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Abstract. In this paper we study the extending of the Matheron theorem for general topo-

logical spaces. We also show some examples about the spaces F such that the miss-and-hit

topology on those spaces are unseparated or non-Hausdorff.

1. Introduction

The Choquet theorem (see [1, 2]) plays very importance role in theory of random sets. The

proof of this theorem is based on the Matheron theorem and especially, the locally compact property

of the space F , where F is a space of all close subsets of a given space E and F is equipped with

the miss-and-hit topology (see [1]). The Matheron theorem is stated as follows.

Theorem. Let E be a complete, separable and locally compact metric space. Then the miss-and-hit
topology on F space of all closed subsets of E is compact, separable and Hausdorff.

Note that the natural domain of the probability theory is a Polish space, which is, in general, not

locally compact. So in [3], the authors extended the Matheron theorem for general metric space. They

showed that if E is a separable metric space, then the miss-and-hit topology on space F is separable

and compact. And if E has a non-locally compact point, then the miss-and-hit topology on space F

is not Hausdorff. Now we extend the Matheron theorem for general topological space.

Let E be a topological space. Denote F ,K and G the families of all close, compact and open
subsets of E respectively.

For every A ⊂ E , we denote

FA = {F : F ∈ F , F ∩ A 6= ∅}; FA = {F : F ∈ F , F ∩ A = ∅}.

For every K ∈ K and a finite family of sets G1, . . . , Gn ∈ G, n ∈ N, we put

FK
G1,...,Gn

= FK
⋂

FG1
. . .

⋂

FGn .

Then

{FK
G1,...,Gn

: K ∈ K, G1, . . . , Gn ∈ G, n ∈ N}

is a base of topology on F . Which is called a miss-and-hit topology on F .
We have
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Main theorem

i) If E is a separable and Hausdorff topological space, then the miss-and-hit topology on space
F is separable.

ii) Let E be a topological space. Then the miss-and-hit topology on space F is compact.
iii) Let E be a topological space.

i) Then the space F with the miss-and-hit topology is a T1-space.
ii) If E is a T1-space and has a non-locally compact point, then the miss-and-hit topology

on space F is not Hausdorff.
iv) If E is an uncountable set with Zariski topology, then the miss-and-hit topology on space F

is Hausdorff and unseparated.
v) There exists a topology on the set of all natural numbers N such that this topology space is a

compact and T1-space. Moerover, space F with the miss-and-hit topology is non-Hausdorff
space.

The paper is organized as follows. In section 2 we will prove some results on the extending of

Matheron theorem for topological space. In Section 3 we will show some examples about the spaces

F which are unseparated or non-Hausdorff for the miss-and-hit topology.

2. On the Matheron theorem

Theorem 2.1. If E is a separable and Hausdorff topological space, then the miss-and-hit topology
on space F is separable.

Proof. Let A be a countable and dense subset in E . For every F ∈ F , suppose that FK
G1,...,Gn

is a

neighborhood of F . Then Gi\K are open and non-empty, so we can choose xi ∈ A ∩ (Gi\K) for

i = 1, . . . , n. We obtain

{x1, . . . , xn} ∩ K = ∅ and {x1, . . . , xn} ∩ Gi 6= ∅

for all i = 1, . . . , n.

Thus,

{x1, . . . , xn} ∈ FK
G1,...,Gn

.

Since the class of finite subsets of A is countable, we conclude that F is a separable space.

Theorem 2.2. Let E be a topological space. Then the miss-and-hit topology on space F is compact.

Proof. By Alexandroff theorem, in order to prove that the miss-and-hit topology on space F is compact,
it is sufficient to show that if

{FKi : Ki ∈ K, i ∈ I}
⋃

{FGj
: Gj ∈ G, j ∈ J}

is a cover of F , then it has a finite subcover. Put Ω =
⋃

j∈J

Gj, then Ω is an open set. Since

F = (
⋃

i∈I

FKi)
⋃

(
⋃

j∈J

FGj
),
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we have

∅ =
(

⋂

i∈I

(F\FKi)
)

⋂

(

⋂

j∈J

(F\FGj
)
)

=
(

⋂

i∈I

FKi

)

⋂

(

⋂

j∈J

FGj
)

=
(

⋂

i∈I

FKi

)

⋂

FΩ

=
⋂

i∈I

FΩ
Ki

.

From the later there is an index i0 ∈ I such that Ki0 ⊂ Ω.

Indeed, assume on the contrary that Ki∩ (E\Ω) 6= ∅ for every i ∈ I . Then ∅ 6= E\Ω ∈
⋂

i∈I

FΩ
Ki

is a contradition. Since Ki0 is a compact set, there is a set {j1, . . . , jn} ⊂ J such that {Gj1 , . . . , Gjn}
is a cover of Ki0 . Let F be an arbitrary closed subset of E . Then either F ∩Ki0 = ∅ or F ∩Gjk

6= ∅
for some k ∈ {1, . . . , n}. Therefore

F ∈ FKi0

⋃

FGj1

⋃

. . .
⋃

FGjn
.

The theorem is proved.

Remark. The proofs of Theorem 2.1 and 2.2 are analogous as the proof of the Main theorem in [3].

In [3], the authors showed that if E is a separable metric space and has at least a non-locally compact

point, then the miss-and-hit topology on space F is not Hausdorff.

Theorem 2.3. Let E be a topological space. Then
i) the miss-and-hit topology on space F is a T1-space.
ii) if E is a T1-space and has a non-locally compact point, then the miss-and-hit topology on

space F is not Hausdorff.

Proof. i) Take F1, F2 ∈ F , F2 6= F1. If there is a point x ∈ F2\F1, then F1 ∈ F
{x}
E and F2 6∈ F

{x}
E .

Otherwise, F1 ∈ F ∅
E\F2

and F2 6∈ F ∅
E\F2

. It implies that F is a T1-space with the miss-and-hit

topology.

ii) Let x0 ∈ E is a point which has not any compact neighborhood. Take x1 ∈ E\{x0} and put
F = {x0, x1}, F ′ = {x1}. We will show that UF ∩ UF ′ 6= ∅ for any neighborhoods UF = FK

G1,...,Gn

of F and UF ′ = FK′

G′

1
,...,G′

m
of F ′.

Put

I0 = {i : 1 ≤ i ≤ n, x0 ∈ Gi}.

If I0 = ∅ then F ′ ∈ UF ∩ UF ′ . And if I0 6= ∅, put G =
⋂

i∈I0

Gi. Then there exists x2 ∈ G\(K ∪ K ′).

In fact, if it is not the case, then G ⊂ (K ∪ K ′). Hence K ∪ K′ is a compact neighborhood of x0. It

contradicts to x0 is a non-locally compact point.

Put F ′′ = {x1, x2}, then F ′′ ∈ FK∪K′

and F ′′ ∩ G′
i 6= ∅ for all i = 1, . . . , m. Therefore,

F ′′ ∈ UF ′ . Since G =
n
⋂

i=1

Gi contains x1 or x2, F
′′∩Gi 6= ∅ for all i = 1, . . . , n. It implies F ′′ ∈ UF .
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Hence,

F ′′ ∈ UF ∩ UF ′ .

The proof is completed.

3. Some examples

For a given set E , we say that τ is the Zariski topology on E if τ contains ∅ and for every
∅ 6= U ⊂ E, U ∈ τ then E\U is a finite set.

Theorem 3.1. If E is an uncountable set with Zariski topology, then the miss-and-hit topology on F
is Hausdorff and unseparated.

Proof. Let ∆ be an arbitrary countable subset of F . We will show that ∆ is not dense in F . In fact,
put

R =
⋃

{F : F ∈ ∆, F 6= E}.

For each F ∈ ∆, F 6= E , then F is a finite set. It implies that R is a countable set. Hence, there

exists x ∈ E\R. It is easy to see that every subset of E is compact. Then FR
E is a neighborhood of

{x} and

∆
⋂

FR
E = ∅.

Therefore ∆ is not dense in F . Thus, F is unseparated.

Now we show that F is Hausdorff space. Let F, F ′ ∈ F , F 6= F ′.

If F ⊂ F ′, we put

K = G′ = E\F, K ′ = E\F ′, G = E,

and if F 6⊂ F ′ and F ′ 6⊂ F , we put

K = E\F, K ′ = G = E\F ′, G′ = E.

Then we have

F ∈ FK
G , F ′ ∈ FK′

G′ and FK
G

⋂

FK′

G′ = ∅.

It implies that F is Hausdorff space.

Remark. The space E in Theorem 3.1 is separable and non-Hausdorff. But the miss-and-hit topology

on F is Hausdorff and not separable. Hence the assumption that E is Hausdorff in Theorem 2.1 is

only a sufficient condition.

Denote N a set of all natural numbers, put X = N. Let Φ be a family consisting of ∅, X and

all of subsets A ⊂ X which satisfies the condition: There exists a finite subset α of A such that for

every a ∈ A, a can be represented in the form a = mp, where m ∈ α, p ∈ P ∪ {1} (P is the set of
all prime numbers). We say that α is a finite generating set of A [4, 5].

Theorem 3.2. Assume that Φ and X are defined as above. Then Φ is the family of close subsets of
a topology on X and X with this topology is a compact and T 1-space. Moreover, the miss-and-hit
topology on Φ is not Hausdorff.
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Proof. It is easy to see that if A is a finite subset of X then A ∈ Φ, and if A, B ∈ Φ then A∪B ∈ Φ.

Therefore, to show that Φ is the family of close subsets for a topology in X , it is sufficient to show

that for every family of {Ai}i∈I ⊂ Φ, we have
⋂

i∈I

Ai ∈ Φ.

Let αi be the finite generating set of Ai, i ∈ I . Take an arbitrary αi1, i1 ∈ I , choose i2 ∈ I

such that

∅ 6= αi1 ∩ αi2 6= αi1.

Next, choose i3 ∈ I such that

∅ 6= αi1 ∩ αi2 ∩ αi3 6= αi1 ∩ αi2

and go on. Then we have αi1 , αi1 ∩αi2, . . . is a decreasing sequence of finite sets. So, after k steps,

it will happen one of following two cases.

Case 1. αi1 ∩ . . .∩ αik 6= ∅ and for every i 6∈ {i1, . . . , ik} we have

αi1 ∩ . . .∩ αik ⊂ αi.

Case 2. αi1 ∩ . . .∩ αik 6= ∅ and there exists i ∈ I such that αi1 ∩ . . .∩ αik ∩ αi = ∅.

Suppose that the first case happens. Put α0 =
k
⋃

j=1

αij and

B = {mp : m ∈ α0, p ∈ {1} ∪ P, p|a for some a ∈ α0}.

Then B is a finite set.

For any a ∈ (
⋂

i∈I

Ai)\B we have

a = m1p1 = . . . = mkpk,

where mj ∈ αij , pj are primer numbers and ps is not a divisor of mt if t 6= s. Hence p1 = p2 = . . . =

pk = p and m1 = m2 = . . . = mk = m ∈
k
⋂

j=1

αij . So
⋂

i∈I

Ai has a finite generating set which is

(

B
⋂

(
⋂

i∈I

Ai)
)

⋃

(

k
⋂

j=1

αij

)

.

Now suppose that the second case happens. Denote B as in the first case. Then for every

a ∈ (
⋂

i∈I

Ai)\B, we have a = mp = nq, where m ∈
k
⋂

j=1

αij , n ∈ αi, p, q are prime numbers. Since

p 6= q, p is divisor of n. On the other hand, αi and B are finite sets. Hence (
⋂

i∈I

Ai)\B is a finite

set. So
⋂

i∈I

Ai is a finite set. Therefore
⋂

i∈I

Ai ∈ Φ. Thus, every finite set of X is closed, in particular,

X is a T1-space.

Now we will prove that X is a compact space. In fact, suppose that {Gi}i∈I is an arbitrary

open cover of X . For every i ∈ I , put Ai = X\Gi and αi is the finite generating set of Ai. Then
⋂

i∈I

Ai 6= ∅.

If
⋂

i∈I

αi 6= ∅, then we have a contradiction to the fact that {Gi}i∈I is an open cover of X .

Therefore,
⋂

i∈I

αi = ∅. Since αi is a finite set, there exists {i1, . . . , ik} ⊂ I such that
k
⋂

j=1

αij = ∅.
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According to the second case, the set
k
⋂

j=1

Aij = X\
k
⋃

j=1

Gij is finite. Thus, {Gi}i∈I has a finite

subcover.

To complete the proof, we will show that Φ is a non-Hausdorff space. First, we invoke two

following facts

1. For every compact set K 6= X and k ∈ N, there exists x 6∈ K such that τ(x) > k, where
τ(x) is a number of divisors of x.

Indeed, choose x 6∈ K and denote ith prime number by pi. Put

Ai = {xp : p ≥ pi, p ∈ P}.

Then {x} ∪ Ai is closed in X and x is a finite generating set of it. Therefore Ai ∩K is closed in K.

If Ai ⊂ K for all i = 1, 2, . . ., we receive a contradiction because {Ai} has finite intersection property
but their intersection is empty. Hence, there exists q1 ∈ P such that xq1 6∈ K. Going on this processing,

replacing x by xq1 and considering Ai for pi > q1, we find out q2 ∈ P such that xq1q2 6∈ K, q1 < q2.

By induction we have q1, . . . , qk ∈ P, q1 < . . . < qk such that z = xq1 . . . qk 6∈ K. It is clear that

τ(z) > k.

2. For every closed subset A 6= X , there exists k0 ∈ N such that τ(x) ≤ k0 for all x ∈ A.
Indeed, let α be a finite generating set of A. Put

k0 = 2 max {τ(x) : x ∈ α}.

Then k0 is the needed number.

Now we will prove that space Φ is a non-Hausdorff space.

Let F = {1, 2} and F ′ = {1} ∈ Φ. Assume that

FK
G1,...,Gn

and FK′

G′

1
,...,G′

m

are arbitrary neighborhoods of F, F′ respectively. We have to show that

FK
G1,...,Gn

⋂

FK′

G′

1
,...,G′

m
6= ∅.

Indeed, it is clear that X\Gi and X\G′
j are closed sets which are different from X . According to

2), there exists k0 such that τ(x) ≤ k0 for all x ∈ X\Gi, i = 1, . . . , n and τ(y) ≤ k0 for all

y ∈ X\G′
j, j = 1, . . . , m. Since K ∪ K′ is a compact set which is different from X , according to 1)

there exists x0 6∈ K∪K ′ such that τ(x0) ≥ k0. We have x0 6∈ X\Gi for i = 1, . . . , n and x0 6∈ X\G′
j

for j = 1, . . . , m. Consequently, x0 ∈ Gi, x0 ∈ G′
j for all i = 1, . . . , n, j = 1, . . . , m. Hence

{x0} ∈ FK
G1,...,Gn

⋂

FK′

G′

1
,...,G′

m
.

The proof is completed.

Acknowledgements. The authors would like to thank Nguyen Nhuy of Vietnam National University,

Hanoi for his helpful encouragement during the preparation of this paper.



200 D.T. Cap, B.D. Thang / VNU Journal of Science, Mathematics - Physics 23 (2007) 194-200

References

[1] G. Matheron, Random Set and Integral Geometry, John Wiley and Sons, New York, 1975.
[2] M. Marinacci, Choquet Theorem for the Hausdorff Metric, preprint, 1998.
[3] Nguyen Nhuy, Vu Hong Thanh, On Matheron Theorem for Non-locally Compact metric Spaces. Vietnam J. Math. 27

(1999) 115.

[4] N. Bourbaki, Algebre, Paris, 1995.
[5] J. L. Kelley, General Topology, Van Notrand, Princeton, N. J. 1955.


