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Some laws of large numbers in non-commutative probability
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Abstract. In this report we present some noncommutative weak and strong laws of large
numbers. Two case are considered: a von Neumann algebra with a normal faithful state on it

and the algebra of measurable operators with normal faithful trace.

1. Introduction and notations

One of the problems occurring in noncommutative probability theory concerns the extension of

various results centered around limit theorems to the noncommutative context. In this setting the role

of a random variable is played by an element of a von Neumann algebra A, and a probability measure
is replaced by a normal faithful state on it. If this state is tracial, the von Neumann algebra can be

replaced by an algebra consisting of measurable operators (possible unbounded). Many results in this

area have been obtained by Batty [1], Jajte [2], Luczak [3],....

The purpose of this report is to present some noncommutative weak and strong laws of large numbers.

Two case are considered: a von Neumann algebra with a normal faithful state on it and the algebra of

measurable operators with normal faithful trace.

Let us begin with some definitions and notations. Throughout of this paper, A denote a von Neumann
algebra with faithful normal state τ . If this state is tracial, then the measure topology in A is given

by the fundamental system of neighborhoods of zero of the form

N(ε, δ)={x ∈ A: there exists a projection p in A such that xp ∈ A ||xp|| 6 ε and τ(1 − p) ≥ δ}
It follows that Ã, being the completion of A in the above topology is a topology ∗- algebra (see [7]). Ã
is said to be the algebra of measurable operators in Segal-Nelson’s sense. The convergence in measure

topology is said to be the convergence in measure.

Now, let xn, x be elements in A (or Ã if τ is tracial). We say that the sequence (xn) converges
almost uniformly to x (xn → x a.u) if , for each ε > 0, there exists a projection p ∈ A such that

τ(1 − p) < ε; (xn − x)p ∈ A and ||(xn − x)p|| → 0 as n → ∞. The sequence (xn) is said to be
bilaterally almost uniformly convergent to x (xn → x b.a.u) if, for each ε > 0, there exists a projection
p ∈ A such that τ(1 − p) < ε; p(xn − x)p ∈ A and ||p(xn − x)p|| → 0 as n → ∞. We have that

||p(xn − x)p|| 6 ||p||.||(xn − x)p|| 6 ||(xn − x)p||.
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So, if xn → x a.u then xn → x b.a.u.

For each self-adjoint element x in A (or Ã if τ is tracial), we denote by e∆(x) the spectral projection
of x corresponding to the Borel subset ∆ of the real line R.

2. Convergence of weighted sums of independent measurable operators

Let A be a von Neumann algebra with faithful normal tracial state τ ; Ã denote the algebra of

measurable operators. Two von Neumann subalgebras W1 and W2 of A is said to be independent if

for all x ∈ W1 and y ∈ W2

τ(x.y) = τ(x).τ(y)
Two elements x, y in Ã are said to be independent if the von Neumann algebras W(x) and W(y)

generated by x and y, respectively, are independent. A sequence (xn) in Ã is said to be successively

independent if, for every n, the von Neumann algebra W ∗(xn) generated by xn is independent of the

von Neumann algebra W ∗(x1, x2, . . .xm) generated by x1, x2, . . .xm for all m < n.

An array (ank) of real numbers is said to be a Toeplits matrix if the following conditions are satisfied:
(i) lim

n→∞
ank = 0 for each k ≥ 1.

(ii)
∑n

k=1 |ank| = 1 for each n ≥ 1.
The following theorem establishes the convergence in measure of weighted sums.

Theorem 2.1. ([4]) Let (xn) be a sequence of pairwise independent measurable operators; (ank) be
a Toeplits matrix and Sn =

∑n
k=1 ankxk. If

lim
t→∞

τ(e[t,∞)(|x1|) = 0,

lim
t→∞

τ(x1e[0,t)(|x1|)) = µ

max
16k6n

ank → 0, as n → ∞

then

Sn
τ→ µ.1

(where 1 is the identity operator).

Next, we consider the almost uniformly convergence of weighted sums. Our results here extend some

results in [1] and [3].

Let (xn) ⊂ Ã, x ∈ Ã. If there exits a constant C > 0 such that for all λ > 0 and all n ∈ N

τ(e[t,∞)(|xn|)) 6 Cτ(e[t,∞)(|x|)) ∀t ≥ 0; ∀n ∈ N

then we write (xn) ≺ x.

Theorem 2.2. ([4]) Let an > 0, An =
∑n

k=1 ak ↑ ∞, (an/An) → 0 as n → ∞ and (xn) be a sequence
of successively independent measurable operators such that τ(xn) = 0; (xn) ≺ x, τ(|x|) < ∞ and

τ(N(|x|)) < ∞. Then, the condition
∫

λτ(e[λ,∞)(|x|))
∫

y≥λ

N(y)
y3

dy dλ < ∞

imply

A−1
n

n∑

k=1

akxk → 0 almost uniformly as n → ∞.
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(where N(y) = card{n : (An/an) 6 y} =
∑∞

n=1 1{y:y≥An/an}).

Corrolarry 2.3. ([3]) Let (xn) be a sequence of successively independent measurable operators such
that τ(xn) = 0; (xn) ≺ x. If

τ(|x|p) < ∞(1 6 p < 2)

then n−1/p
∑n

k=1 xk → 0 almost uniformly.

3. Laws of large numbers for adapted sequences and martingale differences

Let A be a von Neumann algebra with faithful normal tracial state τ ; Ã denote the algebra of

measurable operators. For every fixed r ≥ 1, one can define the Banach spaceLr(A, τ) of (possibly
unbounded) operators as the non-commutative analogue of the Lebesgue spaces of rth integrable

random variables. If B is a von Neumann subalgebra of A then Lr(B, τ) ⊂ Lr(A, τ) for all r ≥ 1.
Umegaki ([5]) defined the conditional expectation EB : L1(A, τ) → L1(B, τ) by the equation

τ(xy) = τ((EBx)y), x ∈ A, y ∈ B.

ThenEB is a positive linear mapping of norm one and uniquely define by the above equation. Moreover,

the restriction of EB to the Hilbert space L2(A, τ) is an orthogonal projection from L2(A, τ) onto
L2(B, τ).
Now let (An) be an increasing sequence of von Neumann subalgebras A. A sequence (Xn) of
measurable operators is said to be adapted to (An) if for all n ∈ N , Xn ∈ Ãn,. Note that if (Xn) is
an arbitrary sequence of measurable operators in Ã and An = W (x1, x2, · · · , xn) (the von Neumann
subalgebra generated by x1, x2, · · · , xn) then (xn) is the sequence adapted to the sequence (An).
A sequence (xn,An) is said to be martingale if for all n ∈ N we have (i) xn ∈ L1(An, τ) and (ii)
EAnxn+1 = xn.

If a sequence (xn,An) satisfies the condition (i) xn ∈ L1(An, τ) and (ii’) EAnxn+1 = 0, then it is
said to be a martingale difference.

The following theorem is more general and stronger than theorem 2.13 in [6].

Theorem 3.1. ([7]) Let (An) be an increasing sequence of von Neumann subalgebras of A; (Sn =∑n
i=1 xi) a sequence of measurable operators adapted to (An) and (bn) a sequence of positive num-

bers with bn ↑ ∞ asn → ∞. Then, writing xni = xie[0,bn](|xi|) (1 6 i 6 n), we have

1
bn

Sn
τ→ 0

as n → ∞ if

n∑

i=1

τ(e(bn,∞)(|xi|)) → 0 as n → ∞;

1
bn

n∑

i=1

EAi−1xni

τ→ 0 as n → ∞

1
b2
n

n∑

i=1

{
τ |xni |2 − τ

∣∣EAi−1xni

∣∣2
}
→ 0 khi n → ∞.
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With some addition we get the following corollaries which can be considered as non-commutative

versions of the related results, given in [6].

Corollary 3.2. ([8]) If (xn,An) is a martingale difference such that (xn) ≺ x and τ(|x|) < ∞, then

1
n

n∑

i=1

xi
τ→ 0.

as n → ∞.

Corollary 3.3. ([8]) Let (An) be an increasing sequence of von Neumann subalgebras of A, (Sn =∑n
i=1 xi) a sequence of measurable operators adapted to (An) such that (xn) ≺ x and τ(|x|) < ∞.

Then

1
n

n∑

i=1

(xi − EAi−1xi)
τ→ 0.

as n → ∞
Next, the following assumptions are made: (xn) is a martingale difference; (an), (An) are two
sequences of real numbers such that an > 0, An > 0, An ↑ ∞ and an/An → 0 as n → ∞. Let
Sn =

∑n
k=1 akxk, n = 1, 2, . . . , denote the partial weighted sums.

Theorem 3.4. ([9]) Let (xn) be a martingale difference . If
∑∞

n=1(
an
An

)2τ(|xn|2) < +∞, then

Sn/An → 0 b.a.u.

Theorem 3.5. ([9]) Let (xn) be a martingale difference satisfying the following conditions:

F (λ) = sup
n

τ(e[λ,∞)(|xn|)) → 0 as λ → ∞,

∫ ∞

0
λ2

∫

y≥λ
y−3N(y)dy |dF (λ)| < ∞

∫ ∞

0
λ

∫

0<y<λ
y−2N(y)dy |dF (λ)| < ∞,

where N(y) = card{n : (An/an) 6 y} =
∑∞

n=1 1{y:y≥An/an}.

Then Sn/An → 0 b.a.u.

Corollary 3.6. ([9]) If 1 < r < 2 and (xn) is a martingale difference such that (xn) < x with

τ(xr) < ∞, then n−1/r
∑n

k=1 xk → 0 b.a.u

Corollary 3.7 ([9]) If 1 < r < 2, an > 0, (an) ∈ l∞ and An = (
∑n

k=1 an
k )1/r, An ↑ ∞ as n → ∞.

If (xn) is an L1-m.d. such that (xn) < x with τ(xr log+ x) < ∞, then SN/An → 0 b.a.u.
If r = 1, we get the Strong Law of Large Numbers for martingale differences im von Neumannn
algebras.

We end this section with a result on the convergence in L1 and in measure of weighted sums.

Theorem 3.8. ([9]) Suppose that (ank) is a Toeplitz of real numbers, (xn) is an L1-m.d. such that

(xn) < x. If

i) max16l6n ank → 0 as n → ∞,

ii) lim
T→∞

τ(xr(t,∞)(x)) = 0,

then Sn =
∑n

k=1 ankxk → 0 in L1(A, τ) and in measure.
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4. Laws of large numbers of Hsu-Robbins type

In the classical probability, the Hsu - Robbins law of large numbers is studied by many authors.

But to the best of our knowledge, in non-commutative probability, this law is investigated only by Jajte

in a special case (see [10]). The purpose of this section is to extend the result of Jajte to the general

case. Moreover, some results for 2-dimensional arrays are considered.

Theorem 4.1. ([11]) Let (xn) be a successively independent sequence of self-adjoint elements of Ã
with τ(xn) = 0 ∀n ∈ N. Suppose that (tk) is a sequence of positive real numbers and (nk) is a
strictly increasing sequence of positive integers. If

i)
∞∑

k=1

tkn−4
k

nk∑

i=1

τ(|y1|4) < ∞,

ii)
∞∑

k=1

tkn−4
k

nk∑

i=2

τ(|x̄i − τ(x̄i)|2)
∑

j=1

i−1τ(|x̄j − τ(x̄j)|2) < ∞,

iii)
∞∑

k=1

tkn−4
k

(
nk∑

i=1

τ(x̄i)

)4

< ∞,

iv)
∞∑

k=1

tk

nk∑

i=1

τ(enk ,∞)(|xi|)) < ∞,

where

x̄i = xie[0,nk)(|xi|), 1 6 i 6 nk , yi = x̄i − τ(x̄i).

Then

∞∑

k=1

tkτ

(
e[ε,∞)

(
| 1
nk

∑
i = 1nk xi|

))

for any given ε > 0.

Corollary 4.2. ([10]) Let (xn) be successively independent sequence of self-adjoint identically dis-
tributed elements of Ã with τ(x1) = 0 and τ(|x1|t) < ∞ for some t : 1 < t < 2. Then

∞∑

k=1

kt−2τ

(
e[ε,∞)

(∣∣1
k

k∑

i=1

xi

∣∣)
)

< ∞

for any given ε > 0.

A family (xλ)λ∈Λ is said to be strongly independent if the von Neumann algebra W ∗(xλ, λ ∈ Λ1)
generated by the family (xλ)λ∈Λ2, for any two disjoint subsets Λ1 and Λ2 of Λ.

Theorem 4.3. ([11]) Let (xm,n, (m, n) ∈ N2) be a strongly independent double sequence of self-
adjoint elements of Ã with τ(xm,n) = 0, ∀(m, n) ∈ N2. Suppose that (tk,l, (k, l) ∈ N2) is a double
sequence of positive real numbers and let (mk)(nl) be strictly increasing sequences of positive integers.
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If

i)
∞∑

k=1

∞∑

l=1

tk,l(mknl)−4




mk∑

i=1

nk∑

j=1

τ(|yi,j |4)


 < ∞,

ii)
∞∑

k=1

∞∑

l=1

tk,l(mknl)−4
[ mk∑

i=1




nk∑

j=2

τ(|x̄i,j − τ(x̄i,j |2)
j−1∑

v=1

τ(|x̄i,v − τ(x̄i,v)|2



+
mk∑

i=2




nk∑

j=1

τ(|x̄i,j − τ(x̄i,j |2



i−1∑

u=1

(
nk∑

v=1

τ(|x̄u,v − τ(x̄u,v |2
)]

iii)
∞∑

k=1

∞∑

l=1

tk,l(mknl)−4




mk∑

i=1

nk∑

j=1

τ(|xi,j |)




4

< ∞,

iv)
∞∑

k=1

∞∑

l=1

tk,l

mk∑

i=1

nl∑

j=1

τ(e[mknl,∞)(|xi,j|)) < ∞,

where

x̄i,j = xi,je[0,mknl), yi,j = x̄i,j − τ(x̄i,j).

Then, for any given ε > 0,

∞∑

k=1

∞∑

l=1

tk,lτ


e[ε,∞)

(∣∣ 1
mknl

mk∑

i=1

nk∑

j=1

xi,j

∣∣)

 < ∞.

Corollary 4.4. Let (xm,n, (m, n) ∈ N2) be strongly independent double sequence of self-adjoint
identically distributed elements of Ã with τ(x1,1) = 0 and τ(|x1,1|2 log+ |x1,1|) < ∞. Then

∞∑

m=1

∞∑

n=1

τ

(
e[ε,∞)

(∣∣ 1
mn

m∑

i=1

∑
j = 1nxi,j

∣∣)
)

< ∞.

5. Laws of large numbers for multidimensional arrays

Let Nd = {n = (n1, n2, · · · , nd) , ni ∈ N , i = 1, d} (where d ≥ 1 is fixed integer). Nd is

partially ordered by agreeing that

k = (k1, k2, · · · , kd) 6 m = (m1, m2, · · · , md) if ki 6 mi, i = 1, d.

For n = (n1, n2, · · · , nd), we put

|n| = n1.n2. · · · .nd = card{k ∈ Nd ; , k 6 n}

An array (x(n) n ∈ Nd) ⊂ Ã is said to be the array of pairwise independent elements if for all

m , n ∈ Nd ; m 6= n ; X(m) and x(n) are independent.
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Theorem 5.1. ([12]) Let (x(n) n ∈ Nd) ⊂ Ã be an array of pairwise independent measurable

operators, 0 < ti < ∞ (i = 1, d); n(t) = n
1/t1
1 .n

1/t2
2 · · ·n1/td

d . Suppose that

lim
|n̄|→∞

∑

k6n

τ(e[n(t), ∞)(|x(k)|)) = 0 (1)

lim
|n|→∞

n(t)−1
∑

k6n

τ(|x(k)|e[0, n(t))(|x(k)|)) = 0 (2)

lim
|n|→∞

n(t)−2
∑

k6n

{τ(x2(k)e[0, n(t))(|x(k)|))− |τ(x(k)e[0, n(t))(|x(k)|))|2} = 0 (3)

Then

n(t)−1
∑

k6n

x(k) → 0 (4)

in measure as |n| → ∞.
Let us note here that the theorem 5.1 gives theorem 3.2 of [3] as corollary for d = 1, t1 = 1.

In this case, it also is the non-commutative type of the sufficient condition of a well- known theorem

in classical probability (see theorem A of [13], p.290), but the proof here has been done in a quite

different way.

The following corollaries are the non-commutative types of some theorems of [14] and [15].

Corollary 5.2. Let (x(n) n ∈ Nd) be an array of self- adjoint pairwise independent identically
symmetrically distributed elements of Ã. Suppose that

lim
|n|→∞

|n|.τ(e
[n

1/t1
1 ···n1/td

d , ∞)
(|x(1)|)) = 0 (5)

lim
|n|→∞

n
1−2/t1
1 · · ·n1−2/td

d τ(x2(1)e
[0, n

1/t1
1 ···n1/td

d ]
(|x(1)|)) = 0 (6)

Then

n
−1/t1
1 · · ·n−1/nd

d

∑

k6n

x(k) → 0

in measure as |n| → ∞
(where 0 < ti < ∞ (i = 1, d) 1̄ = (1, 1, · · · , 1) ∈ Nd).

Corollary 5.3. (Weak law of large numbers) Let (x(n) n ∈ Nd) be an array of self-adjoint pairwise
independent and identically distributed elements of A. If τ(|x(1)|) < ∞ then

|n|−1
∑

k6n

x(k) → τ(x(1))

in measure as |n| → ∞.
The following theorem is a strong law of large numbers for d-dimensional arrays of self-adjoint

pairwise independent identically distributed elements in Ã.

Theorem 5.4. ([16]) Let (x(n̄), n̄ ∈ Nd) be an array of self-adjoint pairwise independent identically
distributed elements in Ã. If

τ
(∣∣x(1̄)

∣∣(log+
∣∣x(1̄)

∣∣)d−1
)

< ∞
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then
1
|n̄|
∑

k̄6n̄

x(k̄) −→ τ(x(1̄)) b.a.u as |n̄| → ∞.

6. The strong law of large numbers for two-dimensional arrays of orthogonal operators

Let A denote a von Neumann algebra with faithful normal state Φ, and N is set of all natural

numbers.

For each self-adjoint operators x in A, we denote by e∆(x) the spectral projection of x corre-

sponding to the Borel subset ∆ of the real line R.
Let x be a operator in A and x∗ the adjoint of x. Then x∗.x is a positive operator in A and there

exists the positive operator |x| in A such that

|x|.|x| = x∗x.

|x| called the positive square root of x∗x and is denoted by (x∗x)1/2.

Two operators x and y in A are said to be orthogonal if Φ(x∗.y = 0. An array (xmn, (m, n) ∈ N2) is
said to be the array of pairwise orthogonal operators in A if for all (m, n) ∈ N2, (m, n) 6= (p, q), xmn

and xpq are orthogonal.

Now let (xmn(m, n) ∈ N2) be an array of operators in A. We say that xmn is convergent almost

uniformly (a.u) to x ∈ A as (m.n) → ∞ if for each ε > 0 there exists a projection p ∈ A such that

Φ(p) > 1− ε and ‖(xmn − x)p‖ → 0 as max(m, n) → ∞.

An array (xmn, (m, n) ∈ N2) ⊂ A is said to be convergent almost completely (a.c) to an operator

x ∈ A as (m, n) → ∞, if for each ε > 0 there exists an array (qmn, (m, n) ∈ N2) of projections in A
such that

∞∑

m=1

∞∑

n=1

Φ(q⊥mn) < ∞ and ‖(xmn − x)qmn‖ < ε

for all (m, n) ∈ N2 (where q⊥mn = E − qmn, E is the identity operators).

By the same method as for one-dimensional sequences we can prove that if the state Φ is tracial and

xmn → x (a.c), then xmn → x (a.u) as (m, n) → ∞.
The aim of this section is to give the trong law of large numbers for two-dimensional arrays of

orthogonal operators in a von Neumann algebra with faithful normal state. Our results extend some

results of [17], [2] to two-dimensional arrays and can be viewed as non-commutative extensions of

some results of [18].

Theorem 6.1. ([8]) Let A be a von Neumann algebra with a faithful normal state Φ and let (xmn)
be a two-dimensional array of pairwise orthogonal operators in A. If

∞∑

m=1

∞∑

n=1

(
lg m lgn

mn

)2

Φ(|xmn|2) < ∞

then

Smn =
1

mn

m∑

j=1

n∑

i=1

xij

converge almost uniformly to zero as (m.n) → ∞.
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Under some conditions stronger then those of the above theorem, we can obtain the almost completely

convergence of the averages. Namely, it is easy to prove the following theorem.

Theorem 6.2. ([8]) Let (xmn) be an array of pairwise orthogonal operators in A. If there exists an
array (amn) of positive numbers such that amn ↓ 0 as (m, n) → ∞) and

∞∑

i=1

∞∑

j=1

aijΦ(|xij |2) < ∞

∞∑

i=1

∞∑

j=1

1
(ij)2aij

< ∞

Then
1

mn

∞∑

i=1

∞∑

j=1

xij → 0 (a.c) as (m.n) → ∞.
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