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Abstract. This note deals with two fully parallel methods for solving linear partial differential-

algebraic equations (PDAEs) of the form:

Aut + B∆u = f(x, t) (1)

whereA is a singular, symmetric and nonnegative matrix, whileB is a symmetric positive define
matrix. The stability and convergence of proposed methods are discussed. Some numerical

experiments on high-performance computers are also reported.
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1. Introduction

Recently there has been a growing interest in the analysis and numerical solution of PDAEs

because of their importance in various applications, such as plasma physics, magneto hydro dynamics,

electrical, mechanical and chemical engineering, etc...

Although the numerical solution for differential-algebraic equations (DAEs) and (PDAEs) has

been studied intensively [1, 2], until now we have not found any results on parallel methods for PDAEs.

This problem will be studied here for a special case.

The paper is organized as follows. Section 2 deals with some properties of the so called

nonnegative pencils of matrices. In Section 3 we describe two parallel methods for solving linear

PDAEs, whose coefficients found a nonnegative pencil of matrices. The solvability and convergence

of these methods are studied. Finally in section 4 some numerical examples are discussed.

2. Properties of nonnegative pencils of matrices

In what follows we will consider a pencil of matrices {A, B}, where A ∈ R
n×n is a singular,

symmetric and nonnegative matrix with rank (A) = r < n and B ∈ R
n×n is a symmetric positive

define matrix. Such a pencil will be called shortly a nonnegative pencil.

We begin with the following property of nonnegative pencils.
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Proposition 1. Any nonnegative pencil {A, B} can be reduced to the Kronecker-Weierstrass form
{diag(Ir, On−r), diag(D, In−r)} with a symmetric and positive define matrix D ∈ R

r×r. Here Ir and
On−r stand for the identity and zero matrices of appropriate dimensions respectively.

Proof. The symmetric and nonnegative matrix A can be diagonalized by an orthogonal matrix U , such

as UT AU = diag(λ1, .., λr, 0, ..0), where λ1 ≥ λ2 ≥ .. ≥ λr > 0 are positive eigenvalues of A.

Define two matrices S := diag((λ1)
−1

2 , ..., (λr)
−1

2 , 1, ...1) and B̃ := SUTBUS. Clearly, B̃ is also

symmetric and positive define. Morever, SUTAUS = diag(Ir, On−r).

Now let

B̃ =

(

B1 B2

B3 B4

)

.

It is easy to verify that B4 and its Schur complement defined by B1 − B2B
−1
4 B3 are also symmetric

and positive define. Putting

P :=

(

Ir B2B
−1
4

0 In−r

)

; B̂ :=

(

B1 − B2B
−1
4 B3 0

0 B4

)

and

Q =

(

Ir 0

B−1
4 B3 In−r

)

we get B̃ = PB̂Q and P diag(Ir, On−r)Q = diag(Ir, On−r). From the last relations it follows

P−1B̃Q−1 = B̂ and P−1 diag(Ir, On−r)Q
−1 = diag(Ir, On−r). Finally, letting P̃ = diag(Ir, B

−1
4 )

we find P̃ diag(Ir, On−r) = diag(Ir, On−r) and P̃ B̂ = diag(D, In−r), where D := B1 − B2B
−1
4 B3

and DT = D > 0. Thus, there hold decompositions MAN = diag(Ir, On−r), MBN = diag(B,

In−r) with nonsingular matrices M := P̃ PSUT and N := USQ−1, which was to be proved.

In what follows, we need two Toeplitz tridiagonal matrices P and Q of dimension k×k, where

as a rule k is much greater than n.

P =















2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2















; Q =















4 −1
−1 4 −1

. . .
. . .

. . .

−1 4 −1
−1 4















(2)

Clearly, if D ∈ R
r×r is a symmetric and positive define matrix, then the Kronecker product P ⊗ D

and Q ⊗ D are again symmetric and positive difine. Let h > 0 be a positive parameter.

Proposition 2. Let the pencil {A, B} be nonnegative and let M and N be two nonsingular matrices,
such as MAN = diag(Ir, On−r), MBN = diag(D, In−r), where DT = D > 0. Then one can
explicitily define two nonsingular matrices K and H , tranforming the pencil {I k ⊗ A, 1

h2 P ⊗ B} to
the corresponding Kronecker-Weierstrass form

{diag(Ik, Ok(n−r)), diag(
1

h2
D̂, Ik(n−r))}, (3)

with symmetric and positive define matrix D̂.

Proof. According to Proposition 1, the nonnegative pencil {Ik ⊗ A, 1
h2 P ⊗ B} can be reduced to the

canonical form (3).
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Further, for the Toeplitz matrix P , there exists an orthogonal matrix U , such that UTPU := Λ =

diag(λ1, ..., λk), where λ1 ≥ λ2 ≥ ... ≥ λk > 0. Then, the matrix S := P ⊗ In−k is diagonalized,

(UT ⊗ In−r)S(U ⊗ In−r) = Λ ⊗ In−r = diag(λ1In−r , ..., λkIn−k). Let M := Ik ⊗ M ; N :=

Ik ⊗ N ; A := Ik ⊗ diag(Ir, On−dir); B := 1
h2 P ⊗ diag(D, In−r). Clearly, M(Ik ⊗ A)N = A and

M( 1
h2 P ⊗ B)N = B.

Now we define two special matrices E1 ∈ R
r×n and E2 ∈ R

(n−r)×r as

E1 =













1 0 0 0
0 0 1 0

. . .
1 0 0 0
0 0 1 0













; E2 =













0 1 0 0
0 0 0 1

. . .
0 1 0 0
0 0 0 1













(4)

and put ξ1 :=

(

E1 ⊗ Ik

E2 ⊗ Ik

)

; ξ2 =
(

(E1 ⊗ Ik)
T , (E2 ⊗ Ik)

T
)

. Further, let D := P ⊗ D; J1 :=

diag(Ikr, U
T ⊗ In−k), J2 := diag(Ikr, U ⊗ In−r); J3 := diag(Ikr, Λ

−1 ⊗ In−r). Finally, set K :=

J1Λ1M ;H := NΛ2J2J3. We will show that K and H transform the pencil {Ik ⊗ A, 1
h2 P ⊗ B}

to the canonical form (3). Indeed, a simple calculation shows that ξ1Aξ2 = diag(Ikr, Ok(n−k)) and

ξ1Bξ2 = diag( 1
h2 D, S). Futher , K(Ik ⊗ A)H = J1ξ1Aξ2J2J3 = diag(Ikr, Ok(n−r)). Similarly,

K( 1
h2 P ⊗ B)H = J1ξ1Bξ2J2J3 = diag( 1

h2 D, Ik(n−k)). Thus the proposition 2 is complete.

3. Fully parallel methods for linear PDAEs

In this section we study the numerical solution of the following initial boundary value problems

(IBVPs) for linear PDAEs:

Aut + B∆u = f(x, t), x ∈ Ω, t ∈ (0, 1), (5)

Eu(x, 0) = u0(x), x ∈ Ω, (6)

u(x, t) = 0, x ∈ ∂Ω, (7)

where ∆u :=
d
∑

i=1

∂2u
∂x2

i

, Ω = {x(x1, ..., xd); 0 ≤ xi ≤ 1; i = 1, d},

A, B, E are given n×n matrices and the pencil {A, B} is nonnegative. Further, u, f are vector

functions, u, f : Ω × [0, 1] → R
n and the given function f(x, t) is assumed to be sufficiently smooth.

We propose two parallel methods for solving the IBVP (5)-(7) where the parallelism will be performed

across both the problem and the method.

According to Proposition 1, there exist nonsingular matrices M, N such as MAN = diag(Ir, On−r)

and MBN = diag(D, In−r), where as above, r=rank (A) and D = DT > 0. We will partition

N−1u, Mf and u0 into two parts, N
−1u := (vT , wT )T ; Mf := (FT

1 , FT
2 )T , u0 := (vT

0 , wT
0 )T , where

v0, v, F1 ∈ R
r and w0, w, F2 ∈ R

n−r . From (5) we get MAN ∂
∂t

(N−1u) + MBN∆(N−1u) = Mf ,

or equivalently ,

vt + D∆v = F1,

and

∆W = F2.

Further, as in DAE’s case, the initical condition (6) cannot be given arbitrarily. It must satisfy some

so-called hidden constraints. Indeed, suppose that the matrix EN is partitioned accordingly to the



204 Vu Tien Dung / VNU Journal of Science, Mathematics - Physics 23 (2007) 201-209

partition of the vector N−1u(x, 0) such that EN =

(

E1 E2

E3 E4

)

, where E1, E4 are square matrices

of dimension r × r and (n − r) × (n − r), respectively. For the sake of simplicity, we assume that

E2 = 0, E4 = 0 and E1 is nonsingular. Then condition (6) can be rewritten as E1v(x, 0) = v0(x)

and E3v(x, 0) = w0(x). From the last relations, it it clear that the value w(x, 0) will not participate

in further computations. Besides, the initial condition u0(x) = (vT
0 (x), wT

0 (x))T satisfies a hidden

constraint

E3E
−1
1 v0(x) = w0(x) (8)

Thus, IBVP (5)-(7) is split into an IBVP for the parabolic equation

vt + D∆v = F1, (9)

v(x, 0) = E−1
1 v0(x), x ∈ Ω (10)

v(x, t) = 0, x ∈ ∂Ω, t ∈ (0, 1), (11)

and a BVP for the elliptic equation

∆W = F2 (12)

w(x, t) = 0, x ∈ ∂Ω, t ∈ (0, 1), (13)

A parallel fractional step (PFS) method, proposed in [3] and developed in [4], will be exploited for

solving the IBVP (9)-(11). For this purpose, we first discretize in the spatial variable x = (x1, ..., xd)

by choosing a mesh size h > 0 and approximate the problem in the discrete domain Ωh by using the

second order centered difference formula. It leads to the ODE

dvh

dt
= Hvk + F1h (14)

vh(0) = v0h (15)

Thanks to the symmetry and positive definiteness of D, in many cases, the matrix H is symmetric

and positive define. For example, using the matrices P and Q defined by (2) we get H = 1
h2 P ⊗ D

in 1D case (d = 1) and H = 1
h2 L ⊗ D, where L =















Q −I
−I Q −I

. . .
. . .

. . .

−I Q −I
−I Q















for 2D case

(d = 2). Further, suppose H can be split into the sum of symmetric, pairwise commutative and

positive semidefinite matrices Hk,

H =
d

∑

k=1

Hk; HT
k = Hk ≥ 0; HkHl = HlHk; k, l = 1, d; (16)

We discretize the time interval [0,1] with step τ > 0 and apply the PFS method [4];
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Algorithm PFS

Step 1. Initialize v0 := v0h

Step 2. For given m ≥ 0 and vm (an approximation of vh(mτ)) find vm+1,k by solving (in parallel)

systems of linear equations

(I +
τd

2
Hk)v

m+1,k = (I −
τd

2

d
∑

j=1,j 6=k

Hj)v
m +

τd

2
F k

1h (17)

where Fk
1h := F1h((k + 1/2)τ)

Step 3. Compute

vm+1 =
2

d

d
∑

k=1

vm+1,k + (1−
2

d
)vm (18)

Note that the linear systems (17) can be solved by any parallel iterative methods [5,6,7,8,9]. Now

we turn to the BVP (12)-(13). For its solution we implement the parallel splitting up (PSU) method,

proposed by T. Lu, P. Neittaanmaki, and X. C. Tai [3].

Discretizing the BVP (12)-(13) one obtains a large-scale system of linear equations

Lw = g, (19)

where L is a symmetric positive define matrix of dimension p × p, where p = p(h) depends on the

discretization parameter h. Assume that L can be decomposed into the sum m of symmetric and

positive define matrices, which commute with each other

L =

m
∑

i=1

Li; LT
i = Li > 0; LiLj = LjLi, i, j = 1, m. (20)

The PSU method consists of the following steps:

Algorithm PSU

Step 1. Choose an initialization w0

Step 2. Supposing wj is known, we compute the fractional step values

Liw
j+ i

2m = f −

m
∑

k=2,k 6=i

Lkw
j, i = 1, ..., m. (21)

Step 3. For chosen parameters ωj , set

wj+1 =
ωj

m

m
∑

i=1

wj+ i

2m + (1− ωj)w
j. (22)

Note that for different j system (21) can be solved by parallel processors.

Theorem 3. The PFS-PSU method (17)-(18),(21)-(22) for solving the IBVP (5)-(7) with a nonnegative
pencil {A, B} and the consistent initial conditions (6), (8), is convergent.

Proof. Thanks to the nonnegativity of the pencil {A, B}, we can split the IBVP (5)-(7) into the

IBVP (9)-(11) and the BVP (12)-(13). Theorems 4.11 and 5.2 [4] ensure that the PFS method in

the symmetric and commutative case is stable provided τ ≤ 2{d max
1≤k≤d

||Hk||}
−1. Moreover it is

convergent with global error O(h2 + τ2). Further, according to [3] the PSU method is convergent. If
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all the eigenvalues of the matrix S := 1
m

m
∑

i=1
L−1

i L belong to some segment [a, b], where a ≥ 0, then

the asymptotic rate of the PSU with ωj = 2
a+b is

2
p , where p := cond(S) ≤ (b/a).

We end this section by considering the IBVP (5)-(7) in 1D case (d = 1). Besides, the matrix E

in (6) is supposed to be the identity matrix.

Discreting the IBVP in the spatial variable we get a system of ODEs

A
∂u

∂t
(xk, t) +

1

h2
B[u(xk+1, t) − 2u(xk, t) + u(xk−1, t)] = f(xk, t)

k = 1, M − 1, M = M(h). Putting U := (uT
1 , ..., uT

M)T ; F := (fT
1 , ..., fT

M−1)
T , where uk :=

u(xk, t); fk := f(xk, t), we can rewrite the last system of equations as

(IM−1 ⊗ A)
dU

dt
+

1

h2
(P ⊗ B)U = F, (23)

where the matrix P is determined by (2). By Proposition 2 we can find nonsingular matrices K and H

transforming the pencil {IM−1⊗A, 1
h2 P ⊗B} to the Kronecker-Weierstrass form (3). Multiplying both

sides of (23) by K and putting H−1U = (V T , WT )T ; KF = (F̃1
T
, F̃2

T
)T , where V, F̃1 ∈ R

(M−1)r

and W, F̃2 ∈ R
(M−1)(n−r), we come to the system

dV

dt
+

1

h2
DV = F̃1, (24)

W = F̃2, (25)

where as in Proposition 2, D is a symmetric and positive definite matrix. Note that the boundary con-

dition (7) has been included in Equation (23). Now let H−1(uT
0 (x1), ..., u

T
0 (xM−1))

T = (V T
0 , WT

0 )T ,

where V0 ∈ R
(M−1)r and W0 ∈ R

(M−1)(n−r). Then, the initial condition (6), with E ≡ I becomes

V (0) = V0. (26)

Moreover, the initial condition (6) must satisfy a hidden constraint W0 = F̃2(0).

For solving the IVP (23-26) in parallel, the PFS method described above for the problem (14)-

(15) can be applied. We shall not give the lengthy details.

4. Numerical experiment

Consider the boundary - value problem (5)-(7) with the following data:

n = 3; d = 2; A =





1 0 0
0 1 0
0 0 0



 ; B =





2 −0.5 1
−0.5 1 0

1 0 1



 ; E = I. (27)

The function f(x, t) is chosen such that the exact solution of the BVP (5)-(7) is

u = 103(tx1(1 − x1)x
2
2(1 − x2), tx

2
1(1 − x1)x2(1 − x2), tx1x2(1 − x1)(1− x2))

T

Using nonsingular matrices

M =





1 0 −1
0 1 0
0 0 1



N =





1 0 0
0 1 0
−1 0 1



 (28)
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we can split the IBVP (5)-(7) into an IBVP for the parabolic equation










vt − W (vx1x1
+ vx2x2

) = F1(x1, x2, t)

v(x, 0) = 0 x ∈ Ω

v(x, t) = 0 x ∈ ∂Ω and t ∈ (0, 1)

(29)

and a BVP for the elliptic equation
{

−(wx1x1
+ wx2x2

) = F2(x1, x2, t)

w(x, t) = 0 .
(30)

The PFS method and PSU method [4,3] are implemented in C and MPI and executed on a

Linux Cluster 1350 with eight computing nodes of 51.2GFlops. Each node contains two Intel Xeon

dual core 3.2GHz, 2GB Ram.

The following table shows the dependence of the error of the approximate solutions on the

number N = 1
h
while the ratio τ

h2 remains constant.

N r
h2 16 24 30 40 50 60

Residual 0.5 0.000345 0.00008 0.000038 0.000014 0.0000609 0.0000309
Residual 0.2 0.000064 0.000016 0.000007 0.000002 0.000001 0.0000005

In what follows, we study the relation between the total (CPU) time spent on the performance

of a program, the speedup and the efficiency of this performance. The speedup of the performance is

defined as S = Ts/Tp, where Ts (Tp) is serial execution time (parallel execution time), respectively.

The efficiency of the performance is determined as E = S/P , where P is the number of processors.

The result of an experiment with PFS method for (29) is reported in the following table

Table 1. Speed up and Efficiency on Cluster 1350 with N=120.

Processors 1 2 4 6 8 10
Toltal times(minutes) 252 126 62 43 37 32

Speedup 2 4 5.8 6.8 7.8
Efficiency 1 1 0.97 0.85 0.78

Using 2 processors of Cluster 1350 and applying the PSU methods to the BVP (30) we observe

that the total time increases together with the growth of the number N = 1
h
.

Table 2.

N 24 30 40
Toltal times(seconds) 120 180 300

For better convergence, we use other methods, such as the parallel Jacobi method [5], the parallel

SOR Red/Black [6,7,8,9] method.

The parallel Jacobi method and Parallel SOR Red/Black method are implemented in C and MPI

and executed on 1 node of AIX Cluster 1600 of 5 computing nodes, whose total computing power is

240GFlops. Each node contains 8 CPU Power4 64bit RSIC 1.7GHz.

Below are some results for parallel Jacobi method and parallel SOR Red/Black method
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Table 3. Speed up and Efficiency on 1 node of Cluster 1600, N=240.

Parallel Jacobi method
Processors 1 2 4 6 8

Toltal times(seconds) 937 484 232 191 155
Speedup 1.94 4.0 4.9 6.05
Efficiency 0.97 1 0.81 0.75

Althought the parallel Jacobi method converges faster than the PSU methods, it is rarely used as a

parallel solver for eliptic problems.

Table 4. Speed up and Efficiency on Cluster 1600 with N=1200.

Parallel Red - Black SOR method
Processors 1 2 4 6 8

Toltal times(seconds) 275 154 83 64 54
Speedup 1.79 3.31 4.3 5.1
Efficiency 0.9 0.83 0.72 0.64

The number of iterations needed for convergence and the total time for the serial computation of Red

- Black SOR and Jacobi method are given in the following tables.

Table 5. Number of Iterations of sequential Red - Black SOR and Jacobi method.

N 60 120 180 240 300
SOR 284 565 836 1101 1351
Jacobi 10599 39680 86119 149311

Table 6. Total times of Red - Black SOR method and Jacobi method.

N 60 120 180 240 300
SOR(seconds) 1 2 7 12 19

Jacobi (seconds) 4 45 200 720

The Red - Black SOR method is clearly the fastest one in terms of serial time and the number

of iterations.

Table 1,3,4 show that when the number of processors increases, the speedup increases. The

actual speedup is smaller than the ideal speedup because the communication cost is relatively higher

when implemented and executed on a Linux Cluster 1350 and AIX Cluster 1600. From Table 1,3,4

it is clear that the more processors are used, the communication cost increases, and the efficiency

decreases.
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