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Abstract. In this paper we consider a combinatorial optimization problem that is similar to the 
bottleneck traveling salesman problem. We show that an optimal tour for this problem is 
pyramidal tour (1, 3, 5,…, n,…, 6, 4, 2) or consists of some pyramidal subtours. The above 
7methods can be extended to complete bipartite graphs.  

1. Problem statement 

It is well-known that the traveling salesman problem (TSP) is strongly NP-hard (cf. [1], p. 353). 
But for some special cases of the TSP can be solvable in polynomial time. This is the case where the 
distance matrix in the TSP fulfills certain additional conditions (e.g. the Monge property, Kalmanson 
matrices, the Demidenko conditions or the Supnick conditions), cf. [2-4].  

In the sequel we will introduce another special case of the TSP which can easily be solvable and 
show that the optimal tour for this problem is pyramidal tour or consists of some (at most three) 
pyramidal subtours.  

Consider a complete graph G = (A, E) with vertex set A = {a1, a2, … , an} and edge set E = 
A×A. Each vertex ai ∈ A has a real number ti (i = 1, … , n), called the altitude of vertex ai. We specify 
vertices ab ∈ A (the source) and ae ∈ A (the sink) such that b, e ∈ {1, 2, … , n} and tb ≤ te. Consider 
the following problem, called Problem A for short: 

Problem A. Find a Hamiltonian path in the graph from ab to ae (which visits every vertex 
exactly once) so that to minimize the highest difference between altitudes of any two successive 
vertices in the path. 

In other word, among permutations π = {i1, i2, … , in} of the numbers 1, 2, … , n with i1 = b, 
in = e find a permutation so that to minimize the function 
 f(π) ≡ 

111
max

+
−

−≤≤ kk iink
tt  → min. 

It is easy to see that such a permutation corresponds to a Hamiltonian path in the graph from ab 
to ae and that the total number of permutations is equal to (n-2)! Let us denote by P the set of all these 
permutations. Each permutation π ∈ P is called a tour from ab to ae and permutation π* = argmin{f(π) 
: π ∈ P} optimal tour from ab to ae.  

Also consider a similar problem: 
Problem B. Find a Hamiltonian cycle in the given graph so that to mini-mize the biggest 

difference between altitudes of any two successive vertices in the cycle. Each of such cycles is also 
______ 
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referred to as an optimal tour. It is obvious that the number of Hamiltonian cycles in the graph is equal 
to n! 

As before, this problem is also formulated as follows: Find a cyclic permutation τ = {i1, i2,…, 
in} of the numbers 1, 2, … , n so that  
 g(τ) ≡ 

11
max

+
−

≤≤ kk iink
tt  → min  

with convention that in+1 = i1. The solution of the above stated problems does not change if we replace 
ti by ti' = ti + t with t being an arbitrary real number. So by taking t > 0 sufficiently large we can 
assume that ti > 0 for all i =1, 2,…, n. Furthermore, without loss of generality we can assume (by 
enumerating the vertices of the graph if needed) 
 0 < t1 ≤ t2 … ≤ tb ≤ … ≤ te ≤ … ≤ tn.  (1) 

The vertices that have the same value ti can be arranged in an arbitrary order. Let in the 
sequence (1) there be q different values (q ≤ n). We write these values as h1 < h2 < … < hq. We divide the 
vertices of the graph into q classes, denoted by T1, T2,…, Tq such that vertex ai belongs to class Tk if and 
only if ti = hk (i = 1, 2,…, n; k = 1, 2,…, q). The vertices of class T1 are first numbered then vertices of T2 
and finally vertices of Tq. The vertices of the same class are numbered in an arbitrary order. 

2. Basic properties of optimal tours 

We now consider the problem of finding an optimal tour from ab to ae in G. We temporarily 
assume that all ti's are different, that is we enumerated the vertices of the graph so that (1 ≤ b < e ≤ n) 
 0 < t1 < t2 < t3 < … < tn-1 < tn.  (2) 

In the sequel we shall remove this assumption. Some useful properties of optimal tours are 
given in the below stated propositions. Their proofs make use of the tour improvement technique as 
used in [1] for proving the existence of pyramidal tours. 

Proposition 1. Let π = (i1 = b, i2, i3, … , in-1, in = e) be an arbitrary optimal tour from b to e. If  
b > 1 and 1 = ik with 1 < k < n then we have 

a) From b to 1 tour π passes through vertices with decreasing indexes: 
 b = i1 > i2 > … > ik-1 > ik = 1. 

b) Tour π cannot pass through three successive vertices i - 1, i, i + 1 or in inverse direction i + 1, 
i, i - 1 with 1 ≤ i - 1 and i + 1 ≤ b. 

Proof. a) Conversely, suppose that from b to 1 tour π passes through a vertex with index greater than 
b. Then on the path from b to 1 there is two successive vertices r and s such that s < b < r. Also on the path 
from 1 to n there exists two successive vertices u and v such that u < b < v, i.e. tour π is of the form: 
 π = (b, … , r, s, … , 1, … , u, v, … , n, … , e) with s < b < r and u < b < v. 

We construct a new tour π' as indicated in Fig. 1: 
 π' = (b, … , s, … , 1, … , u, v, … ,r, … , n, … , e) if v < r or 
 π' = (b, … , s, … , 1, … , u, r, … , v, … , n, … , e) if r < v. 

 
             1             u              s            b              v            r               n            e   
 
 
               1              u             s             b             v             r              n            e  

Fig. 1. Optimal tour π and modified tour π'. 
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It is easily verified that f(π') < f(π), which contradicts the optimality of π. 
b) The proof is in similar way.                                                                    � 
Proposition 2. Let π = (i1 = b, i2, i3,…, in-1, in = e) be an arbitrary optimal tour from b to e. If  

e < n and n = ir with 1 < r < n then we have 
a) From n to e tour π passes through vertices with decreasing indexes: 

 n = ir > ir+1 > … > in-1 > in = e. 
b) Tour π cannot pass through three successive vertices i - 1, i, i + 1 or in inverse direction i + 1, 

i, i - 1 with e ≤ i - 1 and i + 1 ≤ n. 
Proof. The proof is similar to that of Proposition 1.                                   � 
Proposition 3. For n > 3 an optimal tour of Problem B cannot pass through three successive 

vertices i - 1, i, i + 1 or in inverse direction i + 1, i, i - 1 with 1 ≤ i - 1 < i + 1 ≤ n. 
Proof. Let π = (i1, i2, i3,…, in-1, in) be an arbitrary optimal tour of Problem B. On the contrary, 

suppose that π passes through three successive vertices, e.g. i - 1, i, i + 1. We shall show a 
contradiction by constructing a new tour π' such that f(π') < f(π), which contradicts the optimality of π. 

Indeed, let us assume that three successive vertices i - 1, i, i + 1 lie on the path from 1 to n. 
Since i + 1 ≤ n, on the path from 1 to n there is a vertex r with i + 1 ≤ r ≤ n, whose successor s satisfies 
1 ≤ s ≤ i – 1. In addition, we have either i + 1 < r or s < i - 1, that is  
 π = (1,… , i - 1, i, i + 1, … , n, … , r, s, …). 

We construct a new tour π' by going directly from i - 1 to i + 1 and inserting i between the 
vertices r and s (see Fig. 2): 
 π' = (1, … , i - 1, i + 1, …, n, … , r, i, s, …). 

 
                          1             s             i-1           i            i+1           r              n 
 
   
                           1              s            i-1            i            i+1           r              n 
 

Fig. 2. Optimal tour π and modified tour π'. 

Let us denote U = {(i-1, i), (i, i+1), (r, s)}. Then 
 f(π) = max {u, 

Ulk ∉),(
max |tk – tl|} and f(π') = max {v, 

Ulk ∉),(
max |tk – tl|},  (3) 

where 
 u = 

Ulk ∈),(
max |tk – tl| = max {ti – ti-1, ti+1 – ti, tr – ts} = tr – ts, 

 v = max {ti+1 – ti, tr – ti, ti – ts} < tr – ts = u. 
Hence, from (3) it follows that f(π') < f(π), which is impossible.                        � 

3. Pyramidal tour and piecewise pyramidal tour 

From the above results we can find optimal tours for Problem A and Problem B under condition 
(1) as follows.  

Problem A. The optimal tour π of Problem A consists of three parts, one or two parts of them 
may be empty depending on the relative location between b, e and n. Namely, π = (π1, π2, π3) with 
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π1 - optimal subtour from b to b -1 passing through all vertices i: 1 ≤ i ≤ b. 
π2 - optimal subtour from b+1 to e - 1 passing through all vertices i with b+ 1 ≤ i ≤ e - 1. 
π3 - optimal subtour from e+1 to e passing through all vertices i: e ≤ i ≤ n. 
These subtours are of the form: 
• If b = 1 then π1 = ∅. If b > 1 then 

 π1 = (b, b-2, … , 4, 2, 1, 3, … , b-3, b-1) when b is even, 
that is π1 passes first through even vertices with indices decreasing from b to 2, then through odd 
vertices with indices increasing from 1 to b-1, and  
 π1 = (b, b-2, …, 3, 1, 2, 4,…, b-3, b-1) when b is odd, 
i.e. π1 passes first through odd vertices with indices decreasing from b to 1, then through even vertices 
with indices increasing from 2 to b-1. 

• If b+1 = e then π2 = ∅. If b+1 < e then 
 π2 = (b+1, b+2, … , e-2, e-1), 
passing through vertices with indices increasing from b+1 to e-1. 

• If e = n then π3 = ∅. If e < n then 
π3 = (e+1, e+3,…, n-3, n-1, n, n-2,…, e+2, e) when the sum of e + n is even, 
π3 = (e+1, e+3,…, n-2, n, n-1, n-3,…, e+2, e) when the sum of e and n is odd, 
i.e. π3 passes first through even (odd resp.) vertices with indices increasing from e+1 to n, then 

through odd (even resp.) vertices with indices decreasing from n to e. 
Example 1. Under condition (1), when n = 10, b = 4 and e = 7 an optimal tour from 4 to 7 is  

 π = (4,  2,  1,  3,  5,  6,  8,  10,  9,  7). 
                                                       
 ←          π1        →              π2           ←        π3         →   

Problem B. By Proposition 3 an optimal tour of Problem B cannot pass through three 
successive vertices i - 1, i, i + 1 or in inverse direction i + 1, i, i - 1 with 1 ≤ i - 1 < i + 1 ≤ n. On the 
other hand, a tour which has two successive vertices i and j with |i - j | ≥ 3 cannot be optimal. 
Consequently an optimal tour must be of form    … n …   , which is pyramidal. 

The optimal value is fopt = t2 - t1 if n = 2, and fopt = 
21

max
−≤≤ ni

{ti+2 - ti} if n ≥ 3.  

Example 2. Here are two optimal tours for Problem B, under condition (1), with even n and odd n: 
With n = 9  :                                                  
With n = 10:                                                   
Remark  As was described, if there are many equal values ti then we divide the vertices of 

the graph into classes so that vertices having the same altitude belong to the same class. Each class is 
considered as a new vertex, called aggregate vertex, whose altitude is the altitude of its vertices. Each 
pair of aggregate vertices is linked by an edge. Applying the above solution we get an optimal tour for 
the new graph.  

To obtain an optimal tour for the initial graph, we extend the aggregate optimal tour by 
replacing each aggregate vertex by any Hamiltonian path passing through all vertices (each exactly 
once) in the class corresponding to this aggregate vertex. 

 In addition, we emphasize that before solving Problem A or B we have to make sure that the 
condition (1) is fulfilled (by renumbering the vertices of the graph if necessary). This can be done by 
using an algorithm for sorting a sequence of real numbers in non-decreasing order. Some well known 
such algorithms are available (e.g. merge sort, heap sort or quick sort, which require the same time 
O(n log n)).  
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To close the paper, we give another example for solving Problem A and B.  
Example 3. Find an optimal tour for Problem A and B with the following input data (the source 

a4 and the sink a11 for Problem A): 
vertices a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 
altitude 9 3 8 5 3 8 8 9 1 16 11 4 15 11 4 16 11 

We first renumber the vertices in increasing of altitudes. We see that a4 ↔ 6, a11 ↔ 12, so we 
have b = 6 and e = 12. 

vertices a9 a2 a5 a12 a15 a4 a3 a6 a7 a1 a8 a11 a14 a17 a13 a10 a16 
altitude 1 3 3 4 4 5 8 8 8 9 9 11 11 11 15 16 16 
renum. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

• An optimal tour from 6 to 12 for Problem A is π = (π1, π2, π3) with  
6 – 4 – 2 – 1 – 3 – 5   –   7 – 8 – 9 – 10 – 11   –   13 – 15 – 17 – 16 – 14 – 12 

                        π1                                π2                                      π3               
or in the original vertices is π = (π1, π2, π3) with 
a4 - a12 - a2 - a9 - a5 - a15   -   a3 - a6 - a7 - a1 - a8   -   a14 – a13 - a16 - a10 – a17 - a11  

                       π1                                   π2                                      π3               
with the optimal function value is fopt = 5 (= t16 – t14). 

• An optimal tour for Problem B is 
1 – 3 – 5 – 7 – 9 – 11 – 13 – 15 – 17 – 16 – 14 – 12 – 10 – 8 – 6 – 4 – 2 - 1 
or in the original vertices is 
a9 - a5 - a15 - a3 - a7 - a8 - a14 - a13 - a16 - a10 - a17 - a11 - a1 - a6 - a4 - a12 - a2 - a9 
with the optimal function value is fopt = 5 (= t16 – t14). 

 The above methods can also be extended to complete bipartite graphs. 
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