
COMPRESSIVE CLASSIFICATION FOR FACE RECOGNITION 47

COMPRESSIVE CLASSIFICATION FOR FACE RECOGNITION

Angshul Majumdar and Rabab K. Ward

X 
 

COMPRESSIVE CLASSIFICATION 
 FOR FACE RECOGNITION 

 
Angshul Majumdar and Rabab K. Ward 

 
1. INTRODUCTION 

Face images (with column/row concatenation) form very high dimensional vectors, e.g. a 
standard webcam takes images of size 320x240 pixels, which leads to a vector of length 
76,800. The computational complexity of most classifiers is dependent on the dimensionality 
of the input features, therefore if all the pixel values of the face image are used as features 
for classification the time required to finish the task will be excessively large. This prohibits 
direct usage of pixel values as features for face recognition. 
To overcome this problem, different dimensionality reduction techniques has been proposed 
over the last two decades – starting from Principal Component Analysis and Fisher Linear 
Discriminant. Such dimensionality reduction techniques have a basic problem – they are 
data-dependent adaptive techniques, i.e. the projection function from the higher to lower 
dimension cannot be computed unless all the training samples are available. Thus the 
system cannot be updated efficiently when new data needs to be added. 
Data dependency is the major computational bottleneck of such adaptive dimensionality 
reduction methods. Consider a situation where a bank intends to authenticate a person at 
the ATM, based on face recognition. So, when a new client is added to its customer base, a 
training image of the person is acquired. When that person goes to an ATM, another image 
is acquired by a camera at the ATM and the new image is compared against the old one for 
identification. Suppose that at a certain time the bank has 200 customers, and is employing a 
data-dependent dimensionality reduction method. At that point of time it has computed the 
projection function from higher to lower dimension for the current set of images. Assume 
that at a later time, the bank has 10 more clients, then with the data-dependent 
dimensionality reduction technique, the projection function for all the 210 samples must be 
recomputed from scratch; in general there is no way the previous projection function can be 
updated with results of the 10 new samples only. This is a major computational bottleneck 
for the practical application of current face recognition research. 
For an organization such as a bank, where new customers are added regularly, it means that 
the projection function from higher to lower dimension will have to be updated regularly. 
The cost of computing the projection function is intensive and is dependent on the number 
of samples. As the number of samples keeps on increasing, the computational cost keeps on 
increasing as well (as every time new customers are added to the training dataset, the 
projection function has to be recalculated from scratch). This becomes a major issue for any 
practical face recognition system.  
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One way to work around this problem is to skip the dimensionality reduction step. But as 
mentioned earlier this increases the classification time. With the ATM scenario there is 
another problem as well. This is from the perspective of communication cost. There are two 
possible scenarios in terms of transmission of information – 1) the ATM sends the image to 
some central station where dimensionality reduction and classification are carried out or 2) 
the dimensionality reduction is carried out at the ATM so that the dimensionality reduced 
feature vector is sent instead. The latter reduces the volume of data to be sent over the 
internet but requires that the dimensionality reduction function is available at the ATM. 
With the first scenario, the communication cost arises from sending the whole image over 
the communication channel. In the second scenario, the dimensionality reduction function is 
available at the ATM. As this function is data-dependent it needs to be updated every time 
new samples are added. Periodically updating the function increases the communication 
cost as well. 
In this work we propose a dimensionality reduction method that is independent of the data. 
Practically this implies that the dimensionality reduction function is computed once and for 
all and is available at all the ATMs. There is no need to update it, and the ATM can send the 
dimensionality reduced features of the image. Thus both the computational cost of 
calculating the projection function and the communication cost of updating it are reduced 
simultaneously. 
Our dimensionality reduction is based on Random Projection (RP). Dimensionality 
reduction by random projection is not a well researched topic. Of the known classifiers only 
the K Nearest Neighbor (KNN) is robust to such dimensionality reduction [1]. By robust, it 
is meant that the classification accuracy does not vary much when the RP dimensionality 
reduced samples are used in classification instead of the original samples (without 
dimensionality reduction). Although the KNN is robust, its recognition accuracy is not high. 
This shortcoming has motivated researchers in recent times to look for more sophisticated 
classification algorithms that will be robust to RP dimensionality reduction [2, 3]. 
In this chapter we will review the different compressive classification algorithms that are 
robust to RP dimensionality reduction. However, it should be remembered that these 
classifiers can also be used with standard dimensionality reduction techniques like Principal 
Component Analysis. 
In signal processing literature random projection of data are called ‘Compressive Samples’. 
Therefore the classifiers which can classify such RP dimensionality reduced data are called 
‘Compressive Classifiers’. In this chapter we will theoretically prove the robustness of 
compressive classifiers to RP dimensionality reduction. The theoretical proofs will be 
validated by thorough experimentation. Rest of the chapter will be segregated into several 
sections. In section 2, the different compressive classification algorithms will be discussed. 
The theoretical proofs regarding their robustness will be provided in section 3. The 
experimental evaluation will be carried out in section 4. Finally in section 5, conclusions of 
this work will be discussed. 
 
2. CLASSIFICATION ALGORITHMS 

The classification problem is that of finding the identity of an unknown test sample given a 
set of training samples and their class labels. Compressive Classification addresses the case 
where compressive samples (random projections) of the original signals are available 
instead of the signal itself.  
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One way to work around this problem is to skip the dimensionality reduction step. But as 
mentioned earlier this increases the classification time. With the ATM scenario there is 
another problem as well. This is from the perspective of communication cost. There are two 
possible scenarios in terms of transmission of information – 1) the ATM sends the image to 
some central station where dimensionality reduction and classification are carried out or 2) 
the dimensionality reduction is carried out at the ATM so that the dimensionality reduced 
feature vector is sent instead. The latter reduces the volume of data to be sent over the 
internet but requires that the dimensionality reduction function is available at the ATM. 
With the first scenario, the communication cost arises from sending the whole image over 
the communication channel. In the second scenario, the dimensionality reduction function is 
available at the ATM. As this function is data-dependent it needs to be updated every time 
new samples are added. Periodically updating the function increases the communication 
cost as well. 
In this work we propose a dimensionality reduction method that is independent of the data. 
Practically this implies that the dimensionality reduction function is computed once and for 
all and is available at all the ATMs. There is no need to update it, and the ATM can send the 
dimensionality reduced features of the image. Thus both the computational cost of 
calculating the projection function and the communication cost of updating it are reduced 
simultaneously. 
Our dimensionality reduction is based on Random Projection (RP). Dimensionality 
reduction by random projection is not a well researched topic. Of the known classifiers only 
the K Nearest Neighbor (KNN) is robust to such dimensionality reduction [1]. By robust, it 
is meant that the classification accuracy does not vary much when the RP dimensionality 
reduced samples are used in classification instead of the original samples (without 
dimensionality reduction). Although the KNN is robust, its recognition accuracy is not high. 
This shortcoming has motivated researchers in recent times to look for more sophisticated 
classification algorithms that will be robust to RP dimensionality reduction [2, 3]. 
In this chapter we will review the different compressive classification algorithms that are 
robust to RP dimensionality reduction. However, it should be remembered that these 
classifiers can also be used with standard dimensionality reduction techniques like Principal 
Component Analysis. 
In signal processing literature random projection of data are called ‘Compressive Samples’. 
Therefore the classifiers which can classify such RP dimensionality reduced data are called 
‘Compressive Classifiers’. In this chapter we will theoretically prove the robustness of 
compressive classifiers to RP dimensionality reduction. The theoretical proofs will be 
validated by thorough experimentation. Rest of the chapter will be segregated into several 
sections. In section 2, the different compressive classification algorithms will be discussed. 
The theoretical proofs regarding their robustness will be provided in section 3. The 
experimental evaluation will be carried out in section 4. Finally in section 5, conclusions of 
this work will be discussed. 
 
2. CLASSIFICATION ALGORITHMS 

The classification problem is that of finding the identity of an unknown test sample given a 
set of training samples and their class labels. Compressive Classification addresses the case 
where compressive samples (random projections) of the original signals are available 
instead of the signal itself.  

If the original high dimensional signal is ‘x’, then its dimensionality is reduced by 
 

y Ax  
 
where A is a random projection matrix formed by normalizing the columns of an i.i.d. 
Gaussian matrix and y is the dimensionality reduced compressive sample. The compressive 
classifier has access to the compressive samples and must decide the class based on them. 
Compressive Classifiers have two challenges to meet: 
The classification accuracy of CC on the original signals should be at par with classification 
accuracy from traditional classifiers (SVM or ANN or KNN). 
The classification accuracy from CC should not degrade much when compressed samples 
are used instead of the original signals. 
Recently some classifiers have been proposed which can be employed as compressive 
classifiers. We discuss those classification algorithms in this section. 

 
2.1 The Sparse Classifier 
The Sparse Classifier (SC) is proposed in [2]. It is based on the assumption that the training 
samples of a particular class approximately form a linear basis for a new test sample 
belonging to the same class. If  vk,test is the test sample belonging to the kth class then, 
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where vk,i’s are the training samples of the kth class and εk is the approximation error 
(assumed to be Normally distributed). 
Equation (1) expresses the assumption in terms of the training samples of a single class. 
Alternatively, it can be expressed in terms of all the training samples such that 
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where C is the total number of classes.  
In matrix vector notation, equation (2) can be expressed as 
 
 ,k testv V    (3) 

where 1,1 ,1 , ,[ | ... | | ... | | ... | ]
k Ck k n C nV v v v v and 1,1 ,1 , ,[ ... ... ... ]'

k Ck k n C n     . 

The linearity assumption in [2] coupled with the formulation (3) implies that the coefficients 
vector α should be non-zero only when they correspond to the correct class of the test 
sample. 
 
Based on this assumption the following sparse optimization problem was proposed in [2] 

 
,0 2min || ||  subject to || || ,   is related to 
k test
v V       (4) 
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As it has already been mentioned, (4) is an NP hard problem. Consequently in [2] a convex 
relaxation to the NP hard problem was made and the following problem was solved instead 
 
 

,1 2min || ||  subject to || ||
k test
v V     (5) 

 
The formulation of the sparse optimization problem as in (5) is not ideal for this scenario as 
it does not impose sparsity on the entire class as the assumption implies. The proponents of 
Sparse Classifier [2] ‘hope’ that the l1-norm minimization will find the correct solution even 
though it is not imposed in the optimization problem explicitly. We will speak more about 
group sparse classification later. 
The sparse classification (SC) algorithm proposed in [2] is the following: 
 
Sparse Classifier Algorithm 
1. Solve the optimization problem expressed in (5). 
2. For each class (i) repeat the following two steps: 
3. Reconstruct a sample for each class by a linear combination of the training samples  

, ,
1

( )
in

recon i j i j
j

v i v


  

belonging to that class using. 
 
4. Find the error between the reconstructed sample and the given test sample by 

, ( ) 2( , ) || ||test k test recon ierror v i v v  .  

5. Once the error for every class is obtained, choose the class having the minimum error as 
the class of the given test sample. 
The main workhorse behind the SC algorithm is the optimization problem (5). The rest of 
the steps are straightforward. We give a very simple algorithm to solve this optimization 
problem. 
 
IRLS algorithm for l1 minimization 

Initialization – set δ(0) = 0 and find the initial 
2
2ˆ(0) min || ||x y Ax  by conjugate 

gradient method. 
At iteration t – continue the following steps till convergence (i.e. either δ is less than 10-6 
or the number of iterations has reached maximum limit) 
1. Find the current weight matricex as 1/2( ) (2 | ( 1) ( ) | )mW t diag x t t     
2. Form a new matrix, mL AW . 

3. Solve 2
2ˆ( ) min || ||u t y Lu  by conjugate gradient method. 

4. Find x by rescaling u, ( ) ( )mx t W u t . 
5. Reduce δ by a factor of 10 if ||y-Ax||q has reduced. 

This algorithm is called the Iterated Reweighted Least Squares (IRLS) algorithm [4] and falls 
under the general category of FOCUSS algorithms [5]. 
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As it has already been mentioned, (4) is an NP hard problem. Consequently in [2] a convex 
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5. Once the error for every class is obtained, choose the class having the minimum error as 
the class of the given test sample. 
The main workhorse behind the SC algorithm is the optimization problem (5). The rest of 
the steps are straightforward. We give a very simple algorithm to solve this optimization 
problem. 
 
IRLS algorithm for l1 minimization 

Initialization – set δ(0) = 0 and find the initial 
2
2ˆ(0) min || ||x y Ax  by conjugate 

gradient method. 
At iteration t – continue the following steps till convergence (i.e. either δ is less than 10-6 
or the number of iterations has reached maximum limit) 
1. Find the current weight matricex as 1/2( ) (2 | ( 1) ( ) | )mW t diag x t t     
2. Form a new matrix, mL AW . 
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2ˆ( ) min || ||u t y Lu  by conjugate gradient method. 

4. Find x by rescaling u, ( ) ( )mx t W u t . 
5. Reduce δ by a factor of 10 if ||y-Ax||q has reduced. 

This algorithm is called the Iterated Reweighted Least Squares (IRLS) algorithm [4] and falls 
under the general category of FOCUSS algorithms [5]. 

2.2 Fast Sparse Classifiers 
The above sparse classification (SC) algorithm yields good classification results, but it is 
slow. This is because of the convex optimization (l1 minimization). It is possible to create 
faster versions of the SC by replacing the optimization step (step 1 of the above algorithm) 
by a fast greedy (suboptimal) alternative that approximates the original l0 minimization 
problem (4). Such greedy algorithms serve as a fast alternative to convex-optimization for 
sparse signal estimation problems. In this work, we apply these algorithms in a new 
perspective (classification).  
We will discuss a basic greedy algorithm that can be employed to speed-up the SC [2]. The 
greedy algorithm is called the Orthogonal Matching Pursuit (OMP) [6]. We repeat the OMP 
algorithms here for the sake of completeness. This algorithm approximates the NP hard 
problem, 0 2min || ||  subject to || ||x y Ax   . 
 
OMP Algorithm 
 

Inputs: measurement vector y (mX1), measurement matrix A (mXn) and error tolerance 
η.  
Output: estimated sparse signal x. 
Initialize: residual r0=y, the index set 0=, the matrix of chosen atoms 0=, and the 
iteration counter t = 1. 
1. At the iteration = t, find 1

1...
arg max | , |t t j

j n
r 


     

2. Augment the index set 1t t t     and the matrix of chosen atoms 

1 tt t A     .  

3. Get the new signal estimate 2
2min || ||t tx

x y . 

4. Calculate the new approximation and the residual t t ta x   and t tr y a  . 

Increment t and return to step 1 if || ||tr  . 

 
The problem is to estimate the sparse signal. Initially the residual is initialized to the 
measurement vector. The index set and the matrix of chosen atoms (columns from the 
measurement matrix) are empty. The first step of each iteration is to select a non-zero index 
of the sparse signal. In OMP, the current residual is correlated with the measurement matrix 
and the index of the highest correlation is selected. In the second step of the iteration, the 
selected index is added to the set of current index and the set of selected atoms (columns 
from the measurement matrix) is also updated from the current index set. In the third step 
the estimates of the signal at the given indices are obtained via least squares. In step 4, the 
residual is updated. Once all the steps are performed for the iteration, a check is done to see 
if the norm of the residual falls below the error estimate. If it does, the algorithm terminates 
otherwise it repeats steps 2 to 4. 
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The Fast Sparse Classification algorithm differs from the Sparse Classification algorithm 
only in step 1. Instead of solving the l1 minimization problem, FSC uses OMP for a greedy 
approximation of the original l0 minimization problem.  

 
2.3 Group Sparse Classifier 
As mentioned in subsection 2.1, the optimization algorithm formulated in [2] does not 
exactly address the desired aim. A sparse optimization problem was formulated in the hope 
of selecting training samples of a particular (correct) class. It has been shown in [7] that l1 
minimization cannot select a sparse group of correlated samples (in the limiting case it selects 
only a single sample from all the correlated samples). In classification problems, the training 
samples from each class are highly correlated, therefore l1 minimization is not an ideal choice 
for ensuring selection of all the training samples from a group. To overcome this problem of 
[2] the Group Sparse Classifier was proposed in [3]. It has the same basic assumption as [2] 
but the optimization criterion is formulated so that it promotes selection of the entire class of 
training samples.  
The basic assumption of expressing the test sample as a linear combination of training 
samples is formulated in (3) as ,k testv V    

where
11,1 1, ,1 , ,1 ,[ | ... | | ... | | ... | | ... | ... | ]

k Cn k k n C C nV v v v v v v and 
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. 
The above formulation demand that α should be ‘group sparse’ - meaning that the solution 
of the inverse problem (3) should have non-zero coefficients corresponding to a particular 
group of training samples and zero elsewhere (i.e. 0i  for only one of the αi’s, i=1,…,C). 
This requires the solution of 
 
 2,0 2min || ||  such that ||v ||test V
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I 
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  , where 2(|| || 0) 1lI    if 2|| || 0l  . 

 
Solving the l2,0 minimization problem is NP hard. We proposed a convex relaxation in [3], so 
that the optimization takes the form 
 2,1 2min || ||  such that ||v ||test V


     (7) 

where 2,1 1 2 2 2 2|| || || || || || ... || ||k       . 

Solving the l2,1 minimization problem is the core behind the GSC. Once the optimization 
problem (7) is solved, the classification algorithm is straight forward. 
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The Fast Sparse Classification algorithm differs from the Sparse Classification algorithm 
only in step 1. Instead of solving the l1 minimization problem, FSC uses OMP for a greedy 
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Solving the l2,0 minimization problem is NP hard. We proposed a convex relaxation in [3], so 
that the optimization takes the form 
 2,1 2min || ||  such that ||v ||test V
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Solving the l2,1 minimization problem is the core behind the GSC. Once the optimization 
problem (7) is solved, the classification algorithm is straight forward. 
 
 

Group Sparse Classification Algorithm 
1. Solve the optimization problem expressed in (13). 
2. Find those i’s for which ||αi||2 > 0.  
3. For those classes (i) satisfying the condition in step 2, repeat the following two steps: 

 a. Reconstruct a sample for each class by a linear combination of the training samples 

in that class via the equation 
, ,

1

( )  
in

recon i j i j
j

v i v



. 

 b. Find the error between the reconstructed sample and the given test sample by 

, ( ) 2( , ) || ||test k test recon ierror v i v v  . 

4. Once the error for every class is obtained, choose the class having the minimum error as 
the class of the given test sample. 
As said earlier the work horse behind the GSC is the optimization problem (7). We propose 
a solution to this problem via an IRLS method.  
 
IRLS algorithm for l2,1 minimization 

Initialization – set δ(0) = 0 and find the initial 2
2ˆ(0) min || ||x y Ax  by conjugate 

gradient method. 
At iteration t – continue the following steps till convergence (i.e. either δ is less than 10-6 
or the number of iterations has reached maximum limit) 
1. Find the weights for each group (i) ( 1) 2 1/2

2(|| || ( ))k
i iw x t   . 

2. Form a diagonal weight matrix Wm having weights wi corresponding to each coefficient 
of the group xi.  
3. Form a new matrix, mL AW . 

4. Solve 2
2ˆ( ) min || ||u t y Lu  . 

5. Find x by rescaling u, ( ) ( )mx t W u t . 
6. Reduce δ by a factor of 10 if ||y-Ax||q has reduced. 

 
This algorithm is similar to the one in section 2.1 used for solving the sparse optimization 
problem except that the weight matrix is different. 

 
2.4 Fast Group Sparse Classification 
The Group Sparse Classifier [3] gives better results than the Sparse Classifier [2] but is 
slower. In a very recent work [8] we proposed alternate greedy algorithms for group sparse 
classification and were able to increase the operating speed by two orders of magnitude. 
These classifiers were named Fast Group Sparse Classifiers (FGSC).  
FSC is built upon greedy approximation algorithms of the NP hard sparse optimization 
problem (10). Such greedy algorithms form a well studied topic in signal processing. 
Therefore it was straightforward to apply known greedy algorithms (such as OMP) to the 
sparse classification problem. Group sparsity promoting optimization however is not a 
vastly researched topic like sparse optimization. As previous work in group sparsity solely 
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rely on convex optimization. We had to develop a number of greedy algorithms as (fast and 
accurate) alternatives to convex group sparse optimization [8].  
All greedy group sparse algorithms approximate the problem 

2,0 2min || ||  subject to || ||x y Ax   . They work in a very intuitive way – first they try 

to identify the group which has non-zero coefficients. Once the group is identified, the 
coefficients for the group indices are estimated by some simple means. There are several 
ways to approximate the NP hard problem. It is not possible to discuss all of them in this 
chapter. We discuss the Group Orthogonal Matching Pursuit (GOMP) algorithm. The 
interested reader can peruse [8] for other methods to solve this problem. 
 
GOMP Algorithm 

Inputs: the measurement vector y (mX1), the measurement matrix A (mXn), the group 
labels and the error tolerance η.  
Output: the estimated sparse signal x. 
Initialize: the residual 0r y , the index set 0  , the matrix of chosen atoms 

0  , and the iteration counter t = 1. 

1. At iteration t, compute 1( ) | , |, 1...t jj r j n      

2. Group selection – select the class with the maximum average correlation 

1... 1

1arg max( ( ))
in

t
i C i j

j
n

 
 

  , denote it by ( )tclass  . 

3. Augment the index set 1 ( )t t tclass     and the matrix of the chosen atoms 

1 ( )[  ]
tt t classA    .  

4. Get the new signal estimate using 2
2min || ||t tx

x y . 

5. Calculate the new approximation and the residual t t ta x  and t tr y a  . 

Increment t and return to step 1 if || ||tr  . 

 
The classification method for the GSC and the FGSC are the same. Only the convex 
optimization of step of the former is replaced by a greedy algorithm in the latter. 

 
2.5 Nearest Subspace Classifier 
The Nearest Subspace Classifier (NSC) [9] makes a novel classification assumption – 
samples from each class lie on a hyper-plane specific to that class. According to this 
assumption, the training samples of a particular class span a subspace. Thus the problem of 
classification is to find the correct hyperplane for the test sample. According to this 
assumption, any new test sample belonging to that class can thus be represented as a linear 
combination of the test samples, i.e.  
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kn

k test k i k i k
i

v v 


    (8) 

where ,k testv is the test sample (i.e. the vector of features) assumed to belong to the kth class, 

,k iv is the ith training sample of the kth class, and k is the approximation error for the kth 
class.  
Owing to the error term in equation (8), the relation holds for all the classes k=1…C. In such 
a situation, it is reasonable to assume that for the correct class the test sample has the 
minimum error k .  
To find the class that has the minimum error in equation (8), the coefficients ,k i  k=1…C 
must be estimated first. This can be performed by rewriting (8) in matrix-vector notation 
 
 ,k test k k kv V     (9) 

where ,1 ,2 ,[ | | ... | ]
kk k k k nV v v v and ,1 ,2 ,[ , ... ]

k

T
k k k k n    . 

The solution to (9) can be obtained by minimizing 
 

 2
, 2ˆ argmin || ||k k test kv V


    (10) 

 

The previous work on NSC [9] directly solves (10). However, the matrix Vk may be under-
determined, i.e. the number the number of samples may be greater than the dimensionality 
of the inputs. In such a case, instead of solving (10), Tikhonov regularization is employed so 
that the following is minimized 
 

 2 2
, 2 2ˆ argmin || || || ||k k test kv V


       (11) 

The analytical solution of (11) is 

 1
,ˆ ( )T T

k k k k k testV V I V v     (12) 

Plugging this expression in (9), and solving for the error term, we get 

 1
,( ( ) )T T

k k k k k k testV V V I V I v      (13) 

Based on equations (9-13) the Nearest Subspace Classifier algorithm has the following steps. 
 
NSC Algorithm 

Training 
1. For each class ‘k’, by computing the orthoprojector (the term in brackets in equation 
(13)). 
 
Testing 
2. Calculate the error for each class ‘k’ by computing the matrix vector product between 
the orthoprojector and vk,test. 
3. Classify the test sample as the class having the minimum error ( || ||k ). 
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3. CLASSIFICATION ROBUSTNESS TO DATA ACQUIRED BY CS 

The idea of using random projection for dimensionality reduction of face images was 
proposed in [1, 2]. It was experimentally shown that the Nearest Neighbor (NN) and the 
Sparse Classifier (SC) are robust to such dimensionality reduction. However the theoretical 
understanding behind the robustness to such dimensionality reduction was lacking there in. 
In this section, we will prove why all classifiers discussed in the previous section can be 
categorized as Compressive Classifiers. The two conditions that guarantee the robustness of 
CC under random projection are the following: 
Restricted Isometric Property (RIP) [10] – The l2-norm of a sparse vector is approximately 
preserved under a random lower dimensional projection, i.e. when a sparse vector x is 
projected by a random projection matrix A, then 2 2 2(1 ) || || || || (1 ) || ||x Ax x    . The 
constant δ is a RIP constant whose value depends on the type of the matrix A and the 
number of rows and columns of A and the nature of x. An approximate form (without 
upper and lower bounds) of RIP states 2 2|| || || ||Ax x . 
Generalized Restricted Isometric Property (GRIP) [11] – For a matrix A which satisfies RIP 

for inputs ix , the inner product of two vectors ( 2 2, || || || || cosw v w v    ) is 
approximately maintained under the random projection A, i.e. for two vectors x1 and x2 
(which satisfies RIP with matrix A), the following inequality is satisfied:  
 

1 2 2 2 1 2 1 2 2 2(1 ) || || || || cos[(1 3 ) ] , (1 ) || || || || cos[(1 3 ) ]m mx x Ax Ax x x            
 
The constants δ and δm depend on the dimensionality and the type of matrix A and also on 
the nature of the vectors. Even though the expression seems overwhelming, it can be simply 
stated as: the angle between two sparse vectors (θ) is approximately preserved under 
random projections. An approximate form of GRIP is 1 2 1 2, ,Ax Ax x x . 
RIP and the GRIP were originally proven for sparse vectors, but natural images are in 
general dense. We will show why these two properties are satisfied by natural images as 
well. Images are sparse in several orthogonal transform domains like DCT and wavelets. If I 
is the image and x is the transform domain representation, then 

     synthesis equation
       analysis equation

TI x
x I
 
  

where Φ is the sparsifying transform and x is sparse. 
Now if the sparse vector x is randomly projected by a Gaussian matrix A following RIP, 
then 

2 2

2 2

2 2

2 2

|| || || ||
|| || || ||   (by anaslysis equation)
|| || || ||   (   is orthogonal)
|| || || || ,   B = A

Ax x
A I I
A I I
BI I


   
   
  



 
Since Φ is an orthogonal matrix, the matrix AΦ (=B) is also Gaussian, being formed by a 
linear combination of i.i.d. Gaussian columns. Thus it is seen how the RIP condition holds 
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Since Φ is an orthogonal matrix, the matrix AΦ (=B) is also Gaussian, being formed by a 
linear combination of i.i.d. Gaussian columns. Thus it is seen how the RIP condition holds 

for dense natural images. This fact is the main cornerstone of all compressed sensing 
imaging applications. In a similar manner it can be also shown that the GRIP is satisfied by 
natural images as well. 

 
3.1 The Nearest Neighbor Classifier 
The Nearest Neighbor (NN) is a compressive classifier. It was used for classification under 
RP dimensionality reduction in [1]. The criterion for NN classification depends on the 
magnitude of the distance between the test sample and each training sample. There are two 
popular distance measures –  
Euclidean distance ( , 2|| || , 1...  and 1...test i j iv v i C j n   )  

Cosine distance ( ,, , 1...  and 1...test i j iv v i C j n  ) 

It is easy to show that both these distance measures are approximately preserved under 
random dimensionality reduction, assuming that the random dimensionality reduction 
matrix A follows RIP with the samples v. Then following the RIP approximation, the 
Euclidean distance between samples is approximately preserved, i.e. 

, 2 , 2 , 2|| || || ( ) || || ( ) ||test i j test i j test i jAv Av A v v v v    
 

The fact that the Cosine distance is approximately preserved follows directly from the GRIP 
assumption 

, ,, ,test i j test i jAv Av v v . 

 
3.2 The Sparse and the Group Sparse Classifier 
In this subsection it will be shown why the Sparse Classifier and the Group Sparse Classifier 
can act as compressive classifiers. At the core of SC and GSC classifiers are the l1 
minimization and the l2,1 minimization optimization problems respectively 
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 (14) 

In compressive classification, all the samples are projected from a higher to a lower 
dimension by a random matrix A. Therefore the optimization is the following: 

 
1 , 2

2,1 , 2
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GSC-min || ||  subject to || ||
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The objective function does not change before and after projection, but the constraints do. 
We will show that the constraints of (14) and (15) are approximately the same; therefore the 
optimization problems are the same as well. The constraint in (15) can be represented as: 
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Since the constraints are approximately preserved and the objective function remains the 
same, the solution to the two optimization problems (14) and (15) will be approximately the 
same, i.e.   . 
In the classification algorithm for SC and GSC (this is also true for both the FSC, FGSC and 
NSC), the deciding factor behind the class of the test sample is the class-wise error  

, , , 2
1

( , ) || || , 1...
in

test k test i j i j
j

error v i v v i C


  
.  

We show why the class-wise error is approximately preserved after random projection. 

, , , 2
1

, , , 2
1

, , , 2
1

( , ) || ||

                       || ( ) ||

                       || ( ) || ,  due to RIP

i

i

i

n

test k test i j i j
j

n

k test i j i j
j

n

k test i j i j
j

error Av i Av A v

A v v

v v













 

 

 






 

As the class-wise error is approximately preserved under random projections, the 
recognition results too will be approximately the same. 
 
Fast Sparse and Fast Group Sparse Classifiers 
In the FSC and the FGSC classifiers, the NP hard optimization problem (14) is solved 
greedily. 
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The problem (14) pertains to the case of original data. When the samples are randomly 
projected, the problem has the following form: 
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We need to show that the results of greedy approximation to the above problems 
yields   . 
There are two main computational steps in the OMP/GOMP algorithms – i) the selection 
step, i.e the criterion for choosing the indices, and ii) the least squares signal estimation step. 
In order to prove the robustness of the OMP/GOMP algorithm to random projection, it is 
sufficient to show that the results from the aforesaid steps are approximately preserved. 
In OMP/GOMP, the selection is based on the correlation between the measurement matrix 

Φ and the observations y, i.e. T y . If we have 1and m n my  , then the correlation can be 

written as inner products between the columns of Φ and the vector y i.e. , , 1...i y i n  . 
After random projection, both columns of Φ and the measurement y are randomly sub-
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We need to show that the results of greedy approximation to the above problems 
yields   . 
There are two main computational steps in the OMP/GOMP algorithms – i) the selection 
step, i.e the criterion for choosing the indices, and ii) the least squares signal estimation step. 
In order to prove the robustness of the OMP/GOMP algorithm to random projection, it is 
sufficient to show that the results from the aforesaid steps are approximately preserved. 
In OMP/GOMP, the selection is based on the correlation between the measurement matrix 

Φ and the observations y, i.e. T y . If we have 1and m n my  , then the correlation can be 

written as inner products between the columns of Φ and the vector y i.e. , , 1...i y i n  . 
After random projection, both columns of Φ and the measurement y are randomly sub-

sampled by a random projection matrix A. The correlation can be calculated as 
, , 1...iA Ay i n  , which by GRIP can be approximated as , , 1...i y i n  .n Since the 

correlations are approximately preserved before and after the random projection, the 
OMP/GOMP selection is also robust under such random sub-sampling. 
The signal estimation step is also robust to random projection. The least squares estimation 
is performed as: 
 2min || ||y x  (17) 
 
The problem is to estimate the signal x, from measurements y given the matrix Φ.  
Both y and Φ are randomly sub-sampled by a random projection matrix A which satisfies 
RIP. Therefore, the least squares problem in the sub-sampled case takes the form 
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Thus the signal estimate x, obtained by solving the original least squares problem (22) and 
the randomly sub-sampled problem are approximately the same. 
The main criterion of the FSC and the FGSC classification algorithms is the class-wise error. 
It has already been shown that the class-wise error is approximately preserved after random 
projection. Therefore the classification results before and after projection will remain 
approximately the same. 
3.3 Nearest Subspace Classifier 
The classification criterion for the NSC is the norm of the class-wise error expressed as 
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We need to show that the class-wise error is approximately preserved after a random 
dimensionality reduction. When both the training and the test samples are randomly 
projected by a matrix A, the class-wise error takes the form 
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Since the norm of the class-wise error is approximately preserved under random 
dimensionality reduction, the classification results will also remain approximately the same. 
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4. EXPERIMENTAL RESULTS 

As mentioned in section 2, compressive classifiers should meet two challenges. First and 
foremost it should have classification accuracy comparable to traditional classifiers. 
Experiments for general purpose classification are carried out on some benchmark databases 
from the University of California Irvine Machine Learning (UCI ML) repository [12] to 
compare the new classifiers (SC, FSC, GSC, FGSC and NSC) with the well known NN. We 
chose those databases that do not have missing values in feature vectors or unlabeled 
training data. The results are tabulated in Table 1. The results show that the classification 
accuracy from the new classifiers are better than NN. 
 

Dataset SC FSC GSC FGSC NSC NN-
Euclid 

NN-
Cosine 

Page Block 94.78 94.64 95.66 95.66 95.01 93.34 93.27 
Abalone 27.17 27.29 27.17 26.98 27.05 26.67 25.99 
Segmentation 96.31 96.10 94.09 94.09 94.85 96.31 95.58 
Yeast 57.75 57.54 58.94 58.36 59.57 57.71 57.54 
German Credit 69.30 70.00 74.50 74.50 72.6 74.50 74.50 
Tic-Tac-Toe 78.89 78.28 84.41 84.41 81.00 83.28 82.98 
Vehicle 65.58 66.49 73.86 71.98 74.84 73.86 71.98 
Australian Cr. 85.94 85.94 86.66 86.66 86.66 86.66 86.66 
Balance Scale 93.33 93.33 95.08 95.08 95.08 93.33 93.33 
Ionosphere 86.94 86.94 90.32 90.32 90.32 90.32 90.32 
Liver 66.68 65.79 70.21 70.21 70.21 69.04 69.04 
Ecoli 81.53 81.53 82.88 82.88 82.88 80.98 81.54 
Glass 68.43 69.62 70.19 71.02 69.62 68.43 69.62 
Wine 85.62 85.62 85.62 85.95 82.58 82.21 82.21 
Iris 96.00 96.00 96.00 96.00 96.00 96.00 96.00 
Lymphography 85.81 85.81 86.42 86.42 86.42 85.32 85.81 
Hayes Roth 40.23 43.12 41.01 43.12 43.12 33.33 33.33 
Satellite 80.30 80.30 82.37 82.37 80.30 77.00 77.08 
Haberman 40.52 40.85 43.28 43.28 46.07 57.40 56.20 

Table 1. Recognition Accuracy (%age) 
 
The second challenge the Compressive Classifiers should meet is that their classification 
accuracy should approximately be the same, when sparsifiable data is randomly sub-
sampled by RIP matrices. In section 3 we have already proved the robustness of these 
classifiers. The experimental verification of this claim is shown in table 2. It has already been 
mentioned (section 3) that images follow RIP with random matrices having i.i.d Gaussian 
columns normalized to unity.  
The face recognition experiments were carried out on the Yale B face database. The images 
are stored as 192X168 pixel grayscale images. We followed the same methodology as in [2]. 
Only the frontal faces were chosen for recognition. Half of the images (for each individual) 
were selected for training and the other half for testing. The experiments were repeated 5 
times with 5 sets of random splits. The average results of 5 sets of experiments are shown in 
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4. EXPERIMENTAL RESULTS 

As mentioned in section 2, compressive classifiers should meet two challenges. First and 
foremost it should have classification accuracy comparable to traditional classifiers. 
Experiments for general purpose classification are carried out on some benchmark databases 
from the University of California Irvine Machine Learning (UCI ML) repository [12] to 
compare the new classifiers (SC, FSC, GSC, FGSC and NSC) with the well known NN. We 
chose those databases that do not have missing values in feature vectors or unlabeled 
training data. The results are tabulated in Table 1. The results show that the classification 
accuracy from the new classifiers are better than NN. 
 

Dataset SC FSC GSC FGSC NSC NN-
Euclid 

NN-
Cosine 
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Vehicle 65.58 66.49 73.86 71.98 74.84 73.86 71.98 
Australian Cr. 85.94 85.94 86.66 86.66 86.66 86.66 86.66 
Balance Scale 93.33 93.33 95.08 95.08 95.08 93.33 93.33 
Ionosphere 86.94 86.94 90.32 90.32 90.32 90.32 90.32 
Liver 66.68 65.79 70.21 70.21 70.21 69.04 69.04 
Ecoli 81.53 81.53 82.88 82.88 82.88 80.98 81.54 
Glass 68.43 69.62 70.19 71.02 69.62 68.43 69.62 
Wine 85.62 85.62 85.62 85.95 82.58 82.21 82.21 
Iris 96.00 96.00 96.00 96.00 96.00 96.00 96.00 
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Hayes Roth 40.23 43.12 41.01 43.12 43.12 33.33 33.33 
Satellite 80.30 80.30 82.37 82.37 80.30 77.00 77.08 
Haberman 40.52 40.85 43.28 43.28 46.07 57.40 56.20 
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The second challenge the Compressive Classifiers should meet is that their classification 
accuracy should approximately be the same, when sparsifiable data is randomly sub-
sampled by RIP matrices. In section 3 we have already proved the robustness of these 
classifiers. The experimental verification of this claim is shown in table 2. It has already been 
mentioned (section 3) that images follow RIP with random matrices having i.i.d Gaussian 
columns normalized to unity.  
The face recognition experiments were carried out on the Yale B face database. The images 
are stored as 192X168 pixel grayscale images. We followed the same methodology as in [2]. 
Only the frontal faces were chosen for recognition. Half of the images (for each individual) 
were selected for training and the other half for testing. The experiments were repeated 5 
times with 5 sets of random splits. The average results of 5 sets of experiments are shown in 

table 2. The first column of the following table indicates the number of lower dimensional 
projections (1/32, 1/24, 1/16 and 1/8 of original dimension). 

Dimensionality SC FSC GSC FGSC NSC NN-
Euclid 

NN-
Cosine 

30 82.73 82.08 85.57 83.18 87.68 70.39 70.16 
56 92.60 92.34 92.60 91.83 91.83 75.45 75.09 
120 95.29 95.04 95.68 95.06 93.74 78.62 78.37 
504 98.09 97.57 98.09 97.21 94.42 79.13 78.51 
Full 98.09 98.09 98.09 98.09 95.05 82.08 82.08 

Table 2. Recognition Results (%) on Yale B (RP) 
 
Table 2 shows that the new compressive classifiers are way better than the NN classifiers in 
terms of recognition accuracy. The Group Sparse Classifier gives by far the best results. All 
the classifiers are relatively robust to random sub-sampling. The results are at par with the 
ones obtained from the previous study on Sparse Classification [2]. 
The compressive classifiers have the special advantage of being robust to dimensionality 
reduction via random projection. However, they can be used for any other dimensionality 
reduction as well. In Table 3, the results of compressive classification on PCA 
dimensionality reduced data is shown for the Yale B database. 

Dimensionality SC FSC GSC FGSC NSC NN-
Euclid 

NN-
Cosine 

30 83.10 82.87 86.61 84.10 88.92 72.50 71.79 
56 92.83 92.55 93.40 92.57 92.74 78.82 77.40 
120 95.92 95.60 96.15 95.81 94.98 84.67 82.35 
504 98.09 97.33 98.09 98.09 95.66 88.95 86.08 
Full 98.09 98.09 98.09 98.09 96.28 89.50 88.00 

Table 3. Recognition Results (%) on Yale B (PCA) 
 
Experimental results corroborate our claim regarding the efficacy of compressive classifiers. 
Results for Table 1 indicate that they can be used for general purpose classification. Table 2 
successfully verifies the main claim of this chapter, i.e. the compressive classifiers are robust 
to dimensionality reduction via random projection. In Table 3, we show that the 
compressive classifiers are also applicable to data whose dimensionality has been reduced 
by standard techniques like PCA. 

 
5. CONCLUSION 

This chapter reviews an alternate face recognition method than those provided by 
traditional machine learning tools. Conventional machine learning solutions to 
dimensionality reduction and classification require all the data to be present beforehand, i.e. 
whenever new data is added, the system cannot be updated in online fashion, rather all the 
calculations need to be re-done from scratch. This creates a computational bottleneck for 
large scale implementation of face recognition systems.  
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The face recognition community has started to appreciate this problem in the recent past 
and there have been some studies that modified the existing dimensionality reduction 
methods for online training [13, 14]. The classifier employed along with such online 
dimensionality reduction methods has been the traditional Nearest Neighbour. 
This work addresses the aforesaid problem from a completely different perspective. It is 
based on recent theoretical breakthroughs in signal processing [15, 16]. It advocates 
applying random projection for dimensionality reduction. Such dimensionality reduction 
necessitates new classification algorithms. This chapter assimilates some recent studies in 
classification within the unifying framework of compressive classification. The Sparse 
Classifier [2] is the first of these. The latter ones like the Group Sparse Classifier [3], Fast 
Group Sparse Classifier [8] and Nearest Subspace Classifier [9] were proposed by us. The 
Fast Sparse Classifier has been proposed for the first time in this chapter.  
For each of the classifiers, their classification algorithms have been written concisely in the 
corresponding sub-sections. Solutions to different optimization problems required by the 
classifiers are presented in a fashion that can be implemented by non-experts. Moreover the 
theoretical understanding behind the different classifiers is also provided in this chapter. 
These theoretical proofs are thoroughly validated by experimental results. 
It should be remembered that the classifiers discussed in this chapter can be used with other 
dimensionality reduction techniques as well such as – Principal Component Analysis, 
Linear Discriminant Analysis and the likes. In principle the compressive classifiers can be 
employed in any classification task as better substitutes for the Nearest Neighbour classifier. 
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