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Abstract. 3D models are getting more and more attention from the research community. The 

application potential of 3D models is enormous, especially in creating virtual environments. In 

Vietnam National University - Hanoi, there is a need for a test-bed 3D environment for research in 

virtual reality and advance learning techniques. This need raises a very good motivation for the 

research of 3D reconstruction. In this paper, we present our work toward the creating of a 3D 

model of Vietnam National University - Hanoi automatically from image sequences. We use the 

reconstruction process proposed in [1], which consists of four main steps: Feature Detection and 

Matching, Structure and Motion Recovery, Stereo Mapping, and Modeling. Moreover, we develop 
a new technique for the structure update step. By applying proper transformation on the input of 

the step, we have produced a new simple but effective technique which has not been considered 

before in the literature.  

1. Introduction 

Recently, 3D models are getting more and more attention from the research community. The 

application potential of 3D models is enormous, especially in creating virtual environments. A 3D 

model of a museum allows the user to visit the museum “virtually” just by sitting in front of the 

computer and clicking mouse. A security officer of a university can check the classroom “virtually” 

through the computer. This is the result of mixing real information from security camera with a 3D 

model. In order to build 3D models, the tradition is normally used, in which technicians builds the 3D 

models manually and then apply the texture on these models. This method requires enormous manual 

effort. With five technicians, it may require three to six months to build a 3D model. When a change is 

needed, manual effort is required again. The model may even have to rebuild from the scratch. A new 

approach is investigated to reduce the human effort is to build 3D models automatically from video 

sequences. 

In Vietnam National University, Hanoi, there is a need for a test-bed 3D environment for 

research in virtual reality and advance learning techniques. This need raises a very good motivation for 

the research of 3D reconstruction. Again, the question is how to create a 3D model of Vietnam 

National University - Hanoi with the least human effort.  
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In this paper, we present our work toward the creating of a 3D model of  Vietnam National 

University, Hanoi automatically from image sequences. Among many proposed methods (e.g. [2, 3, 4, 

5]) we chose the framework proposed in [1] because of its completeness and practicality. The 

reconstruction described in [1] consists of four main steps: Feature Detection and Matching, Structure 

and Motion Recovery, Stereo Mapping, and Modeling. Moreover, we develop a new technique for the 

structure update step. By applying proper transformation on the input of the step, we have produced a 

new simple but effective technique which has not been considered before in the literature. 

Section 2 gives an overview of the 3D reconstruction process that we use to build the 3D model. 

We then propose our technique for the structure update step in Section 3. We then show the 

experiments that we have done to show the effectiveness of our technique in Section 4. 

2. The 3D reconstruction process 

We follow the 3D reconstruction process implemented in [1], which is illustrated in Figure 1. 

The process consists of four main steps: Feature Detection and Matching, Structure and Motion 

Recovery, Stereo Mapping, and Modeling. These steps will now be discussed in more details. 

 

Fig. 1. Main tasks of 3D reconstruction with detail of the Structure and Motion recovery step. 

2.1. Feature Detection and Matching 

The first step involves in relating different images from a collection of images or a video 

sequence to each other. In order to determine the geometric relationship (or multi-view constraints) 

between images, it requires a number of corresponding feature points. Feature points are point that can 

be differentiated from its neighboring image points so that it can be matched uniquely with a 

corresponding point in another image. These features points are then used to compute the multi-view 

constraints, which corresponds to the epipolar geometry and is mathematically expressed by the 

fundamental matrix. This fundamental matrix can be found by solving 8 linear equations. Hartley has 

pointed out that normalizing the image coordinates before solving the linear equations would reduce 

the error caused by the difference by several orders of magnitude between columns in linear equations. 

The transformation is done by transforming the image center to the origin and scaling the images so 

that the coordinates have a standard deviation of unity. 
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2.2. Structure and Motion Recovery 

At this step, the structure of the scene and the motion of the camera is retrieved using the 

relation between the views and the correspondences between the features. Among the 4 main steps of 

the 3D reconstruction it is extremely important for the accuracy of the final model since it defines the 

“skeleton” of the model. The process starts with creating an initial reconstruction frame with two 

images. Two images suitable for the initialization process are selected so that they are not too close to 

each other on the one hand and there are sufficient features matched between these two images on the 

other hand. The reconstruction frame is then refined and extended each time a new view (image) is 

added. The pose of the camera for each new view is estimated so that views that have no common 

features with the reference views also becomes possible. A projective bundle adjustment can be used 

to refine the structure and motion after it is determined for the whole sequence of images. This is 

recommended to be done with a global minimization step. Nevertheless, the reconstruction so far is 

only determined up to an arbitrary projective transformation. This is not sufficient enough for 

visualization. Therefore, the reconstruction need to be upgraded to a metric one, which is done by a 

process called self-calibration which imposes some constraints on the intrinsic camera parameters. 

Finally, in order to obtain an optimal estimation of the structure and motion, a metric bundle 

adjustment is used. 

2.3. Stereo Mapping 

At this stage, the methods developed for calibrated structure from motion algorithms can be 

used as the camera calibration has been done for all viewpoints of the sequence. Although the feature 

tracking algorithm has produced a sparse surface model, this is not sufficient to reconstruct 

geometrically correct and visually acceptable surface models. A dense disparity matching step is 

required to solve this problem. The dense disparity matching is done by exploiting additional 

geometrical constraints which is performed in several steps: (i) image pairs are rectified so that 

epipolar lines coinciding with the image scan lines which reduces the correspondence search to a 

matching of the image points along each image scan-line; (ii) disparity maps are computed through a 

stereo matching algorithm; (iii) a multi-view approach integrates the results obtained from several 

view pairs by fusing all independent estimates into a common 3D model. 

2.4. 3D Modeling 

To reduce geometric complexity, a 3D surface is approximated to the point cloud generated by 

previous steps. This step also tailors the model so it can be displayed by a visualization system. 

3. Coordinate normalization for structure update 

In this section we motivate and present our normalization technique for structure update and its 

relation to others. 

3.1. Coordinate Normalization 

The inputs for the metric upgrade are canonical representations [6] of at least four views’ 

projection matrices. A practical approach was proposed in [1]. First the fundamental matrix of the two 
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initial views is decomposed into two projection matrices. The first 3D points, i.e. the initial projective 

structure, are than recovered by finding the intersections of back-projected rays, a triangulation 

process. Then projections of the initial 3D points on a new view are found to establish the equation 

system which allows adding that view to the projective structure. The view adding process is iterative 

and is called structure update. 

For each 3D to 2D correspondence (X, x), from the projection equation x = PX, we have two 

equations to compute the projection matrix of the new view. 
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where pi (i = 1,2,3) are row vectors of the new view’s projection matrix Pnew.  

Since we have 12 unknowns (recall that P is a 3×4 matrix), at least six correspondences are 

required to solve the problem. 

Based on our real data observation we assume the Xi (i = 0,1,2) are about 10 and similar to [7] 

xi (i=0,1) are about 100. Let A denote the coefficient matrix. For the assumed values the 
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That means the values of the entries range from 0 to 10
8
. For an intuitive stability analysis, we can 

assume that the diagonal of A
T
A is (10

6
, ..., 1). 

Let λi denote an eigenvalue of the matrix (λi ≤ λj , i < j), and M12 = A
T
A. We wish to estimate 

the condition number κ = λ1(M12)/ λ12(M12). Given that A
T
A is symmetric, and using the Interlacing 

Property [8], we can deduce two facts: (i) the largest eigenvalue of M12 is no less than the largest 

diagonal entry λ1(M12) ≥ 10
8
, (ii) and the smallest one λ12(M12) ≤  λ1(M1) = 1. Thus the condition 

number of M12 is κ = λ1/ λ12 ≥ 10
6
, which is a very large number. Here implies that noise can have 

significant impact. 

Coordinate normalization before the structure update can reduce the condition number. Because 

we must maintain the consistency over the projection matrix chain, the transformation must be the 

same for every frame. Hence we have to find a transformation based on the expected values of the data 

rather than specific values. The assumption we used here is that the feature points are distributed 

uniformly around images’ center and that the fixed frames’ size is known. 

So with the feature points are distributed around the image center, we first need a 

transformation to make the image center the origin: 
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in which w and h are the frames’ width and height respectively. 

After that, to equal the magnitudes of homogeneous coordinates, the scaling transformation 

should reduce the average distance of feature points to their centroid. For simplicity we use the 

following transformation to get that effect: 
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in which k is a scalar. In our experiments it is set to  as we want to limit coordinates to a (1, 1) 

rectangle. Consequently, 3D points of the projective structure are scaled to seemingly fit into a unit 

box. 

Together the transformation is: 

 N S TT T T=  (4) 

This transformation will minimize the effect of unbalanced coordinate magnitudes. Below we 

will explain how to apply it in more detail. 

3.2. How to apply the technique 

In this sub-section we explain more of how to apply the techniques and its relation to other 

methods. Also we show how to adjust others once our technique is applied. 

Although the technique is to improve the structure update, it must be applied before the 

structure initialization for two reasons: (i) to keep the added views’ consistent to initial views, (ii) and 

to reduce the unbalance among elements of initial 3D points. As it is applied before the structure 

initialization, the threshold to decide on outliers in the robust fundamental matrix computation must be 

adjusted. 

The normalization to prepare for the metric upgrade [1] should also be adjusted. There is no 

need to translate the origin to the center of the images anymore. The w and h are new scaled 

dimensions of the picture. Thus KN should now be: 
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Table 1 gives the outline of the order of the steps of the structure and motion recovery with the 

new normalization technique. 

4. Experiments and discussion 

In this section we give the results of our technique on synthetic and real data. The synthetic 

experiment setup is based on some related work. The real data include one traditional sequence in 3D 

reconstruction and two others from our experimental video for the application we are aiming at the 

reconstruction of Vietnam National University, Hanoi. 
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Table 1. Normalizations in structure and motion recovery. 

 

4.1. Synthetic data 

Synthetic input used is a random 3D point cloud uniformly distributed within a cubic. To their 

projections onto frames and the principal point with zero mean Gaussian error of standard deviation of 

0.5 and 0.1 point is respectively added. The setup is based on the setup of experiments in [9, 1] and the 

assumption that the image point error is mainly caused by the digitization. The result is the average of 

100 runs. 

Evaluation criteria are twofold. The condition number graph shows how our technique reduces 

the sensitity of the solution to input noise. The reprojection error is used to evaluate the actual 

improvement. Since the frames are scaled down by normalization, the absolute geometric error no 

longer reflects the improvement. Thus to measure the geometric improvement, we convert the 

reprojection error back to the original coordinate scale using this equation. 

 
| PX x |

err
scale factor

−
=  (6) 

where the scale factor is 1.0 in the non-normalized case and 
2 2

2

w h+
 in the normalized case. 

Figure 2 shows the average condition number on a logarithmic scale with respect to the number 

of points used to add a new view. Note that the condition number without normalization is about 10
7
, 

close to our estimate in the previous section. It is reduced about 10
4
 to 10

5
 times. This helps to achieve 

a better result as showed in Figure 3. The reprojection error is reduced from about 1.0 to less than 0.01 

pixel. 
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Fig. 2. Log10 of condition number vs. number of correspondences. 

 

Fig. 3. Log10 of reprojection number vs. number of correspondences. 

To see the relation between input noise and output error we fix the number of correspondences 

at 30 and vary the input noise standard deviation from 0.2 to 1.6 pixels. Figure 4 and 5 show the 

dependency of the condition number and the reprojection error on the input error. As the input noise 
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increases the reprojection error without normalization increases, with normalization the error stays 

much smaller.  

 

Fig. 4. Log10 of condition number vs. input noise. 

 

Fig. 5. Log10 of reprojection number vs. input noise. 

The results are however not always stable in the normalized case. It is probably because in 

some cases the assumptions do not hold thus the condition number and consequently the error is not 

reduced as expected. We will have to examine those cases further. 
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4.2. Real data 

The new technique is tested with real images of Vietnam National University, Hanoi (see 

Figure 6). In addition compared to the process explained in Table 1 RANSAC is used in the structure 

update in order to reject outliers that cannot be rejected when computing F. In most of the cases the 

result is similar to the synthetic experiment’s result. 

 

Fig. 6. Experimental image sequences of Vietnam National University, Hanoi. 

In this sequence we used four frames, two to initiate the structure and two for added views, in 

order to have enough views for metric upgrade [9]. Figure 7 shows the feature points detected on the 

image sequences, while Figure 8 shows how these features points are matched.  

 

Fig. 7. Feature points detected on the image sequences of Vietnam National University, Hanoi by SFTF [10]. 

 

Fig. 8. Feature points on the image sequences are matched 
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The condition number and reprojection error are given in table 2 and 3 respectively. As can be 

seen from the table, the result shows that technique has improved the condition number and 

reprojection error for the image sequence. This is rather close to the synthetic result. 

Table 2. Condition number with/without the normalization. 

Seq. Norm Non Norm 

View 2 

View 3 

3053.945774 

4745.445946 

12733610.731249 

7462514.512543 

Table 3. Reprojection error with/without the normalization 

Seq. Norm Non Norm 

View 2 

View 3 

0.000472 

0.000367 

0.314433 

0.963279 

After the 3D reconstruction process, the generated point cloud is shown in Figure 9. Using polar 

rectification [11] and a simple dynamic programming stereomapping we generate the final 3D model 

of Vietnam National University, Hanoi that is shown in Figure 10. Due to the simplicity of the stereo 

mapping algorithm, detail of the model is lost. In future, to improve the quality we will try to use 

higher quality images as well as apply more sophisticated algorithms (e.g. [12, 13]). 

 
Fig. 9. Point cloud generate for the 3D model of Vietnam National University, Hanoi. 
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Fig. 10. 3D model of Vietnam National University, Hanoi. 

5. Conclusion 

We presented in this paper our work toward the creating of a 3D model of Vietnam National 

University, Hanoi automatically from image sequences. Using a reconstruction process proposed in 

[1], we have generate a 3D model of Vietnam National University, Hanoi with a fair overall quality. 

The quality of the 3D model is improved by a new technique that we developed for the structure 

update step. In the future we want to improve the reconstruction process more in order to have a more 

detailed and accurate 3D model. 
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