
VNU Journal of Science, Mathematics - Physics 23 (2007) 189-193

Some results on (IEZ)-modules

Le Van An1,∗, Ngo Si Tung2

1Highschool of Phan Boi Chau, Vinh city, Nghe An, Vietnam
2Department of Mathematics, Vinh University, Nghe An, Vietnam

Received 16 April 2007; received in revised form 11 July 2007

Abstract. A module M is called (IEZ)−module if for the submodules A, B, C of M such

that A ∩ B = A ∩ C = B ∩ C = 0, then A ∩ (B ⊕ C) = 0. It is shown that:

(1) Let M1, ..., Mn be uniform local modules such that Mi does not embed in J(Mj) for

any i, j = 1, ..., n. Suppose that M = M1 ⊕ ...⊕ Mn is a (IEZ)−module. Then

(a) M satisfies (C3).

(b) The following assertions are equivalent:

(i) M satisfies (C2).

(ii) If X ⊆ M, X ∼= Mi (with i ∈ {1, ..., n}), then X ⊆⊕ M .

(2) Let M1, ..., Mn be uniform local modules such that Mi does not embed in J(Mj) for

any i, j = 1, ..., n. Suppose that M = M1 ⊕ ...⊕Mn is a nonsingular (IEZ)−module. Then,

M is a continuous module.

1. Introduction

Throughout this note, all rings are associative with identity, and all modules are unital right

modules. The Jacobson radical and the endmorphism ring of M are denoted by J(M) and End(M).

The notation X ⊆e Y means that X is an essential submodule of Y .

For a module M consider the following conditions:

(C1) Every submodule of M is essential in a direct summand of M .

(C2) Every submodule isomorphic to a direct summand of M is itself a direct summand.

(C3) If A and B are direct summands of M with A ∩ B = 0, then A ⊕ B is a direct summand of

M .

A module M is defined to be a CS-module (or an extending module) if M satisfies the condition

(C1). If M satisfies (C1) and (C2), then M is said to be a continuous module. M is called quasi-

continuous if it satisfies (C1) and (C3). A module M is said to be a uniform - extending if every

uniform submodule of M is essential in a direct summand of M . We have the following implications:

We refer to [1] and [2] for background on CS and (quasi-)continuous modules.

In this paper, we give some results on (IEZ)−modules with conditions (C1), (C2), (C3).

∗ Corresponding author. Tel.: 84-0383569442.

E-mail: levanan na@yahoo.com

189



190 L.V. An, N.S. Tung / VNU Journal of Science, Mathematics - Physics 23 (2007) 189-193

2. The results

A module M is called (IEZ)−module if for the submodules A, B, C of M such that A∩B =

A ∩ C = B ∩ C = 0, then A ∩ (B ⊕ C) = 0.

Examples

(a) Let F be a field. We consider the ring

R =











F 0 . . . 0
0 F . . . 0
...

... . . .
...

0 0 . . . F











Then RR is a (IEZ)−module.
Proof. Let A, B, C be submodules of M = RR such that A∩ B = A∩ C = B ∩ C = 0. Then, there

exist the subsets I, J, K of {1, ..., n} with I ∩ J = I ∩ K = J ∩ K = ∅ such that

A =











A11 0 . . . 0
0 A22 . . . 0
...

... . . .
...

0 0 . . . Ann











where Aii = F ∀i ∈ I , and Aii = 0 ∀i ∈ I ′, with I ′ = {1, ..., n}\I ,

B =











B11 0 . . . 0
0 B22 . . . 0
...

... . . .
...

0 0 . . . Bnn











where Bii = F ∀i ∈ J , and Bii = 0 ∀i ∈ J ′, with J ′ = {1, ..., n}\J ,

C =











C11 0 . . . 0
0 C22 . . . 0
...

... . . .
...

0 0 . . . Cnn











where Cii = F ∀i ∈ K, and Cii = 0 ∀i ∈ K ′, with K ′ = {1, ..., n}\K.
Therefore,

B ⊕ C =











X11 0 . . . 0
0 X22 . . . 0
...

... . . .
...

0 0 . . . Xnn











where Xii = F ∀i ∈ (J ∪ K), and Xii = 0 ∀i ∈ H , with H = {1, ..., n}\(J ∪ K). Since

I ∩ (J ∪ K) = ∅, thus A ∩ (B ⊕ C) = 0.

Hence RR is a (IEZ)−module.
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Remark. Let

M1 =











F 0 . . . 0
0 0 . . . 0
...

... . . .
...

0 0 . . . 0











..................................

Mn =











0 0 . . . 0
0 0 . . . 0
...
... . . .

...

0 0 . . . F











,

then Mi which are simple modules for any i = 1, ..., n and RR = M1 ⊕ ... ⊕ Mn where RR in

example. Therefore, Mi are uniform local modules such that Mi does not embed in J(Mj) for any

i, j = 1, ..., n.

(b) Let F be a field and V is a vector space over field F . Set M = V ⊕ V . Then M is not

(IEZ)−module.
Proof. Let A = {(x, x) | x ∈ V }, B = V ⊕ 0, C = 0 ⊕ V be submodules of M . We have

A ∩ B = A ∩ C = B ∩ C = 0 but A ∩ (B ⊕ C) = A ∩ M = A. Hence, M is not (IEZ)−module.
We give two results on (IEZ)−module with conditions (C1), (C2), (C3).

Theorem 1. Let M1, ..., Mn be uniform local modules such that M i does not embed in J(Mj) for
any i, j = 1, ..., n. Suppose that M = M1 ⊕ ...⊕ Mn is (IEZ)−module. Then

(a) M satisfies (C3).
(b) The following assertions are equivalent:
(i) M satisfies (C2).
(ii) If X ⊆ M, X ∼= Mi (with i ∈ {1, ..., n}), then X ⊆⊕ M .

Theorem 2. Let M1, ..., Mn be uniform local modules such that M i does not embed in J(Mj) for
any i, j = 1, ..., n. Suppose that M = M1 ⊕ ... ⊕ Mn is a nonsingular (IEZ)−module. Then M is
a continuous module.

3. Proof of Theorem 1 and Theorem 2

Lemma 1. ([3, Lemma1.1]) Let N be a uniform local module such that N does not embed in J(N ),
then S = End(N ) is a local ring.

Lemma 2. Let M1, ..., Mn be uniform local modules such that M i does not embed in J(Mj) for any
i, j = 1, ..., n. Set M = M1⊕ ...⊕Mn. If S1, S2 ⊆⊕ M ; u−dim(S1) = 1 and u−dim(S2) = n−1,
then M = S1 ⊕ S2.

Proof. By Lemma 1 we have End(Mi) which is a local ring for any i = 1, ..., n. By Azumaya’s

Lemma (cf. [4, 12.6, 12.7]), we have M = S2 ⊕ K = S2 ⊕ Mi. Suppose that i = 1, i.e.,

M = S2 ⊕ M1 = (⊕n
i=2

Mi) ⊕ M1; M = S1 ⊕ H = S1 ⊕ (⊕i∈IMi) with | I |= n − 1. There

are cases:
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Case 1. If 1 6∈ I , then M = S1 ⊕ (M2 ⊕ ... ⊕ Mn). By modularity we get S1 ⊕ S2 =

(S1⊕S2)∩M = (S1⊕S2)∩(S2⊕M1) = S2⊕((S1⊕S2)∩M1) = S2⊕U, where U = (S1⊕S2)∩M1.

Therefore, U ⊆ M1, U ∼= S1
∼= M1. By our assumption, we must have U = M1, and hence

S1 ⊕ S2 = S2 ⊕ M1 = M.

Case 2. If 1 ∈ I , then there is k 6= 1 such that k = {1, ..., n}\I. By modularity we get
S1 ⊕ S2 = S2 ⊕ V, where V = (S1 ⊕ S2) ∩ M1. Therefore, V ⊆ M1, V ∼= S1

∼= Mk. By our

assumption, we must have V = M1, and hence S1 ⊕ S2 = S2 ⊕ M1 = M , as desired.

Proof of Theorem 1. (a), We show that M satisfies (C3), i.e., for two direct summands S1, S2 of

M with S1 ∩ S2 = 0, S1 ⊕ S2 is also a direct summand of M . By Lemma 1 we have End(Mi),

i = 1, ..., n is a local ring. By Azumaya’s Lemma (cf. [4, 12.6, 12.7]), we have M = S1⊕H = S1⊕
(⊕i∈IMi) = (⊕i∈JMi)⊕ (⊕i∈IMi) (where J = {1, ..., n}\I) and M = S2⊕K = S2⊕ (⊕j∈EMj) =

(⊕j∈F Mj) ⊕ (⊕j∈EMj) (where F = {1, ..., n}\E). We imply S1
∼= ⊕i∈JMi and S2

∼= ⊕j∈F Mj .

Suppose that F = {1, ..., k}. Let ϕ be isomorphism ⊕k
i=1

Mj −→ S2. Set Xj = ϕ(Mj), we have

Xj
∼= Mj , S2 = ⊕k

i=1
Xj. By hypothesis S2 ⊆⊕ M , we must have Xj ⊆⊕ M , j = 1, ..., k. We show

that S1 ⊕ S2 = S1 ⊕ (X1 ⊕ ...⊕ Xk) is a direct summand of M .

We first prove a claim that S1 ⊕ X1 is a direct summand of M . By Azumaya’s Lemma (cf. [4,

12.6, 12.7]), we have M = X1 ⊕ L = X1 ⊕ (⊕s∈SMs) = Mα ⊕ (⊕s∈SMs), with S ⊆ {1, ..., n}
such that card(S) = n − 1 and α = {1, ..., n}\S. Note that card(S ∩ I) ≥ card(I) − 1 = m.

Suppose that {1, ..., m} ⊆ (S ∩ I), i.e., M = (S1 ⊕ (M1 ⊕ ... ⊕ Mm)) ⊕ Mβ = Z ⊕ Mβ with

β = I\{1, ...,m} and Z = S1 ⊕ (M1 ⊕ ... ⊕ Mm). By M is a (IEZ)−module and X1 ∩ S1 =

X1 ∩ (M1 ⊕ ... ⊕ Mm) = S1 ∩ (M1 ⊕ ... ⊕ Mm) = 0, we have Z ∩ X1 = 0. By Z, X1 ⊆⊕ M ,

u − dim(Z) = n − 1, u − dim(X1) = 1, i.e., u − dim(Z) + u − dim(X1) = n and by Lemma 2

we have M = Z ⊕ X1 = S1 ⊕ (M1 ⊕ ...⊕ Mm) ⊕ X1 = (S1 ⊕ X1)⊕ (M1 ⊕ ...⊕ Mm). Therefore,

S1 ⊕ X1 ⊆⊕ M .

By induction we have S1 ⊕ S2 = S1 ⊕ (X1 ⊕ ...⊕ Xk) = (S1 ⊕X1 ⊕ ...⊕Xk−1)⊕ Xk is a direct

summand of M , as desired.

(b), The implication (i) =⇒ (ii) is clear .

(ii) =⇒ (i). We show that M satisfies (C2), i.e., for two submodules X, Y of M , with X ∼= Y

and Y ⊆⊕ M , X is also a direct summand of M .

Note that, since u − dim(M) = n, we have u − dim(Y ) = 0, 1, ..., n, the following case is trival:

u − dim(Y ) = 0.

If u − dim(Y ) = 1, ..., n. By Azumaya’s Lemma (cf. [4, 12.6, 12.7]) X ∼= Y ∼= ⊕i∈IMi, I ⊆
{1, ..., n}. Let ϕ be isomorphism ⊕i∈IMi −→ X . Set Xi = ϕ(Mi), thus Xi

∼= Mi for any i ∈ I . By

hypothesis (ii), we have Xi ⊆
⊕ M, i ∈ I . Since X = ⊕i∈IXi and X satisfies (C3), thus X ⊆⊕ M ,

proving (i).

Lemma 3. Let M = M1 ⊕ ... ⊕ Mn, with all Mi uniform. Suppose that M is a nonsingular
(IEZ)−module. Then M is a CS−module.
Proof. We prove that each uniform closed submodule of M is a direct summand of M . Let A be

a uniform closed submodule of M . Set Xi = A ∩ Mi, i = 1, ..., n. Suppose that Xi = 0 for any

i = 1, ..., n. By hypothesis, M is (IEZ)−module, we have A = A∩M = A∩ (M1 ⊕ ...⊕Mn) = 0,

a contradiction. Therefore, there is a Xj 6= 0, i.e., A ∩ Mj 6= 0. By property A and Mj are uniform
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submodules we have A ∩ Mj ⊆e A and A ∩ Mj ⊆e Mj . By A and Mj are closure of A ∩ Mj , M is

a nonsingular module, we have A = Mj ⊆⊕ M . This implies that M is uniform - extending.

SinceM has finite uniform dimension and by [1, Corollary 7.8], M is extending module, as desired.

Proof of Theorem 2. By Lemma 3, M is a CS−module. We show that M satisfies (C2). By Theorem

1, we prove that if X ⊆ M, X ∼= Mi (with i ∈ {1, ..., n}), then X ⊆⊕ M .

Set X∗ is a closure of X in M . Since Mi is a uniform module, thus X is also uniform. Therefore

X∗ is a uniform closed module. We imply X∗ is a direct summand of M . We have X∗ = Mj , thus

X ⊆ Mj .

If X ⊆ Mj, X 6= Mj then X ⊆ J(Mj). Hence Mi
∼= X ⊆ J(Mj), a contradiction. We have

X = Mj ⊆
⊕ M , as desired.
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