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1. Introduction 

Principal component analysis (PCA), which is also known as Karhunen-Loeve (KL) 
transform, is a classical statistic technique that has been applied to many fields, such as 
knowledge representation, pattern recognition and image compression. The objective of 
PCA is to reduce the dimensionality of dataset and identify new meaningful underlying 
variables. The key idea is to project the objects to an orthogonal subspace for their compact 
representations. It usually involves a mathematical procedure that transforms a number of 
correlated variables into a smaller number of uncorrelated variables, which are called 
principal components. The first principal component accounts for as much of the variability 
in the dataset as possible, and each succeeding component accounts for as much of the 
remaining variability as possible. In pattern recognition, PCA technique was first applied to 
the representation of human face images by Sirovich and Kirby in [1,2]. This then led to the 
well-known Eigenfaces method for face recognition proposed by Turk and Penland in [3]. 
Since then, there has been an extensive literature that addresses both the theoretical aspect 
of the Eigenfaces method and its application aspect [4-6]. In image compression, PCA 
technique has also been widely applied to the remote hyperspectral imagery for 
classification and compression [7,8]. Nevertheless, it can be noted that in the classical 1D-
PCA scheme the 2D data sample (e.g. image) must be initially converted to a 1D vector 
form. The resulting sample vector will lead to a high dimensional vector space. It is 
consequently difficult to evaluate the covariance matrix accurately when the sample vector 
is very long and the number of training samples is small. Furthermore, it can also be noted 
that the projection of a sample on each principal orthogonal vector is a scale. Obviously, this 
will cause the sample data to be over-compressed. In order to solve this kind of 
dimensionality problem, Yang et al. [9,10] proposed the 2D-PCA approach. The basic idea is 
to directly use a set of matrices to construct the corresponding covariance matrix instead of a 
set of vectors. Compared with the covariance matrix of 1D-PCA, one can note that the size of 
the covariance matrix using 2D-PCA is much smaller. This improves the computational 
efficiency. Furthermore, it can be noted that the projection of a sample on each principal 
orthogonal vector is a vector. Thus, the problem of over-compression is alleviated in the 2D-
PCA scheme. In addition, Wang et al. [11] proposed that the 2D-PCA was equivalent to a 
special case of the block-based PCA, and emphasized that this kind of block-based methods 
had been used for face recognition in a number of systems. 
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For the multidimensional array cases, the higher order SVD (HO-SVD) has been applied to 
face recognition in [12,13]. They both employed a higher order tensor form associated with 
people, view, illumination, and expression dimensions and applied the HO-SVD to it for 
face recognition. We formulated them into the N-Dimensional PCA scheme in [14]. 
However, the presented ND-PCA scheme still adopted the classical single directional 
decomposition. Besides, due to the size of tensor, HO-SVD implementation usually leads to 
a huge matrix along some dimension of tensor, which is always beyond the capacity of an 
ordinary PC. In [12,13], they all employed small sized intensity images or feature vectors 
and a limited number of viewpoints, facial expressions and illumination changes in their 
“tensorface”, so as to avoid this numerical challenge in HO-SVD computation. 
Motivated by the above-mentioned works, in this chapter, we will reformulate our ND-PCA 
scheme presented in [14] by introducing the multidirectional decomposition technique for a 
near optimal solution of the low rank approximation, and overcome the above-mentioned 
numerical problems. However, we also noted the latest progress – Generalized PCA 
(GPCA), proposed in [15]. Unlike the classical PCA techniques (i.e. SVD-based PCA 
approaches), it utilizes the polynomial factorization techniques to subspace clustering 
instead of the usual Singular Value Decomposition approach. The deficiency is that the 
polynomial factorization usually yields an overabundance of monomials, which are used to 
span a high-dimensional subspace in GPAC scheme. Thus, the dimensionality problem is 
still a challenge in the implementation of GPCA. We will focus on the classical PCA 
techniques in this chapter. 
The remainder of this chapter is organized as follows: In Section 2, the classical 1D-PCA and 
2D-PCA are briefly revisited. The ND-PCA scheme is then formulated by using the 
multidirectional decomposition technique in Section 3, and the error estimation is also 
given. To evaluate the ND-PCA, it is performed on the FRGC 3D scan facial database [16] 
for multi-model face recognition in Section 4. Finally, some conclusions are given in 
Section 5. 

 
2. 1D- AND 2D-PCA, AN OVERVIEW 

1D-PCA 
Let a sample nX R . This sample is usually expressed in a vector form in the case of 1D-
PCA. Traditionally, principal component analysis is performed on a square symmetric 
matrix of the cross product sums, such as the Covariance and Correlation matrices (i.e. cross 
products from a standardized dataset), i.e. 
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where, X  is the mean of the training set, while 0 0,X Y  are standard forms. Indeed, the 
analysis of the Correlation and Covariance are different, since covariance is performed 
within the dataset, while correlation is used between different datasets. A correlation object 
has to be used if the variances of the individual samples differ much, or if the units of 
measurement of the individual samples differ. However, correlation can be considered as a 
special case of covariance. Thus, we will only pay attention to the covariance in the rest of 
this chapter. 

 

After the construction of the covariance matrix, Eigen Value Analysis is applied to Cov of 
Eq.(1), i.e. TCov U U  . Herein, the first k eigenvectors in the orthogonal matrix U 
corresponding to the first k largest eigenvalues span an orthogonal subspace, where the 
major energy of the sample is concentrated. A new sample of the same object is projected in 
this subspace for its compact form (or PCA representation) as follows, 
 ( )T

kU X X   ,           (2) 
where, kU  is a matrix consisting of the first k eigenvectors of U, the projection α is a k-
dimensional vector, which calls the k principal components of the sample X. The estimate of 
a novel representation of X can be described as, 
 kX U X  .       (3) 
It is clearly seen that the size of the covariance matrix of Eq.(1) is very large when the 
sample vectors are very long. Due to the large size of the covariance matrix and the 
relatively small number of training samples, it is difficult to estimate the covariance matrix 
of Eq.(1) accurately. Furthermore, a sample is projected on a principal vector as follows, 
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i i i i ku X X u U i k       . 

It can be noted that the projection i  is a scale. Thus, this usually causes over-compression, 
i.e. we will have to use many principal components to approximate the original sample X 
for a desired quality. We call these above-mentioned numerical problems as “curse of 
dimensionality”. 
 
2D-PCA 
In order to avoid the above mentioned problem, Yang et al. in [10] firstly presented a 2D-
PCA scheme for 2D array cases in order to improve the performance of the PCA-style 
classifiers, that is, SVD is applied to the covariance matrix of, ( ) ( )T
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get TG V V  , where n m
iX R   denotes a sample, X  denotes the mean of a set of 

samples, and V is the matrix of the eigenvectors and Λ is the matrix of the eigenvalues. The 
low-rank approximation of sample X is described as, 
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where kV  contains the first k principal eigenvectors of G. It has been noted that 2D-PCA 
only considers between column (or row) correlations [11]. 
In order to improve the accuracy of the low rank approximation, Ding et al. in [17] 
presented a 2D-SVD scheme for 2D cases. The key idea is to employ the 2-directional 
decomposition to the 2D-SVD scheme, that is, two covariance matrices of, 
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are considered together. Let kU  contain the first k principal eigenvectors of F and sV  contain 
the first s principal eigenvectors of G. The low-rank approximation of X can be expressed as,  
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Compared to the scheme Eq.(5), the scheme Eq.(4) of 2D-PCA only employs the classical 
single directional decomposition. It is proved that the scheme Eq.(5) of 2D-SVD can obtain a 
near-optimal solution compared to 2D-PCA in [17]. While, in the dyadic SVD algorithm [18], 
the sample set is viewed as a 3 order tensor and the HO-SVD technique is applied to each 
dimension of this tensor except the dimension of sample number, so as to generate the 
principal eigenvector matrices kU  and sV  as in the 2D-SVD. 

 
3. N-DIMENSIONAL PCA 

For clarity, we first introduce Higher Order SVD [19] briefly, and then formulate the N-
dimensional PCA scheme. 

 
3.1 Higher Order SVD 
A higher order tensor is usually defined as 1 ... NI IA R   , where N is the order of A, and 1 ≤ 
in ≤ In, 1 ≤ n ≤ N. In accordance with the terminology of tensors, the column vectors of a 2-
order tensor (matrix) are referred to as 1-mode vectors and row vectors as 2-mode vectors. 
The n-mode vectors of an N-order tensor A are defined as the In-dimensional vectors 
obtained from A by varying the index in and keeping the other indices fixed. In addition, a 
tensor can be expressed in a matrix form, which is called matrix unfolding (refer to [19] for 
details). 
Furthermore, the n-mode product, ×n, of a tensor 1 ... ...n NI I IA R     by a matrix n nJ IU R   
along the n-th dimension is defined as, 
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In practice, n-mode multiplication is implemented first by matrix unfolding the tensor A 
along the given n-mode to generate its n-mode matrix form ( )nA , and then performing the 
matrix multiplication as follows, 

( ) ( )n nB UA . 
After that, the resulting matrix B(n) is folded back to the tensor form, i.e. 

 fold unfold ( )n n nA U U A  . In terms of n-mode multiplication, Higher Order SVD of a 
tensor A can be expressed as, 
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where, ( )nU  is a unitary matrix of size In × In, which contains n-mode singular vectors. 
Instead of being pseudo-diagonal (nonzero elements only occur when the indices 
1 ... Ni i  ), the tensor S (called the core tensor) is all-orthogonal, that is, two subtensors 
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3.2 Formulating N-dimensional PCA 
For the multidimensional array case, we first employ a difference tensor instead of the 
covariance tensor as follows, 
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stacked along the ith dimension in the tensor D. Then, applying HO-SVD of Eq.(6) to D will 
generate n-mode singular vectors contained in ( ) , 1,...,nU n N . According to the n-mode 
singular values, one can determine the desired principal orthogonal vectors for each mode 
of the tensor D respectively. Introducing the multidirectional decomposition to Eq.(7) will 
yield the desired N-dimensional PCA scheme as follows, 
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where ( )
i

i
kU  denotes the matrix of i-mode ik  principal vectors, i = 1,…N. The main challenge 

is that unfolding the tensor D in HO-SVD usually generates an overly large matrix. 
First, we consider the case of unfolding D along the ith dimension, which generates a matrix 
of size 1 1 1( ... ... )i i N iMI I I I I       . We prefer a unitary matrix ( )iU  of size i iI I  to one of 
the sizes i iMI MI . This can be achieved by reshaping the unfolded matrix as follows. 
Let jA  be a 1 1 1( ... ... )i i N iI I I I I        matrix and j = 1,…M. The unfolded matrix is 

expressed as 
1
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. Reshaping A into a 1 1 1( ... ... )i i N iI M I I I I        matrix 

 1,..., MA A A , we can obtain an unitary matrix ( )iU  of size i iI I  by SVD. 
Then, consider the generic case. Since the sizes of dimensions 1,..., NI I  may be very large, 
this still leads to an overly large matrix along some dimension of sample X. Without loss of 
generality, we assume that the sizes of dimensions of sample X are independent of each 
other. 
Now, this numerical problem can be rephrased as follows, for a large sized matrix, how to 
carry out SVD decomposition. It is straightforward to apply matrix partitioning approach to 
the large matrix. As a start point, we first provide the following lemma. 
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other. 
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carry out SVD decomposition. It is straightforward to apply matrix partitioning approach to 
the large matrix. As a start point, we first provide the following lemma. 
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Lemma: 
For any matrix n mM R  , if each column iM  of M, 1( ,..., )mM M M , maintain its own 

singular value i , i.e. 2( ,0,...,0)T T
i i i i iM M U diag U , while the singular values of M are 

1 min( , ),..., m ns s , i.e. 1 min( , )( ,..., ) T
m nM Vdiag s s U , then 
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where iu  is the first column of each iU , while the SVD of TMM , 
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( ,..., ,0,...,0)
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m i i i
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MM Vdiag s s V v s v


  , 

where iv  is the ith column of V. We have, 

2 2( )
m m

T
i i

i i

tr MM s   ,            End of proof. 

 
This lemma implies that each column of M corresponds to its own singular value. Moreover, 
let Mi be a submatrix instead of column vector, n r

iM R  . We have, 
2 2
1( ,... ,...,0)T T

i i i i ri iM M U diag s s U . 
It can be noted that there are more than one non-zero singular values 1 ... 0i ris s   . If we 

let ( ) 1T
i irank M M  , the approximation of T

i iM M  can be written as 
2
1( ,0,...,0)T T

i i i i iM M U diag s U . In terms of the lemma, we can also approximate it as 
2

1 1 1 1 1
T T T

i i i i i i iM M M M u u  , where 1iM  is a column of Mi corresponding to the biggest 
singular value 1i  of column vector. On this basis, 1iM  is regarded as the principal column 
vector of the submatrix Mi. 
We can rearrange the matrix n mM R   by sorting these singular values { }i  and partition it 

into t block submatrices, 1( ,..., )tM M M , where , 1,..., ,i

t
n m

i i
i

M R i t m m   . Indeed, the 

principal eigenvectors are derived only from some particular submatrices rather than the 
others as the following analysis. (For computational convenience, we assume m ≥ n below.) 
In the context of PCA, the matrix of the first k principal eigenvectors is preferred to a whole 
orthogonal matrix. Thus, we partition M into 2 block submatrices 1 2( , )M M M  in terms of 
the sorted singular values { }i , so that 1M  contains the columns corresponding to the first k 

biggest singular values while 2M  contains the others. Note that M  is different from the 
original M because of a column permutation (denoted as Permute). Applying SVD to each 

 

iM  respectively yields, 
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Thus, matrix M  can be approximated as follows, 
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In order to obtain the approximation of M, the inverse permutation of Permute needs to be 

carried out on the row-wise orthogonal matrix of 1

2

T
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V
V

 
 
 

 given in Eq.(10). The resulting 

matrix is the approximation of the original matrix M. The desired principal eigenvectors are 
therefore included in the matrix of 1U . 
Now, we can re-write our ND-PCA scheme as, 
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For comparison, the similarity metric can adopt the Frobenius-norms between the 
reconstructions of two samples X and X   as follows, 
 

FF
X X Y Y       . (12) 

Furthermore, we can provide the following proposition, 
 
Proposition: 
X  of Eq.(11) is a near optimal approximation to sample X in a least-square sense. 

Proof. 
According to the property 10 of HO-SVD in [19], we assume that the n-mode rank of 
( )X X  be equal to (1 )nR n N   and ( )X X  be defined by discarding the smallest n-
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I R    for given nI  . Then, the approximation X  is a near 

optimal approximation of sample X. The error is bounded by Frobenius-norm as follows, 
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This means that the tensor ( )X X  is in general not the best possible approximation under 
the given n-mode rank constraints. But under the error upper-bound of Eq.(13), X  is a near 
optimal approximation of sample X. 
Unfolding ( )X X  along ith dimension yields a large matrix which can be partitioned into 
two submatrices as shown in Eq.(9), i.e. 
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This means that the tensor ( )X X  is in general not the best possible approximation under 
the given n-mode rank constraints. But under the error upper-bound of Eq.(13), X  is a near 
optimal approximation of sample X. 
Unfolding ( )X X  along ith dimension yields a large matrix which can be partitioned into 
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  as shown in Eq.(10). Consider the difference of M  and 

n mM R   as follows, 
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we can note that the 2-norm of both the orthogonal matrix 1U  and 
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I
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 are 1, and 

that of  ,n n n nI I   is 2  because of identity matrix n nI  . Therefore, we have, 
2 2

22
2max { : }M M      ,   (14) 

in a 2-norm sense. 
Substituting Eq.(14) into Eq.(13) yields the error upper-bound of X  as follows, 

    2 2 (1) (1) (1) 2 ( ) ( ) ( )
2 22 max : ... max :N N N

F
X X          . (15) 

This implies that the approximation X  of Eq.(11) is a near optimal approximation of sample 
X under this error upper bound.               End of proof. 
 
Remark: So far, we formulated the ND-PCA scheme, which can deal with overly large 
matrix. The basic idea is to partition the large matrix and discard non-principal submatrices. 
In general, the dimensionality of eigen-subspace is determined by the ratio of sum of 
singular values in the subspace to the one of the whole space  for solving the dimensionality 
reduction problems [20]. But, for an overly large matrix, we cannot get all the singular 
values of the whole matrix here, because of discarding the non-principal submatrices. An 
alternative is to iteratively determine the dimensionality of eigen-subspace by using 
reconstruction error threshold. 

 
4. EXPERIMENTS AND ANALYSIS 

The proposed ND-PCA approach was performed on a 3D range database of human faces 
used for the Face Recognition Grand Challenge [16]. In order to establish an analogy with a 
3D volume dataset or multidimensional solid array, each 3D range dataset was first mapped 
to a 3D array and the intensities of the corresponding pixels in the still face image were 
regarded as the voxel values of the 3D array. For the sake of memory size, the reconstructed 
volume dataset was then re-sampled to the size of 180×180×90. Figure 1 shows an example 
of the still face image, corresponding range data and the reconstructed 3D model. 

 

Experiment 1. This experiment is to test the rank of the singular values. In our gallery, eight 
samples of each person are available for training. Their mean-offset tensors are aligned 
together along the second index (x axis) to construct a difference tensor 180 1440 90D R   . We 
applied HO-SVD of Eq.(6) to D to get the 1-mode and 3-mode singular values of D, which 
are depicted in Fig.2. One can note that the numbers of 1-mode and 3-mode singular values 
are different, and they are equal to the dimensionalities of indices 1 and 3 of D respectively 
(i.e. 180 for 1-mode and 90 for 3-mode). This is a particular property of higher order tensors, 
namely the N-order tensor A can have N different n-mode ranks but all of them are less than 
the rank of A, ( ) ( )nrank A rank A . Furthermore, the corresponding n-mode singular vectors 
constitutes orthonormal basis which can span independent n-mode orthogonal subspaces 
respectively. Therefore, we can project a sample to an arbitrary n-mode orthogonal subspace 
accordingly. In addition, one can also note that the magnitude of the singular values 
declines very quickly. This indicates that the energy of a sample is only concentrated on a 
small number of singular vectors as expected. 
 

a.   b.   c.  
Fig. 1. The original 2D still face image (a), range data (b) and reconstructed 3D model (c) of a 
face sample. 
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Fig. 3. Comparison of the reconstruction 
through 1-mode, 3-mode and 1-mode+2-
mode+3-mode principal subspace 
respectively. ND-PCA with multidirectional 
decomposition converges quicker than ND-
PCA with single directional decomposition. 
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order. 
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Fig. 3. Comparison of the reconstruction 
through 1-mode, 3-mode and 1-mode+2-
mode+3-mode principal subspace 
respectively. ND-PCA with multidirectional 
decomposition converges quicker than ND-
PCA with single directional decomposition. 

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Number of Singular Values

S
in

gu
la

r V
al

ue
s

Mode 1
Mode 3

 
Fig. 2. The singular values in decreasing 
order. 
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Experiment 2. This experiment is to test the quality of the reconstructed sample. Within our 
3D volume dataset, we have 1-mode, 2-mode and 3-mode singular vectors, which could 
span three independent orthogonal subspaces respectively. The sample could be 
approximated by using the projections from one orthogonal subspace, two ones or three 
ones. Our objective is to test which combination leads to the best reconstruction quality. We 
designed a series of tests for this purpose. The reconstructed sample using the scheme of 
Eq.(11) was performed on 1-mode, 3-mode and 1-mode+2-mode+3-mode principal 
subspaces respectively with a varying number of principal components k. (Note that 1-mode 
or 3-mode based ND-PCA adopted the single directional decomposition, while 1-mode+2-
mode+3-mode based ND-PCA adopted the multidirectional decomposition.) The residual 
errors of reconstruction are plotted in Fig.3. Since the sizes of dimensions of (1)U  and (3)U  
are different, the ranges of the corresponding number of principal components k are also 
different. However, k must be less than the size of dimension of the corresponding 
orthogonal matrix (1)U  or (3)U . As a result of the differing dimensionalities, the residual 
error of reconstruction in 3-mode principal subspace converges to zero faster than in 1-mode 
or 1-mode+2-mode+3-mode principal subspaces. Indeed, if the curve of 3-mode (solid 
curve) is quantified to the same length of row coordinate as the curve of 1-mode (dashed 
line) in Fig.3, there is no substantial difference compared to the 1-mode test. This indicates 
that the reconstructed results are not affected by the difference between the different n-
mode principal subspaces. Furthermore, in the test of 1-mode+2-mode+3-mode principal 
subspaces, the number of principal components k was set to 180 for both (1)U  and (2)U  
while it was set to 90 for (3)U . Comparing the curve of 1-mode+2-mode+3-mode (dot line) 
with that of 1-mode (dashed line) and 3-mode (solid line), one can note that the 
approximation of 1-mode+2-mode+3-mode principal subspace converges to the final 
optimal solution more rapidly. 
――― 
Remark: In [9,10], the over-compressed problem was addressed repeatedly. [10] gave a 
comparison of the reconstruction results between the 1D-PCA case and the 2D-PCA case, 
which is reproduced in Fig.4 for the sake of completeness. It can be noted that the small 
number of principal components of the 2D-PCA can perform well compared with the large 
number of principal components of the 1D-PCA. Moreover, consider the cases of single 
directional decomposition, i.e. 2D-PCA and 1-mode based ND-PCA scheme, and 
multidirectional decomposition, i.e. 2D-SVD and 1-mode+2-mode+3-mode based ND-PCA. 
We respectively compared the reconstructed results of the single directional decomposition 
and the multidirectional decomposition with a varying number of principal components k 
(i.e. the reconstruction of the volume dataset by using the ND-PCA of Eq.(11) while the 
reconstruction of the corresponding 2D image respectively by using 2D-PCA of Eq.(4) and 
2D-SVD of Eq.(5)). The training set is the same as in the first experiment. The residual errors 
of reconstruction are normalized to the range of [0,1], and are plotted in Fig.5. One can note 
that the multidirectional decomposition performs better than the single directional 
decomposition in the case of a small number of principal components (i.e. comparing Fig.5a 
with Fig.5b). But then comparing the 2D-PCA with ND-PCA scheme shown in Fig.5a (or 2D-
SVD with ND-PCA scheme shown in Fig.5b), one can also note that 2D-PCA (or 2D-SVD) 
performs a little better than ND-PCA scheme when only a small number of principal 
components are used. In our opinion, there is no visible difference in the reconstruction 
quality between 2D-PCA (or 2D-SVD) and ND-PCA scheme with a small number of 

 

singular values. This is because the reconstructed 3D volume dataset is a sparse 3D array 
(i.e. all voxel values are set to zero except the voxels on the face surface), it is therefore more 
sensitive to computational errors compared to a 2D still image. If the 3D volume datasets 
were solid, e.g. CT or MRI volume datasets, this difference between the two curves of Fig.5a 
or Fig.5b would not noticeably appear. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Comparison of the reconstructed images using 2D-PCA (upper) and 1D-PCA (lower) 
from [10]. 
 

 
Experiment 3. In this experiment, we compared the 1-mode based ND-PCA scheme with the 
1-mode+2-mode+3-mode based ND-PCA scheme on the performance of the face verification 
using the Receiver Operating Characteristic (ROC) curves [21]. Our objective is to reveal the 
recognition performance between these two ND-PCA schemes respectively by using the 
single directional decomposition and the multidirectional decomposition. The whole test set 
includes 270 samples (i.e. range datasets and corresponding still images), in which there are 
6 to 8 samples for one person. All these samples are from the FRGC database and are re-
sampled. Two ND-PCA schemes were carried out directly on the reconstructed volume 
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Fig. 5. Comparison of the reconstruction by using single directional decomposition (a), i.e.
2D-PCA and 1-mode based ND-PCA scheme, and multidirectional composition (b), i.e. 2D-
SVD and ND-PCA, in terms of the normalized residual errors. 
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Experiment 2. This experiment is to test the quality of the reconstructed sample. Within our 
3D volume dataset, we have 1-mode, 2-mode and 3-mode singular vectors, which could 
span three independent orthogonal subspaces respectively. The sample could be 
approximated by using the projections from one orthogonal subspace, two ones or three 
ones. Our objective is to test which combination leads to the best reconstruction quality. We 
designed a series of tests for this purpose. The reconstructed sample using the scheme of 
Eq.(11) was performed on 1-mode, 3-mode and 1-mode+2-mode+3-mode principal 
subspaces respectively with a varying number of principal components k. (Note that 1-mode 
or 3-mode based ND-PCA adopted the single directional decomposition, while 1-mode+2-
mode+3-mode based ND-PCA adopted the multidirectional decomposition.) The residual 
errors of reconstruction are plotted in Fig.3. Since the sizes of dimensions of (1)U  and (3)U  
are different, the ranges of the corresponding number of principal components k are also 
different. However, k must be less than the size of dimension of the corresponding 
orthogonal matrix (1)U  or (3)U . As a result of the differing dimensionalities, the residual 
error of reconstruction in 3-mode principal subspace converges to zero faster than in 1-mode 
or 1-mode+2-mode+3-mode principal subspaces. Indeed, if the curve of 3-mode (solid 
curve) is quantified to the same length of row coordinate as the curve of 1-mode (dashed 
line) in Fig.3, there is no substantial difference compared to the 1-mode test. This indicates 
that the reconstructed results are not affected by the difference between the different n-
mode principal subspaces. Furthermore, in the test of 1-mode+2-mode+3-mode principal 
subspaces, the number of principal components k was set to 180 for both (1)U  and (2)U  
while it was set to 90 for (3)U . Comparing the curve of 1-mode+2-mode+3-mode (dot line) 
with that of 1-mode (dashed line) and 3-mode (solid line), one can note that the 
approximation of 1-mode+2-mode+3-mode principal subspace converges to the final 
optimal solution more rapidly. 
――― 
Remark: In [9,10], the over-compressed problem was addressed repeatedly. [10] gave a 
comparison of the reconstruction results between the 1D-PCA case and the 2D-PCA case, 
which is reproduced in Fig.4 for the sake of completeness. It can be noted that the small 
number of principal components of the 2D-PCA can perform well compared with the large 
number of principal components of the 1D-PCA. Moreover, consider the cases of single 
directional decomposition, i.e. 2D-PCA and 1-mode based ND-PCA scheme, and 
multidirectional decomposition, i.e. 2D-SVD and 1-mode+2-mode+3-mode based ND-PCA. 
We respectively compared the reconstructed results of the single directional decomposition 
and the multidirectional decomposition with a varying number of principal components k 
(i.e. the reconstruction of the volume dataset by using the ND-PCA of Eq.(11) while the 
reconstruction of the corresponding 2D image respectively by using 2D-PCA of Eq.(4) and 
2D-SVD of Eq.(5)). The training set is the same as in the first experiment. The residual errors 
of reconstruction are normalized to the range of [0,1], and are plotted in Fig.5. One can note 
that the multidirectional decomposition performs better than the single directional 
decomposition in the case of a small number of principal components (i.e. comparing Fig.5a 
with Fig.5b). But then comparing the 2D-PCA with ND-PCA scheme shown in Fig.5a (or 2D-
SVD with ND-PCA scheme shown in Fig.5b), one can also note that 2D-PCA (or 2D-SVD) 
performs a little better than ND-PCA scheme when only a small number of principal 
components are used. In our opinion, there is no visible difference in the reconstruction 
quality between 2D-PCA (or 2D-SVD) and ND-PCA scheme with a small number of 

 

singular values. This is because the reconstructed 3D volume dataset is a sparse 3D array 
(i.e. all voxel values are set to zero except the voxels on the face surface), it is therefore more 
sensitive to computational errors compared to a 2D still image. If the 3D volume datasets 
were solid, e.g. CT or MRI volume datasets, this difference between the two curves of Fig.5a 
or Fig.5b would not noticeably appear. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Comparison of the reconstructed images using 2D-PCA (upper) and 1D-PCA (lower) 
from [10]. 
 

 
Experiment 3. In this experiment, we compared the 1-mode based ND-PCA scheme with the 
1-mode+2-mode+3-mode based ND-PCA scheme on the performance of the face verification 
using the Receiver Operating Characteristic (ROC) curves [21]. Our objective is to reveal the 
recognition performance between these two ND-PCA schemes respectively by using the 
single directional decomposition and the multidirectional decomposition. The whole test set 
includes 270 samples (i.e. range datasets and corresponding still images), in which there are 
6 to 8 samples for one person. All these samples are from the FRGC database and are re-
sampled. Two ND-PCA schemes were carried out directly on the reconstructed volume 

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Principal Components

N
or

m
al

iz
ed

 R
es

id
ua

l E
rr

or

 

 

Eq.(7)
2D−SVD

 
b. multiple direction decomposition 

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Principal Components

N
or

m
al

iz
ed

 R
es

id
ua

l E
rr

or

2D−PCA
nD−PCA

 
a. single direction decomposition. 

nD-PCA 
……2D-SVD 

Fig. 5. Comparison of the reconstruction by using single directional decomposition (a), i.e.
2D-PCA and 1-mode based ND-PCA scheme, and multidirectional composition (b), i.e. 2D-
SVD and ND-PCA, in terms of the normalized residual errors. 

 
k = 2         k = 4         k = 6         k = 8        k = 10 

 
k = 5        k = 10       k = 20        k = 30      k = 40 

 



Face Recognition32

 

datasets. Their corresponding ROC curves are shown respectively in Fig.6. It can be noted 
that the overlapping area of the genuine and impostor distributions (i.e. false probability) in 
Fig.(6a) is smaller than that in Fig.(6b). Furthermore, their corresponding ROC curves 
relating to the False Acceptance Rate (FAR) and the False Rejection Rate (FRR) are depicted 
by changing the threshold as shown in Fig.(6c). At some threshold, the false probability of 
recognition corresponds to some rectangular area under the ROC curve. The smaller the 
area under the ROC curve, the higher is the rising of the accuracy of the recognition. For 
quantitative comparison, we could employ the Equal Error Rate (EER), which is defined as 
the error rate at the point on ROC curve where the FAR is equal to the FRR. The EER is often 
used for comparisons because it is simpler to obtain and compare a single value 
characterizing the system performance. In Fig.(6c), the EER of Fig.(6a) is 0.152 while the EER 
of Fig.(6b) is 0.224. Obviously, the ND-PCA scheme with multidirectional decomposition 
can improve the accuracy of face recognition. Of course, since the EERs only give 
comparable information between the different systems that are useful for a single 
application requirement, the full ROC curve is still necessary for other potentially different 
application requirements. 
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Fig. 6. Comparison of the recognition performance. a) are the genuine and impostor 
distribution curves of ND-PCA with multidirectional decomposition; b) are the genuine and 
impostor distribution curves of ND-PCA with single directional decomposition; c) are the 
ROC curves relating to the False acceptance rate and False rejection rate. 

 
5. CONCLUSION 

In this chapter, we formulated the ND-PCA approach, that is, to extend the PCA technique 
to the multidimensional array cases through the use of tensors and Higher Order Singular 
Value Decomposition technique. The novelties of this chapter include, 1) introducing the 
multidirectional decomposition into ND-PCA scheme and overcoming the numerical 
difficulty of overly large matrix SVD decomposition; 2) providing the proof of the ND-PCA 
scheme as a near optimal linear classification approach. We performed the ND-PCA scheme 
on 3D volume datasets to test the singular value distribution, and the error estimation. The 
results indicated that the proposed ND-PCA scheme performed as well as we desired. 
Moreover, we also performed the ND-PCA scheme on the face verification for the 
comparison of single directional decomposition and multidirectional decomposition. The 
experimental results indicated that the ND-PCA scheme with multidirectional 
decomposition could effectively improve the accuracy of face recognition. 
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Fig. 6. Comparison of the recognition performance. a) are the genuine and impostor 
distribution curves of ND-PCA with multidirectional decomposition; b) are the genuine and 
impostor distribution curves of ND-PCA with single directional decomposition; c) are the 
ROC curves relating to the False acceptance rate and False rejection rate. 
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