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1. Introduction 
 

Designing a completely automatic and efficient face recognition system is a grand challenge 
for biometrics, computer vision and pattern recognition researchers. Generally, such a 
recognition system is able to perform three subtasks: face detection, feature extraction and 
classification. We’ll put our focus on feature extraction, the crucial step prior to 
classification. The key issue here is to construct a representative feature set that can enhance 
system-performance both in terms of accuracy and speed.  
At the core of machine recognition of human faces is the extraction of proper features. Direct 
use of pixel values as features is not possible due to huge dimensionality of the faces. 
Traditionally, Principal Component Analysis (PCA) is employed to obtain a lower 
dimensional representation of the data in the standard eigenface based methods [Turk and 
Pentland 1991]. Though this approach is useful, it suffers from high computational load and 
fails to well-reflect the correlation of facial features. The modern trend is to perform 
multiresolution analysis of images. This way, several problems like, deformation of images 
due to in-plane rotation, illumination variation and expression changes can be handled with 
less difficulty. 
Multiresolution ideas have been widely used in the field of face recognition. The most 
popular multiresolution analysis tool is the Wavelet Transform. In wavelet analysis an 
image is usually decomposed at different scales and orientations using a wavelet basis 
vector. Thereafter, the component corresponding to maximum variance is subjected to 
‘further operation’. Often this ‘further operation’ includes some dimension reduction before 
feeding the coefficients to classifiers like Support Vector Machine (SVM), Neural Network 
(NN) and Nearest Neighbor. This way, a compact representation of the facial images can be 
achieved and the effect of variable facial appearances on the classification systems can also 
be reduced. The wide-spread popularity of wavelets has stirred researchers’ interest in 
multiresolution and harmonic analysis. Following the success of wavelets, a series of 
multiresolution, multidimensional tools, namely contourlet, curvelet, ridgelet have been 
developed in the past few years. In this chapter, we’ll concentrate on Digital Curvelet 
Transform. First, the theory of curvelet transform will be discussed in brief. Then we'll talk 
about the potential of curvelets as a feature descriptor, looking particularly into the problem 
of image-based face recognition. Some experimental results from recent scientific works will 
be provided for ready reference. 
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2. Curvelet Transform 

Before getting started with curvelet transform, the reader is suggested to go through the 
theory of multiresolution analysis, especially wavelet transform. Once the basic idea of 
wavelets and multiresolution analysis is understood, curvelets will be easier to comprehend.  

 
2.1 Theory and Implementation 
Motivated by the need of image analysis, Candes and Donoho developed curvelet transform 
in 2000 [Candes and Donoho 2000]. Curvelet transform has a highly redundant dictionary 
which can provide sparse representation of signals that have edges along regular curve. 
Initial construction of curvelet was redesigned later and was re-introduced as Fast Digital 
Curvelet Transform (FDCT) [Candes et al. 2006]. This second generation curvelet transform 
is meant to be simpler to understand and use. It is also faster and less redundant compared 
to its first generation version. Curvelet transform is defined in both continuous and digital 
domain and for higher dimensions. Since image-based feature extraction requires only 2D 
FDCT, we’ll restrict our discussion to the same.  
 

 
Fig. 1. Curvelets in Fourier frequency (left) and spatial domain (right) [Candes et al. 2006]. 
 
In order to implement curvelet transform, first 2D Fast Fourier Transform (FFT) of the image 
is taken. Then the 2D Fourier frequency plane is divided into wedges (like the shaded region 
in fig. 1). The parabolic shape of wedges is the result of partitioning the Fourier plane into 
radial (concentric circles) and angular divisions. The concentric circles are responsible for 
the decomposition of an image into multiple scales (used for bandpassing the image at 
different scale) and the angular divisions partition the bandpassed image into different 
angles or orientations. Thus if we want to deal with a particular wedge we’ll need to define 
its scale j and angle  . Now let’s have a look at the spatial domain (fig. 1 right). Each of the 
wedges here corresponds to a particular curvelet (shown as ellipses) at a given scale and 
angle. This indicates that the inverse FFT of a particular wedge if taken, will determine the 
curvelet coefficients for that scale and angle. This is the main idea behind the 
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implementation of curvelet transform. Figure 1 (right) represents curvelets in spatial 
Cartesian grid associated with a given scale and angle.  
 

 
(a) (b) (c) (d) 

Fig. 2. (a) a real wedge in frequency domain, (b) corresponding curvelet in spatial domain 
[Candes et al. 2006], (c) curvelets aligned along a curve at a particular scale, (d) curvelets at a 
finer scale [Starck et al. 2002]. 
 
There are two different digital implementations of FDCT: Curvelets via USFFT (Unequally 
Spaced Fast Fourier Transform) and Curvelets via Wrapping. Both the variants are linear 
and take as input a Cartesian array to provide an output of discrete coefficients. Two 
implementations only differ in the choice of spatial grid to translate curvelets at each scale 
and angle. FDCT wrapping is the fastest curvelet transform currently available [Candes et 
al. 2006]. 
Though curvelets are shown to form the shape of an ellipse in fig. 1, looking at fig. 2 (b-d), 
we can understand that actually it looks more like elongated needles. This follows from the 
parabolic scaling law (length width2) that curvelets obey. The values of curvelet 
coefficients are determined by how they are aligned in the real image. The more accurately a 
curvelet is aligned with a given curve in an image, the higher is its coefficient value. A very 
clear explanation is provided in figure 3. The curvelet named ‘c’ in the figure is almost 
perfectly aligned with the curved edge and therefore has a high coefficient value. Curvelets 
‘a’ and ‘b’ will have coefficients close to zero as they are quite far from alignment. It is well-
known that a signal localized in frequency domain is spread out in the spatial domain or 
vice-versa. A notable point regarding curvelets is that, they are better localized in both 
frequency and spatial domain compared to other transforms. This is because the wedge 
boundary is smoothly tapered to avoid abrupt discontinuity. 

 
2.2 Comparison with wavelets 
Fourier series requires a large number of terms to reconstruct a discontinuity within good 
accuracy. This is the well-known Gibbs phenomenon. Wavelets have the ability to solve this 
problem of Fourier series, as they are localized and multiscale. However, though wavelets 
do work well in one-dimension, they fail to represent higher dimensional singularities 
(especially curved singularities, wavelets can handle point singularities quite well) 
effectively due to limited orientation selectivity and isotropic scaling. Standard orthogonal 
wavelet transform has wavelets with primarily vertical, horizontal and diagonal 
orientations independent of scale. 
Curvelet transform has drawn much attention lately because it can efficiently handle several 
important problems, where traditional multiscale transforms like wavelet fait to act. Firstly, 
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Curvelets can provide a sparse representation of the objects that exhibit ‘curve punctuated 
smoothness’ [Candes, 2003], i.e. objects those are smooth except along a general curve with 
bounded curvature. Curvelets can model such curved discontinuities so well that the 
representation becomes as sparse as if the object were not singular. From figure 4, we can 
have an idea about the sparsity and efficiency of curvelet representation of curved 
singularities compared to wavelets. At any scale j , curvelets provide a sparse 
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Fig. 3. Alignment of curvelets along curved edges [R] 
 
The main idea here is that the edge discontinuity is better approximated by curvelets than 
wavelets. Curvelets can provide solutions for the limitations (curved singularity 
representation, limited orientation and absence of anisotropic element) the wavelet 
transform suffers from. It can be considered as a higher dimensional generalization of 
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wavelets which have the unique mathematical property to represent curved singularities 
effectively in a non-adaptive manner. 
 

 
Fig. 4. Representation of curved sigularities using wavelets (left) and curvelets (right) 
[Starck, 2003]. 

 
2.3 Applications 
Curvelet transform is gaining popularity in different research areas, like signal processing, 
image analysis, seismic imaging since the development of FDCT in 2006. It has been 
successfully applied in image denoising [Starck et al. 2002], image compression, image 
fusion [Choi et al., 2004], contrast enhancement [Starck et al., 2003], image deconvolution 
[Starck et al., 2003], high quality image restoration [Starck et al., 2003], astronomical image 
representation [Starck et al., 2002] etc. Examples of two applications, contrast enhancement 
and denoising are presented in figures 5 and 6. Readers are suggested to go through the 
referred works for further information on various applications of the curvelet transform. 
Recently, curvelets have also been employed to address several pattern recognition 
problems, such as face recognition [Mandal et al., 2007; Zhang et al., 2007] (discussed in 
detail in section 3), optical character recognition [Majumdar, 2007], finger-vein pattern 
recognition [Zhang et al., 2006] and palmprint recognition [Dong et al. 2005].  
 

   
Fig. 5. Contrast enhancement by curvelets [Starck et al., 2003]. 
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Fig. 6. Image denoising by curvelet [Starck et al. 2002]. 

 
3. Curvelet Based Feature Extraction for Faces 

In the previous section, we have presented a theoritical overview of curvelet transform and 
explained why it can be expected to work better than the traditional wavelet transform. 
Facial images are generally 8 bit i.e. they have 256 graylevels. In such images two very close 
regions that have differing pixel values will give rise to edges; and these edges are typically 
curved for faces. As curvelets are good at approximating  curved singularities, they are fit 
for extracting crucial edge-based features from facial images more efficiently than that 
compared to wavelet transform. We will now describe different face recognition 
methodologies that employ curvelet transform for feature extraction. 
Typically, a face recognition system is divided into two stages: a training stage and a 
classification stage. In the training stage, a set of known faces (labeled data) are used to 
create a representative feature-set or template. In the classification stage, a unknown facial 
image is matched against the previously seen faces by comparing the features. Curvelet 
based feature extraction takes the raw or the preprocessed facial images as input. The 
images are then decomposed into curvelet subbands in different scales and orientations. 
Figure 7 shows the decomposition of a face image of size 11292 (taken from ORL 
database) by curvelets at scale 2 (coarse and fine) and angle 8. This produces one 
approximate (7561) and eight detailed coefficients (four of those are of size 66123 and 
rest are of size 14954). These curvelet decomposed images are called ‘Curveletfaces’. The 
approximate curveletface contains the low-frequency components and the rest captures the 
high-frequency details along different orientations. It is sufficient to decompose faces using 
curvelet transform at scale 3 and angle 8 or 16. Increasing scales and/or orientations does 
not necessarily lead to significant improvement in recognition accuracy. If required, images 
can be reduced in size before subjecting them to feature extraction. 

 
3.1 Curvelets and SVM 
The first works on curvelet-based face recognition are [Zhang et al., 2007; Mandal et al. 
2007]. A simple application of curvelet transform in facial feature extraction can be found in 
[Zhang et al., 2007]. The authors have used SVM classifier directly on the curvelet 
decomposed faces. The curvelet based results have been compared with that of wavelets. 
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Mandal et al. have performed ‘bit quantization’ before extracting curvelet features. The 
original 8 bit images are quantized to their 4 bit and 2 bit versions, as shown in figure 8. This 
is based on the belief that on bit quantizing an image, only bolder curves will remain in the 
lower bit representations, and curvelet transform will be able to make the most out of this 
curved edge information. During training, all the original 8 bit gallery images and their two 
bit-quantized versions are decomposed into curvelet subbands. Selected curvelet coefficients 
are then separately fed to three different Support Vector Machine (SVM) classifiers. Final 
decision is achieved by fusing results of all SVMs. The selection of the curvelet coefficients is 
done on the basis of their variance. The recognition results for these two methods are shown 
below. 
 

Average Recognition 
Accuracy 

Curvelet + SVM Wavelet + SVM 
90.44 % 82.57% 

Table 1. Face recognition results for ORL database [Zhang et al., 2007] 
 

 
Fig. 7. Curvelet decomposition of a facial image - 1st image in the first row is the original 
image, 2nd image in the first row is the approximate coefficients and others are detailed 
coefficients at eight angles (all the images are resized to same dimension for the purpose of 
illustration only) [Mandal et al., 2009]. 
 

 
Fig. 8. Bit quantization: left most is the original 8 bit image (from ORL database), next two 
are 4 bit and 2 bit representations respectively [Mandal et al., 2007]. 
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No. of Bits 
in Image 

Accuracy of 
each Classifier 

Accuracy after 
majority Voting 

Rejection 
Rate 

Incorrect 
Classification rate 

8 96.9 

98.8 1.2 0 4 95.6 

2 93.7 
Table 2. Recognition result for bit-quantized, curvelet decomposed images for ORL database 
[Mandal et al., 2007]. 

 
3.1 Curvelets and dimensionality reduction 
However, even an image of size 6464 when decomposed using curvelet transform at scale 
3 (coarse, fine, finest) and angle 8 will produce the coarse subband of size 2121 and 24 
detailed coefficients of slightly larger size. Working with such large number of features is 
extremely expensive. Hence it is important to find a representative feature set. Only 
important curvelet subbands are selected depending on the amount of total variance they 
account for. Then dimensionality reduction methods like PCA, LDA and a combined PCA-
LDA framework have been applied on those selected subbands to get an even lower 
dimensional representation [Mandal et al., 2009]. This not only reduces computational load, 
but also increases recognition accuracy. 
The theory of PCA/LDA and will not be discussed here. Readers are requested to consult 
any standard book and the classical papers of Cootes et al. and Belhumeur et al. to 
understand the application of PCA and LDA in face recognition. PCA has been successfully 
applied on wavelet domain for face recognition by Feng et al. PCA has been employed on 
curvelet  decomposed gallery images to form a representational basis. In the classification 
phase, the query images are subjected to similar treatment and transformed to the same 
representational basis. However, researchers argue that PCA, though is able to provide an 
efficient lower dimensional representation of the data, suffers from higher dimensional load 
and poor discriminative power. This issue can be resolved by the application of LDA that 
can maximize the within-class dissimilarity, simultaneously increasing the between-class 
similarity. This efficient dimensionality reduction tool is also applied on curvelet coefficients 
to achieve even higher accuracy and lower computational load. Often, the size of the 
training set is less than the dimensionality of the images. In such cases LDA fails to work, 
since the within-class scatter matrix become singular. Computational difficulty also arises 
while working with high-dimensional image vectors. In such high-dimensional and singular 
cases PCA is performed prior to LDA. Curvelet subimages are projected onto PCA-space 
and then LDA is performed on this PCA-transformed space. Curvelet features thus 
extracted are also robust against noise. These curvelet-based methods are compared to 
several existing techniques in terms of recognition accuracy in table 3. Though LDA is 
expected to work better than PCA that is not reflected in figures 9 and 10. This is because 
ORL is a small database and PCA can outperform LDA in such cases. In a recent work 
[Mohammed et al., 2009] Kernal PCA has been used for dimensionality reduction of curvelet 
features and even higher accuracy is achieved. 
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Fig. 9. Curvelet –based recognition accuracy for ORL database [Mandal et al., 2009] 
 
 

 
Fig. 10. Performance of curvelet-based methods against noise [Mandal et al, 2009] 
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Method Recognition 
Accuracy (%) 

Standard eigenface [Turk et al., 1991] 92.2 

Waveletface [Feng et al.] 92.5 

Curveletface 94.5 

Waveletface + PCA [Feng et al., 2000] 94.5 

Waveletface + LDA [Chien and Wu, 2002] 94.7 

Waveletface + weighted modular PCA  
[Zhao et al., 2008] 95.0 

Waveletface + LDA + NFL [Chien and Wu, 2002] 95.2 

Curveletface + LDA 95.6 

Waveletface + kAM [Zhang et al. 2004] 96.6 

Curveletface + PCA 96.6 

Curveletface + PCA + LDA 97.7 

Table 3. Comparative study [Mandal et al., 2009] 

 
4. Conclusion 

In this chapter, newly developed curvelet transform has been presented as a new tool for 
feature extraction from facial images. Various algorithms are discussed along with relevant 
experimental results as reported in some recent works on face recognition. Looking at the 
results presented in tables 1, 2 and 3, we can infer that curvelet is not only a successful 
feature descriptor, but is superior to many existing wavelet-based techniques. Results for 
only one standard database (ORL) are listed here; nevertheless, work has been done on 
other standard databases like, FERET, YALE, Essex Grimace, Georgia-Tech and Japanese 
facial expression datasets. From the results presented in all these datasets prove the 
superiority of curvelets over wavelets for the application of face recognition. Curvelet 
features thus extracted from faces are also found to be robust against noise, significant 
amount of illumination variation, facial details variation and extreme expression changes.  
The works on face recognition using curvelet transform that exist in literature are not yet 
complete and do not fully understand the capability of curvelet transform for face 
recognition; hence, there is much scope of improvement in terms of both recognition 
accuracy and curvelet-based methodology. 

 
5. References 
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