On the matheron theorem for topological spaces

Dau The Cap^{1,*}, Bui Dinh Thang²

¹Hochiminh city University of Pedagogy, 280 An Duong Vuong, Dist 5, Hochiminh city, Vietnam ²Saigon University, 273 An Duong Vuong, Dist 5, Hochiminh city, Vietnam

Received 15 September 2007; received in revised form 1 November 2007

Abstract. In this paper we study the extending of the Matheron theorem for general topological spaces. We also show some examples about the spaces \mathcal{F} such that the miss-and-hit topology on those spaces are unseparated or non-Hausdorff.

1. Introduction

The Choquet theorem (see [1, 2]) plays very importance role in theory of random sets. The proof of this theorem is based on the Matheron theorem and especially, the locally compact property of the space \mathcal{F} , where \mathcal{F} is a space of all close subsets of a given space E and \mathcal{F} is equipped with the miss-and-hit topology (see [1]). The Matheron theorem is stated as follows.

Theorem. Let *E* be a complete, separable and locally compact metric space. Then the miss-and-hit topology on \mathcal{F} space of all closed subsets of *E* is compact, separable and Hausdorff.

Note that the natural domain of the probability theory is a Polish space, which is, in general, not locally compact. So in [3], the authors extended the Matheron theorem for general metric space. They showed that if E is a separable metric space, then the miss-and-hit topology on space \mathcal{F} is separable and compact. And if E has a non-locally compact point, then the miss-and-hit topology on space \mathcal{F} is not Hausdorff. Now we extend the Matheron theorem for general topological space.

Let E be a topological space. Denote \mathcal{F}, \mathcal{K} and \mathcal{G} the families of all close, compact and open subsets of E respectively.

For every $A \subset E$, we denote

$$\mathcal{F}_A = \{F : F \in \mathcal{F}, F \cap A \neq \emptyset\}; \ \mathcal{F}^A = \{F : F \in \mathcal{F}, F \cap A = \emptyset\}.$$

For every $K \in \mathcal{K}$ and a finite family of sets $G_1, \ldots, G_n \in \mathcal{G}, n \in \mathbb{N}$, we put

$$\mathcal{F}_{G_1,\ldots,G_n}^K = \mathcal{F}^K \bigcap \mathcal{F}_{G_1} \ldots \bigcap \mathcal{F}_{G_n}.$$

Then

 $\{\mathcal{F}_{G_1,\ldots,G_n}^K: K \in \mathcal{K}, \ G_1,\ldots,G_n \in \mathcal{G}, \ n \in \mathbb{N}\}$

is a base of topology on \mathcal{F} . Which is called a *miss-and-hit topology* on \mathcal{F} . We have

^{*} Corresponding author. E-mail: dauthecap@yahoo.com

Main theorem

- i) If E is a separable and Hausdorff topological space, then the miss-and-hit topology on space \mathcal{F} is separable.
- ii) Let E be a topological space. Then the miss-and-hit topology on space \mathcal{F} is compact.
- iii) Let E be a topological space.
 i) Then the space F with the miss-and-hit topology is a T₁-space.
 ii) If E is a T₁-space and has a non-locally compact point, then the miss-and-hit topology on space F is not Hausdorff.
- iv) If E is an uncountable set with Zariski topology, then the miss-and-hit topology on space \mathcal{F} is Hausdorff and unseparated.
- v) There exists a topology on the set of all natural numbers \mathbb{N} such that this topology space is a compact and T_1 -space. Moreover, space \mathcal{F} with the miss-and-hit topology is non-Hausdorff space.

The paper is organized as follows. In section 2 we will prove some results on the extending of Matheron theorem for topological space. In Section 3 we will show some examples about the spaces \mathcal{F} which are unseparated or non-Hausdorff for the miss-and-hit topology.

2. On the Matheron theorem

Theorem 2.1. If E is a separable and Hausdorff topological space, then the miss-and-hit topology on space \mathcal{F} is separable.

Proof. Let A be a countable and dense subset in E. For every $F \in \mathcal{F}$, suppose that $\mathcal{F}_{G_1,\ldots,G_n}^K$ is a neighborhood of F. Then $G_i \setminus K$ are open and non-empty, so we can choose $x_i \in A \cap (G_i \setminus K)$ for $i = 1, \ldots, n$. We obtain

$$\{x_1, \ldots, x_n\} \cap K = \emptyset$$
 and $\{x_1, \ldots, x_n\} \cap G_i \neq \emptyset$

for all $i = 1, \ldots, n$. Thus,

$$\{x_1,\ldots,x_n\}\in\mathcal{F}_{G_1,\ldots,G_n}^K$$

Since the class of finite subsets of A is countable, we conclude that \mathcal{F} is a separable space.

Theorem 2.2. Let E be a topological space. Then the miss-and-hit topology on space \mathcal{F} is compact.

Proof. By Alexandroff theorem, in order to prove that the miss-and-hit topology on space \mathcal{F} is compact, it is sufficient to show that if

$$\{\mathcal{F}^{K_i}: K_i \in \mathcal{K}, \ i \in I\} \bigcup \{\mathcal{F}_{G_j}: G_j \in \mathcal{G}, \ j \in J\}$$

is a cover of \mathcal{F} , then it has a finite subcover. Put $\Omega = \bigcup_{j \in J} G_j$, then Ω is an open set. Since

$$\mathcal{F} = (\bigcup_{i \in I} \mathcal{F}^{K_i}) \bigcup (\bigcup_{j \in J} \mathcal{F}_{G_j}),$$

we have

$$\begin{split} \emptyset &= \left(\bigcap_{i \in I} (\mathcal{F} \setminus \mathcal{F}^{K_i})\right) \bigcap \left(\bigcap_{j \in J} (\mathcal{F} \setminus \mathcal{F}_{G_j})\right) \\ &= \left(\bigcap_{i \in I} \mathcal{F}_{K_i}\right) \bigcap \left(\bigcap_{j \in J} \mathcal{F}^{G_j}\right) \\ &= \left(\bigcap_{i \in I} \mathcal{F}_{K_i}\right) \bigcap \mathcal{F}^{\Omega} \\ &= \bigcap_{i \in I} \mathcal{F}_{K_i}^{\Omega}. \end{split}$$

From the later there is an index $i_0 \in I$ such that $K_{i_0} \subset \Omega$.

Indeed, assume on the contrary that $K_i \cap (E \setminus \Omega) \neq \emptyset$ for every $i \in I$. Then $\emptyset \neq E \setminus \Omega \in \bigcap_{i \in I} \mathcal{F}_{K_i}^{\Omega}$ is a contradition. Since K_{i_0} is a compact set, there is a set $\{j_1, \ldots, j_n\} \subset J$ such that $\{G_{j_1}, \ldots, G_{j_n}\}$ is a cover of K_{i_0} . Let F be an arbitrary closed subset of E. Then either $F \cap K_{i_0} = \emptyset$ or $F \cap G_{j_k} \neq \emptyset$ for some $k \in \{1, \ldots, n\}$. Therefore

$$F \in \mathcal{F}^{K_{i_0}} \bigcup \mathcal{F}_{G_{j_1}} \bigcup \dots \bigcup \mathcal{F}_{G_{j_n}}$$

The theorem is proved.

Remark. The proofs of Theorem 2.1 and 2.2 are analogous as the proof of the Main theorem in [3]. In [3], the authors showed that if E is a separable metric space and has at least a non-locally compact point, then the miss-and-hit topology on space \mathcal{F} is not Hausdorff.

Theorem 2.3. Let E be a topological space. Then

i) the miss-and-hit topology on space \mathcal{F} is a T_1 -space.

ii) if E is a T_1 -space and has a non-locally compact point, then the miss-and-hit topology on space \mathcal{F} is not Hausdorff.

Proof. i) Take $F_1, F_2 \in \mathcal{F}, F_2 \neq F_1$. If there is a point $x \in F_2 \setminus F_1$, then $F_1 \in \mathcal{F}_E^{\{x\}}$ and $F_2 \notin \mathcal{F}_E^{\{x\}}$. Otherwise, $F_1 \in \mathcal{F}_{E \setminus F_2}^{\emptyset}$ and $F_2 \notin \mathcal{F}_{E \setminus F_2}^{\emptyset}$. It implies that \mathcal{F} is a T_1 -space with the miss-and-hit topology.

ii) Let $x_0 \in E$ is a point which has not any compact neighborhood. Take $x_1 \in E \setminus \{x_0\}$ and put $F = \{x_0, x_1\}, F' = \{x_1\}$. We will show that $U_F \cap U_{F'} \neq \emptyset$ for any neighborhoods $U_F = \mathcal{F}_{G_1,\dots,G_n}^K$ of F and $U_{F'} = \mathcal{F}_{G'_1,\dots,G'_m}^{K'}$ of F'.

Put

$$I_0 = \{i : 1 \le i \le n, x_0 \in G_i\}.$$

If $I_0 = \emptyset$ then $F' \in U_F \cap U_{F'}$. And if $I_0 \neq \emptyset$, put $G = \bigcap_{i \in I_0} G_i$. Then there exists $x_2 \in G \setminus (K \cup K')$. In fact, if it is not the case, then $G \subset (K \cup K')$. Hence $K \cup K'$ is a compact neighborhood of x_0 . It contradicts to x_0 is a non-locally compact point.

Put $F'' = \{x_1, x_2\}$, then $F'' \in \mathcal{F}^{\hat{K} \cup K'}$ and $F'' \cap G'_i \neq \emptyset$ for all i = 1, ..., m. Therefore, $F'' \in U_{F'}$. Since $G = \bigcap_{i=1}^n G_i$ contains x_1 or x_2 , $F'' \cap G_i \neq \emptyset$ for all i = 1, ..., n. It implies $F'' \in U_F$. Hence,

$$F'' \in U_F \cap U_{F'}.$$

The proof is completed.

3. Some examples

For a given set E, we say that τ is the Zariski topology on E if τ contains \emptyset and for every $\emptyset \neq U \subset E$, $U \in \tau$ then $E \setminus U$ is a finite set.

Theorem 3.1. If E is an uncountable set with Zariski topology, then the miss-and-hit topology on \mathcal{F} is Hausdorff and unseparated.

Proof. Let Δ be an arbitrary countable subset of \mathcal{F} . We will show that Δ is not dense in \mathcal{F} . In fact, put

$$\mathcal{R} = \bigcup \{F : F \in \Delta, F \neq E\}.$$

For each $F \in \Delta$, $F \neq E$, then F is a finite set. It implies that \mathcal{R} is a countable set. Hence, there exists $x \in E \setminus \mathcal{R}$. It is easy to see that every subset of E is compact. Then $\mathcal{F}_E^{\mathcal{R}}$ is a neighborhood of $\{x\}$ and

$$\Delta \bigcap \mathcal{F}_E^{\mathcal{R}} = \emptyset$$

Therefore Δ is not dense in \mathcal{F} . Thus, \mathcal{F} is unseparated.

Now we show that \mathcal{F} is Hausdorff space. Let $F, F' \in \mathcal{F}, F \neq F'$. If $F \subset F'$, we put

$$K = G' = E \setminus F, \ K' = E \setminus F', \ G = E,$$

and if $F \not\subset F'$ and $F' \not\subset F$, we put

$$K = E \setminus F, \ K' = G = E \setminus F', \ G' = E.$$

Then we have

$$F \in \mathcal{F}_{G}^{K}, \ F' \in \mathcal{F}_{G'}^{K'} \text{ and } \mathcal{F}_{G}^{K} \bigcap \mathcal{F}_{G'}^{K'} = \emptyset.$$

It implies that \mathcal{F} is Hausdorff space.

Remark. The space E in Theorem 3.1 is separable and non-Hausdorff. But the miss-and-hit topology on \mathcal{F} is Hausdorff and not separable. Hence the assumption that E is Hausdorff in Theorem 2.1 is only a sufficient condition.

Denote \mathbb{N} a set of all natural numbers, put $X = \mathbb{N}$. Let Φ be a family consisting of \emptyset , X and all of subsets $A \subset X$ which satisfies the condition: There exists a finite subset α of A such that for every $a \in A$, a can be represented in the form a = mp, where $m \in \alpha$, $p \in \mathbb{P} \cup \{1\}$ (\mathbb{P} is the set of all prime numbers). We say that α is a *finite generating set* of A [4, 5].

Theorem 3.2. Assume that Φ and X are defined as above. Then Φ is the family of close subsets of a topology on X and X with this topology is a compact and T_1 -space. Moreover, the miss-and-hit topology on Φ is not Hausdorff.

Proof. It is easy to see that if A is a finite subset of X then $A \in \Phi$, and if $A, B \in \Phi$ then $A \cup B \in \Phi$. Therefore, to show that Φ is the family of close subsets for a topology in X, it is sufficient to show that for every family of $\{A_i\}_{i \in I} \subset \Phi$, we have $\bigcap A_i \in \Phi$.

Let α_i be the finite generating set of A_i , $i \in I$. Take an arbitrary α_{i_1} , $i_1 \in I$, choose $i_2 \in I$ such that

$$\emptyset \neq \alpha_{i_1} \cap \alpha_{i_2} \neq \alpha_{i_1}.$$

Next, choose $i_3 \in I$ such that

$$\emptyset \neq \alpha_{i_1} \cap \alpha_{i_2} \cap \alpha_{i_3} \neq \alpha_{i_1} \cap \alpha_{i_4}$$

and go on. Then we have $\alpha_{i_1}, \alpha_{i_1} \cap \alpha_{i_2}, \ldots$ is a decreasing sequence of finite sets. So, after k steps, it will happen one of following two cases.

Case 1. $\alpha_{i_1} \cap \ldots \cap \alpha_{i_k} \neq \emptyset$ and for every $i \notin \{i_1, \ldots, i_k\}$ we have

$$\alpha_{i_1}\cap\ldots\cap\alpha_{i_k}\subset\alpha_i.$$

Case 2. $\alpha_{i_1} \cap \ldots \cap \alpha_{i_k} \neq \emptyset$ and there exists $i \in I$ such that $\alpha_{i_1} \cap \ldots \cap \alpha_{i_k} \cap \alpha_i = \emptyset$.

Suppose that the first case happens. Put $\alpha_0 = \bigcup_{i=1}^k \alpha_{i_i}$ and

 $B = \{mp : m \in \alpha_0, \ p \in \{1\} \cup \mathbb{P}, \ p|a \text{ for some } a \in \alpha_0\}.$

Then B is a finite set.

For any $a \in (\bigcap_{i \in I} A_i) \backslash B$ we have

$$a=m_1p_1=\ldots=m_kp_k,$$

where $m_j \in \alpha_{i_j}, p_j$ are primer numbers and p_s is not a divisor of m_t if $t \neq s$. Hence $p_1 = p_2 = \ldots = p_k = p$ and $m_1 = m_2 = \ldots = m_k = m \in \bigcap_{j=1}^k \alpha_{i_j}$. So $\bigcap_{i \in I} A_i$ has a finite generating set which is

$$(B \bigcap (\bigcap_{i \in I} A_i)) \bigcup (\bigcap_{j=1}^k \alpha_{i_j}).$$

Now suppose that the second case happens. Denote *B* as in the first case. Then for every $a \in (\bigcap_{i \in I} A_i) \setminus B$, we have a = mp = nq, where $m \in \bigcap_{j=1}^k \alpha_{i_j}$, $n \in \alpha_i$, p, q are prime numbers. Since $p \neq q$, *p* is divisor of *n*. On the other hand, α_i and *B* are finite sets. Hence $(\bigcap_{i \in I} A_i) \setminus B$ is a finite set. So $\bigcap_{i \in I} A_i$ is a finite set. Therefore $\bigcap_{i \in I} A_i \in \Phi$. Thus, every finite set of *X* is closed, in particular, *X* is a T_1 -space.

Now we will prove that X is a compact space. In fact, suppose that $\{G_i\}_{i \in I}$ is an arbitrary open cover of X. For every $i \in I$, put $A_i = X \setminus G_i$ and α_i is the finite generating set of A_i . Then $\bigcap_{i \in I} A_i \neq \emptyset$.

If $\bigcap_{i \in I} \alpha_i \neq \emptyset$, then we have a contradiction to the fact that $\{G_i\}_{i \in I}$ is an open cover of X.

Therefore, $\bigcap_{i \in I} \alpha_i = \emptyset$. Since α_i is a finite set, there exists $\{i_1, \ldots, i_k\} \subset I$ such that $\bigcap_{j=1}^k \alpha_{i_j} = \emptyset$.

According to the second case, the set $\bigcap_{j=1}^{k} A_{i_j} = X \setminus \bigcup_{j=1}^{k} G_{i_j}$ is finite. Thus, $\{G_i\}_{i \in I}$ has a finite subcover.

To complete the proof, we will show that Φ is a non-Hausdorff space. First, we invoke two following facts

1. For every compact set $K \neq X$ and $k \in \mathbb{N}$, there exists $x \notin K$ such that $\tau(x) > k$, where $\tau(x)$ is a number of divisors of x.

Indeed, choose $x \notin K$ and denote *i*th prime number by p_i . Put

$$A_i = \{xp : p \ge p_i, p \in \mathbb{P}\}.$$

Then $\{x\} \cup A_i$ is closed in X and x is a finite generating set of it. Therefore $A_i \cap K$ is closed in K. If $A_i \subset K$ for all i = 1, 2, ..., we receive a contradiction because $\{A_i\}$ has finite intersection property but their intersection is empty. Hence, there exists $q_1 \in \mathbb{P}$ such that $xq_1 \notin K$. Going on this processing, replacing x by xq_1 and considering A_i for $p_i > q_1$, we find out $q_2 \in \mathbb{P}$ such that $xq_1q_2 \notin K$, $q_1 < q_2$. By induction we have $q_1, \ldots, q_k \in \mathbb{P}$, $q_1 < \ldots < q_k$ such that $z = xq_1 \ldots q_k \notin K$. It is clear that $\tau(z) > k$.

2. For every closed subset $A \neq X$, there exists $k_0 \in \mathbb{N}$ such that $\tau(x) \leq k_0$ for all $x \in A$. Indeed, let α be a finite generating set of A. Put

$$k_0 = 2 \max \{\tau(x) : x \in \alpha\}.$$

Then k_0 is the needed number.

Now we will prove that space Φ is a non-Hausdorff space. Let $F = \{1, 2\}$ and $F' = \{1\} \in \Phi$. Assume that

$$\mathcal{F}_{G_1,\ldots,G_n}^K$$
 and $\mathcal{F}_{G'_1,\ldots,G'_m}^{K'}$

are arbitrary neighborhoods of F, F' respectively. We have to show that

$$\mathcal{F}_{G_1,\ldots,G_n}^K \bigcap \mathcal{F}_{G'_1,\ldots,G'_m}^{K'} \neq \emptyset.$$

Indeed, it is clear that $X \setminus G_i$ and $X \setminus G'_j$ are closed sets which are different from X. According to 2), there exists k_0 such that $\tau(x) \leq k_0$ for all $x \in X \setminus G_i$, i = 1, ..., n and $\tau(y) \leq k_0$ for all $y \in X \setminus G'_j$, j = 1, ..., m. Since $K \cup K'$ is a compact set which is different from X, according to 1) there exists $x_0 \notin K \cup K'$ such that $\tau(x_0) \geq k_0$. We have $x_0 \notin X \setminus G_i$ for i = 1, ..., n and $x_0 \notin X \setminus G'_j$ for j = 1, ..., m. Consequently, $x_0 \in G_i$, $x_0 \in G'_j$ for all i = 1, ..., n, j = 1, ..., m. Hence

$$\{x_0\} \in \mathcal{F}_{G_1,\ldots,G_n}^K \bigcap \mathcal{F}_{G'_1,\ldots,G'_m}^{K'}.$$

The proof is completed.

Acknowledgements. The authors would like to thank Nguyen Nhuy of Vietnam National University, Hanoi for his helpful encouragement during the preparation of this paper.

References

- [1] G. Matheron, Random Set and Integral Geometry, John Wiley and Sons, New York, 1975.
- [2] M. Marinacci, Choquet Theorem for the Hausdorff Metric, preprint, 1998.
- [3] Nguyen Nhuy, Vu Hong Thanh, On Matheron Theorem for Non-locally Compact metric Spaces. *Vietnam J. Math.* 27 (1999) 115.
- [4] N. Bourbaki, Algebre, Paris, 1995.
- [5] J. L. Kelley, General Topology, Van Notrand, Princeton, N. J. 1955.