

>
12

2 + 5α

Finally, take a1 = a2 = a, a3 = a4 = b, a5 = a6 = c and α = 2 we get
Example 1.10. Assume that a, b, c ∈ R+, prove that

a
( 1

3a + 3b
+

1
a + 4b + c

)
+ b

( 1
3b + 3c

+
1

b + 4c + a

)
+ c

( 1
3c + 3a

+
1

c + 4a + b

)
> 1.
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