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1. Introduction 

Driven by the demanding of public security, face recognition has emerged as a viable 
solution and achieved comparable accuracies to fingerprint system under controlled 
lightning environment. In recent years, with wide installing of camera in open area, the 
automatic face recognition in watch-list application is facing a serious problem. Under the 
open environment, lightning changes is unpredictable, and the performance of face 
recognition degrades seriously. 
Illumination processing is a necessary step for face recognition to be useful in the 
uncontrolled environment. NIST has started a test called FRGC to boost the research in 
improving the performance under changing illumination. In this chapter, we will focus on 
the research effort made in this direction and the influence on face recognition caused by 
illumination. 
First of all, we will discuss the quest on the image formation mechanism under various 
illumination situations, and the corresponding mathematical modelling. The Lambertian 
lighting model, bilinear illuminating model and some recent model are reviewed. Secondly, 
under different state of face, like various head pose and different facial expression, how 
illumination influences the recognition result, where the different pose and illuminating will 
be examined carefully. Thirdly, the current methods researcher employ to counter the change 
of illumination to maintain good performance on face recognition are assessed briefly. The 
processing technique in video and how it will improve face recognition on video, where 
Wang’s (Wang & Li, 2009) work will be discussed to give an example on the related 
advancement in the fourth part. And finally, the current state-of-art of illumination 
processing and its future trends will be discussed. 

 
2. The formation of camera imaging and its difference from the human visual 
system 

With the camera invented in 1814 by Joseph N, recording of human face began its new era. 
Since we do not need to hire a painter to draw our figures, as the nobles did in the middle 
age. And the machine recorded our image as it is, if the camera is in good condition.  
Currently, the imaging system is mostly to be digital format. The central part is CCD 
(charge-coupled device) or CMOS (complimentary metal-oxide semiconductor). The 
CCD/CMOS operates just like the human eyes. Both CCD and CMOS image sensors operate 
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in the same manner -- they have to convert light into electrons. One simplified way to think 
about the sensor used in a digital camera is to think of it as having a 2-D array of thousands 
or millions of tiny solar cells, each of which transforms the light from one small portion of the 
image into electrons. The next step is to read the value (accumulated charge) of each cell in 
the image. In a CCD device, the charge is actually transported across the chip and read at one 
corner of the array. An analog-to-digital converter turns each pixel's value into a digital 
value. And the value is mapping to the pixel value in the memory, thus forming the given 
object image. Although they shared lots of similarity as human eyes，however, the 
impression is different. One of the advantage of human visual system is the human eye could 
view color constantly regardless of the luminance value in the surrounding. People with 
normal visual capabilities could recall the leave of tree is always green either in the morning, 
at the noon, or in the dust of sunset. Color constancy is subjective constancy, it remains 
relatively constant under normal variation situation. This phenomena was explained by N. 
Daw (Conway & Livingstone, 2006) using the Double-opponent cells, later E. land developed 
retinex theory to explain it (Am. Sci., 1963). However, for the CCD/CMOS, the formed color 
of the leave of the tree is related to the surrounding luminance value greatly. Thus, the 
difference between them is the reason that there should be some difference in the face 
recognition between human and machine. Machine could not take it for granted the 
appearance has some ignorance of its surrounding luminance value.  
 
Human gets the perception of objects from the radiance reflected by the objects. Usually, the 
reflection from most objects is scattered reflection. Unlike reflected by smooth surface, the 
ray is deflected in random directions by irregularities in the propagation medium.  

Fig. 1. Diagram of diffuse reflection (taken from the wikipedia.org) 
 

If it is captured by eyes of human being, then perception could be fulfilled. Illumination 
independent image representation is an important research topic for face recognition. The 
face images were recorded under tightly controlled condition, where different pose, various 
distance, and different facial expression were presented. The edge maps, Gabor-filtered 
images, and the derivative of gray image were tried, but none of them could achieve the 
goal to be illumination independent, and none of these works provided a good enough 
framework to overcome the influence of various lighting condition. 

 
3. Models for illumination 

To overcome the problem, some mathematical models describing the reflectance of object in 
computer graphics were utilized to recover the facial image under various lighting condition. 
Image of a human face is the projection of its three-dimensional head on a plane, the 
important factors influencing the image representation is the irradiance. In computer 
graphics, Lambertian surface (Angel, 2003) is used to model the object surface’s irradiance. 
The surface is called Lambertian surface if light falling on it is scattered such that the 
apparent brightness of the surface to an observer is the same regardless of the observer's 
angle of view. It could be modeled mathematically as in the following equation (1), where 
I�x, y� is the image irradiance, ρ is the surface reflectance of the object, ��x, y� is the surface 
normal vector of object surface, and s is the incidence ray. 
 

I�x, y� � ρ�x, y���x, y�T · s                          (1) 
 

The Lambertian surface luminance could be called to be isotropic technically. Recently, 
Shashua and Riklin-Raviv (Shashua & Riklin-Raviv, 2001) proposed a method to extract the 
object’s surface reflectance as an illumination invariant description. The method is called 
quotient image, which is extracted from several sample image of the object. The quotient 
image is defined as shown in equation 2, using the quotient image, it could recover image 
under some different lighting condition. It is reported outperformed the PCA. However, it 
works in very limited situation. 
 

Q� � I�
I� �

����,���T�
����,���T� �

����,��
����,��                         (2) 

 
Basri and Jacobs (Basri & Jacobs, 2003) illustrated that the illumination cone of a convex 
Lambertian surface could be represented by a nine-dimensional linear subspaces. In some 
limited environment, it could achieve some good performance. Further, Gross et al. (Gross et 
al., 2002) proposed a similar method called Eigen light-fields. This method claimed to only 
have one gallery and one probe image to estimate the light-field of the subject head, there is 
none further requirement on the subject pose and illumination value. And the authors 
declared that the performance of the proposed method on the CMU PIE database (Sim et al., 
2002) is much better than that of other related algorithm.  
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The assumption of Lambertian model requires perfect situation, E. Nicodemus (Nicodemus, 
1965) put forward a theory called BRDF (bidirectional reflectance distribution function) later. 
The BRDF is a four-dimensional function that defines how light is reflected at an opaque 
surface. The function takes an incoming light direction ω�, and outgoing direction ω�, both 
defined with respect to the surface normal n, and returns the ratio of reflected radiance 
exiting along ω� to the irradiance incident on the surface from direction ω�, Note that each 
direction ω is itself parameterized by azimuth angle φ and zenith angle θ, therefore the 
BRDF as a whole is 4-dimensional. BRDF is used in the field of modelling the reflectance on 
an opaque surface. These parameters could be illustrated in Fig. 2. 
 

Fig. 2. Diagram showing BRDF, ω� points toward the light source. ω� points toward the 
viewer (camera). n is the surface normal 
 
BRDF model is extensively used in the rendering artificial illuminating effects in computer 
graphics. To counter the effect of illumination variation, we could artificial render the 
different lighting situation by using this model. Comparing with Lambertain model, BRDF is 
of 4 dimensions, the complexity of related computation process is very large. Also, inverting 
the rendering situation is an ill posed problem, the equation must try some assumptions in 
serial to solve this problem. Thus, the efforts to employ BRDF model to attack the 
illumination is not successful currently. 
The above models are general approaches to illumination invariant presentation; they have 
no requirement on the content of the image. However, recently years, there is lots of work 
towards to make human face image independent of illuminance, and it will be discussed 
thoroughly in the next section. 

 
4. Current Approaches of Illumination Processing in Face Recognition 

Many papers have been published to study on illumination processing in face recognition in 
the recent years. By now, these approaches can be divided into two categories: passive 
approaches and active approaches (Zou et al., 2007, a). 

4.1 Passive Approaches 
The idea of passive approaches: attempt to overcome illumination variation problem from 
images or video sequences in which face appearance has been altered due to environmental 
illumination change. Furthermore, this category can be subdivided into three classes at least, 
described as follows. 

 
4.1.1 Photometric Normalization 
Illumination variation can be removed: the input face images can be normalized to some 
state where comparisons are more reliable. 
Mauricio and Roberto (Villegas & Paredes, 2005) divided photometric normalization 
algorithms into two types: global normalization methods and local normalization methods. 
The former type includes gamma intensity correction, histogram equalization, histogram 
matching and normal distribution. The latter includes local histogram equalization, local 
histogram matching and local normal distribution. Each method was tested on the same face 
databases: the Yale B (Georghiades et al., 2000) and the extended Yale B (Georghiades et al., 
2001) face database. The results showed that local normal distribution achieves the most 
consistent result. Short. et al. (Short et al., 2004) compared five classic photometric 
normalization methods: a method based on principal component analysis, multiscale retinex 
(Rahman et al., 1997), homomorphic filtering, a method using isotropic smoothing to 
estimate the luminance function and one using anisotropic smoothing (Gross & Brajovic, 
2003). The methods were tested extensively across the Yale B, XM2VTS (Messer et al., 1999) 
and BANCA (Kittler et al., 2000) face databases using numerous protocols. The results 
showed that the anisotropic method yields the best performance across all three databases. 
Some of photometric normalization algorithms are illuminated in detail as follows. 

 
4.1.1.1 Histogram Equalization 
Histogram equalization (HE) is a classic method. It is commonly used to make an image with 
a uniform histogram, which is considered to produce an optimal global contrast in the image. 
However, HE may make an image under uneven illumination turn to be more uneven. 
S.M. Pizer and E.P. Amburn (Pizer & Amburn, 1987) proposed adaptive histogram 
equalization (AHE). It computes the histogram of a local image region centered at a given 
pixel to determine the mapped value for that pixel; this can achieve a local contrast 
enhancement. However, the enhancement often leads to noise amplification in “flat” regions, 
and “ring” artifacts at strong edges. In addition, this technique is computationally intensive. 
Xudong Xie and Kin-Man Lam (Xie & Lam, 2005) proposed another local histogram 
equalization method, which is called block-based histogram equalization (BHE). The face 
image can be divided into several small blocks according to the positions of eyebrows, eyes, 
nose and mouth. Each block is processed by HE. In order to avoid the discontinuity between 
adjacent blocks, they are overlapped by half with each other. BHE is simple so that the 
computation required of BHE is much lower than that of AHE. The noise produced by BHE 
is also very little. 

 
4.1.1.2 Gamma Intensity Correction 
Shan et al. (Shan et al., 2003) proposed Gamma Intensity Correction (GIC) for illumination 
normalisation. The gamma transform of an image is a pixel transform by: 



Illumination	Processing	in	Face	Recognition 191

The assumption of Lambertian model requires perfect situation, E. Nicodemus (Nicodemus, 
1965) put forward a theory called BRDF (bidirectional reflectance distribution function) later. 
The BRDF is a four-dimensional function that defines how light is reflected at an opaque 
surface. The function takes an incoming light direction ω�, and outgoing direction ω�, both 
defined with respect to the surface normal n, and returns the ratio of reflected radiance 
exiting along ω� to the irradiance incident on the surface from direction ω�, Note that each 
direction ω is itself parameterized by azimuth angle φ and zenith angle θ, therefore the 
BRDF as a whole is 4-dimensional. BRDF is used in the field of modelling the reflectance on 
an opaque surface. These parameters could be illustrated in Fig. 2. 
 

Fig. 2. Diagram showing BRDF, ω� points toward the light source. ω� points toward the 
viewer (camera). n is the surface normal 
 
BRDF model is extensively used in the rendering artificial illuminating effects in computer 
graphics. To counter the effect of illumination variation, we could artificial render the 
different lighting situation by using this model. Comparing with Lambertain model, BRDF is 
of 4 dimensions, the complexity of related computation process is very large. Also, inverting 
the rendering situation is an ill posed problem, the equation must try some assumptions in 
serial to solve this problem. Thus, the efforts to employ BRDF model to attack the 
illumination is not successful currently. 
The above models are general approaches to illumination invariant presentation; they have 
no requirement on the content of the image. However, recently years, there is lots of work 
towards to make human face image independent of illuminance, and it will be discussed 
thoroughly in the next section. 

 
4. Current Approaches of Illumination Processing in Face Recognition 

Many papers have been published to study on illumination processing in face recognition in 
the recent years. By now, these approaches can be divided into two categories: passive 
approaches and active approaches (Zou et al., 2007, a). 

4.1 Passive Approaches 
The idea of passive approaches: attempt to overcome illumination variation problem from 
images or video sequences in which face appearance has been altered due to environmental 
illumination change. Furthermore, this category can be subdivided into three classes at least, 
described as follows. 

 
4.1.1 Photometric Normalization 
Illumination variation can be removed: the input face images can be normalized to some 
state where comparisons are more reliable. 
Mauricio and Roberto (Villegas & Paredes, 2005) divided photometric normalization 
algorithms into two types: global normalization methods and local normalization methods. 
The former type includes gamma intensity correction, histogram equalization, histogram 
matching and normal distribution. The latter includes local histogram equalization, local 
histogram matching and local normal distribution. Each method was tested on the same face 
databases: the Yale B (Georghiades et al., 2000) and the extended Yale B (Georghiades et al., 
2001) face database. The results showed that local normal distribution achieves the most 
consistent result. Short. et al. (Short et al., 2004) compared five classic photometric 
normalization methods: a method based on principal component analysis, multiscale retinex 
(Rahman et al., 1997), homomorphic filtering, a method using isotropic smoothing to 
estimate the luminance function and one using anisotropic smoothing (Gross & Brajovic, 
2003). The methods were tested extensively across the Yale B, XM2VTS (Messer et al., 1999) 
and BANCA (Kittler et al., 2000) face databases using numerous protocols. The results 
showed that the anisotropic method yields the best performance across all three databases. 
Some of photometric normalization algorithms are illuminated in detail as follows. 

 
4.1.1.1 Histogram Equalization 
Histogram equalization (HE) is a classic method. It is commonly used to make an image with 
a uniform histogram, which is considered to produce an optimal global contrast in the image. 
However, HE may make an image under uneven illumination turn to be more uneven. 
S.M. Pizer and E.P. Amburn (Pizer & Amburn, 1987) proposed adaptive histogram 
equalization (AHE). It computes the histogram of a local image region centered at a given 
pixel to determine the mapped value for that pixel; this can achieve a local contrast 
enhancement. However, the enhancement often leads to noise amplification in “flat” regions, 
and “ring” artifacts at strong edges. In addition, this technique is computationally intensive. 
Xudong Xie and Kin-Man Lam (Xie & Lam, 2005) proposed another local histogram 
equalization method, which is called block-based histogram equalization (BHE). The face 
image can be divided into several small blocks according to the positions of eyebrows, eyes, 
nose and mouth. Each block is processed by HE. In order to avoid the discontinuity between 
adjacent blocks, they are overlapped by half with each other. BHE is simple so that the 
computation required of BHE is much lower than that of AHE. The noise produced by BHE 
is also very little. 

 
4.1.1.2 Gamma Intensity Correction 
Shan et al. (Shan et al., 2003) proposed Gamma Intensity Correction (GIC) for illumination 
normalisation. The gamma transform of an image is a pixel transform by: 



Face	Recognition192

G�x, y� � I�x, y�� �⁄                               (3) 
 

where G�x, y� is the output image; I�x, y� is the input image; γ is the Gamma coefficient. 
With the value γ varying, the output image is darker or brighter. In GIC, the image G�x, y� 
is transformed as to best match a canonically illuminated image IC�x, y�. To find the best 
optimal γ, the value should be subject to: 
 

γ � a�g����� ∑ �I�x, y�� ��⁄ � IC�x, y����,�                    (4) 

 
4.1.1.3 LogAbout 
To solve illumination problem, Liu et al. (Liu et al., 2001) proposed the LogAbout method 
which is an improved logarithmic transformations as the following equation: 
 

g�x, y� � a � ������,�����
� �� �                            (5) 

 
where g�x, y� is the output image; f�x, y� is the input image; a, b and c are parameters 
which control the location and shape of the logarithmic distribution. 
Logarithmic transformations enhance low gray levels and compress the high ones. They are 
useful for non-uniform illumination distribution and shadowed images. However, they are 
not effective for high bright images. 

 
4.1.1.4 Sub-Image Homomorphic Filtering 
In Sub-Image Homomorphic filtering method (Delac et al., 2006), the original image is split 
vertically in two halves, generating two sub-images from the original one (see the upper part 
of Fig. 3). Afterwards, a Homomorphic Filtering is applied in each sub-image and the 
resultant sub-images are combined to form the whole image. The filtering is subject to the 
illumination reflectance model as follows: 
 

I�x, y� � R�x, y� · L�x, y�                          (6) 
 

where I�x, y� is the intensity of the image; R�x, y� is the reflectance function, which is the 
intrinsic property of the face; L�x, y� is the luminance function. 
Based on the assumption that the illumination varies slowly across different locations of the 
image and the local reflectance changes quickly across different locations, a high-pass 
filtering can be performed on the logarithm of the image I�x, y� to reduce the luminance 
part, which is the low frequency component of the image, and amplify the reflectance part, 
which corresponds to the high frequency component.  

Similarly, the original image can also be divided horizontally (see the lower part of Fig. 3), 
and the same procedure is applied. But the high pass filter can be different. At last, the two 
resultant images are grouped together in order to obtain the output image. 
 

Fig. 3. Sub-image Homomorphic filtering 

 
4.1.2 Illumination Variation Modeling 
Some papers attempt to model the variation caused by changes in illumination, so as to 
generate a template that encompasses all possible environmental changes. The modeling of 
faces under varying illumination can be based on a statistical model or a physical model. For 
statistical model, no assumption concerning the surface property is needed. Statistical 
analysis techniques, such as PCA and LDA, are applied to the training set which contains 
faces under different illuminations to achieve a subspace which covers the variation of 
possible illumination. For physical model, the model of the process of image formation is 
based on the assumption of certain object surface reflectance properties, such as Lambertian 
reflectance (Basri & Jacobs, 2003). Here we also introduce some classic algorithms on both 
aspects. 

 
4.1.2.1 Illumination Cone 
Belhumeur and Kriegman (Belhumeur & Kriegman, 1998) proposed a property of images 
called the illumination cone. This cone (a convex polyhedral cone in IRn and with a 
dimension equal to the number of surface normals) can be used to generate and recognize 
images with novel illumination conditions. 
This illumination cone can be constructed from as few as three images of the surface, each 
under illumination from an unknown point source. The original concept of the illumination 
cone is based on two major assumptions: a) the surface of objects has Lambertian reflectance 
functions; b) the object's surface is convex in shape. 
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Every object has its own illumination cone, the entirety of which is a set of images of the 
object under all possible lighting conditions, and each point on the cone is an image with a 
unique configuration of illumination conditions. The set of n-pixel images of any object seen 
under all possible lighting conditions is a convex cone in IRn. 
Georghiades et al. (Georghiades et al., 1998; Georghiades et al., 2001) have used the 
illumination cone to further show that, using a small number of training images, the shape 
and albedo of an object can be reconstructed and that this reconstruction can serve as a model 
for recognition or generation of novel images in various illuminations. The illumination cone 
models the complete set of images of an object with Lambertian reflectance under an 
arbitrary combination of point light sources at infinity. So for a fixed pose, an image can be 
generated at any position on the cone which is a superposition of the training data (see Fig. 
4). 
 

Fig. 4. An example of the generation of novel data from an illumination curve 

 
4.1.2.2 3D Linear Subspace 
Belhumeur et al. (Belhumeur et al., 1997) presented 3D linear subspace method for 
illumination invariant face recognition, which is a variant of the photometric alignment 
method. In this linear subspace method, three or more images of the same face under 
different lighting are used to construct a 3D basis for the linear subspace. The recognition 
proceeds by comparing the distance between the test image and each linear subspace of the 
faces belonging to each identity. 
Batur and Hayes (Batur & Hayes, 2001) proposed a segmented linear subspace model to 
generalize the 3D linear subspace model so that it is robust to shadows. Each image in the 
training set is segmented into regions that have similar surface normals by K-Mean 
clustering, then for each region a linear subspace is estimated. Any estimation only relies on 
a specific region, so it is not influenced by the regions in shadow. 
Due to the complexity of illumination cone, Batur and Hayes (Batur & Hayes, 2004) proposed 
a segmented linear subspace model to approximate the cone. The segmentation is based on 
the fact that the success of low dimensional linear subspace approximations of the 
illumination cone increases if the directions of the surface normals get close to each other. 
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The face image pixels are clustered according to the angles between their normals and apply 
the linear subspace approximation to each of these clusters separately. They also presented a 
way of finding the segmentation by running a simple K-means algorithm on a few training 
images, without ever requiring to obtain a 3D model for the face. 

 
4.1.2.3 Spherical Harmonics 
Ravi Ramamoorthi and Pat Hanrahan (Ramamoorthi & Hanrahan, 2001) presented spherical 
harmonics method. Basri and Jacobs (Basri & Jacobs, 2003) showed that, a low-dimensional 
linear subspace can approximate the set of images of a convex Lambertian object obtained 
under a wide variety of lighting conditions which can be represented by Spherical 
Harmonics. 
Zhang and Samaras (Zhang & Samaras, 2004) combined the strengths of Morphable models 
to capture the variability of 3D face shape and a spherical harmonic representation for the 
illumination. The 3D face is reconstructed from one training sample under arbitrary 
illumination conditions. With the spherical harmonics illumination representation, the 
illumination coefficients and texture information can be estimated. Furthermore, in another 
paper (Zhang & Samaras, 2006), 3D shape information is neglected. 

 
4.1.3 Illumination Invariant Features 
Many papers attempt to find some face feature which is insensitive to the change in 
illumination. With the feature, the varying illumination on face cannot influence the 
recognition result. In other words, we can eliminate the illumination factor from the face 
image. The best way is to separate the illumination information from the identity information 
clearly. Here some algorithms are listed as follows. 

 
4.1.3.1 Edge-based Image 
Gao and Leung (Gao & Leung, 2002) proposed the line edge map to represent the face image. 
The edge pixels are grouped into line segments, and a revised Hausdorff Distance is 
designed to measure the similarity between two line segments. In the HMM-based face 
recognition algorithms, 2D discrete cosine transform (DCT) is often used for generating 
feature vectors. For eliminating the varying illumination influence, Suzuki and Shibata 
(Suzuki & Shibata, 2006) presented a directional edge-based feature called averaged 
principal-edge distribution (APED) to replace the DCT feature. APED feature is generated 
from the spatial distributions of the four directional edges (horizontal, +45o, vertical, and 
−45o). 

 
4.1.3.2 Gradient-based Image 
Given two images I  and J  of some plannar Lambertian object taken under the same 
viewpoint, their gradient-based image �I and �J must be parallel at every pixel where they 
are difined. Probabilistically, the distribution of pixel values under varying illumination may 
be random, but the distribution of image gradients is not. 
Chen et al. (Chen et al., Chen) showed that the probability distribution of the image gradient 
is a function of the surface geometry and reflectance, which are the intrinsic properties of the 
face. The direction of image gradient is revealed to be insensitive to illumination change. S. 
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Every object has its own illumination cone, the entirety of which is a set of images of the 
object under all possible lighting conditions, and each point on the cone is an image with a 
unique configuration of illumination conditions. The set of n-pixel images of any object seen 
under all possible lighting conditions is a convex cone in IRn. 
Georghiades et al. (Georghiades et al., 1998; Georghiades et al., 2001) have used the 
illumination cone to further show that, using a small number of training images, the shape 
and albedo of an object can be reconstructed and that this reconstruction can serve as a model 
for recognition or generation of novel images in various illuminations. The illumination cone 
models the complete set of images of an object with Lambertian reflectance under an 
arbitrary combination of point light sources at infinity. So for a fixed pose, an image can be 
generated at any position on the cone which is a superposition of the training data (see Fig. 
4). 
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The face image pixels are clustered according to the angles between their normals and apply 
the linear subspace approximation to each of these clusters separately. They also presented a 
way of finding the segmentation by running a simple K-means algorithm on a few training 
images, without ever requiring to obtain a 3D model for the face. 
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Ravi Ramamoorthi and Pat Hanrahan (Ramamoorthi & Hanrahan, 2001) presented spherical 
harmonics method. Basri and Jacobs (Basri & Jacobs, 2003) showed that, a low-dimensional 
linear subspace can approximate the set of images of a convex Lambertian object obtained 
under a wide variety of lighting conditions which can be represented by Spherical 
Harmonics. 
Zhang and Samaras (Zhang & Samaras, 2004) combined the strengths of Morphable models 
to capture the variability of 3D face shape and a spherical harmonic representation for the 
illumination. The 3D face is reconstructed from one training sample under arbitrary 
illumination conditions. With the spherical harmonics illumination representation, the 
illumination coefficients and texture information can be estimated. Furthermore, in another 
paper (Zhang & Samaras, 2006), 3D shape information is neglected. 

 
4.1.3 Illumination Invariant Features 
Many papers attempt to find some face feature which is insensitive to the change in 
illumination. With the feature, the varying illumination on face cannot influence the 
recognition result. In other words, we can eliminate the illumination factor from the face 
image. The best way is to separate the illumination information from the identity information 
clearly. Here some algorithms are listed as follows. 

 
4.1.3.1 Edge-based Image 
Gao and Leung (Gao & Leung, 2002) proposed the line edge map to represent the face image. 
The edge pixels are grouped into line segments, and a revised Hausdorff Distance is 
designed to measure the similarity between two line segments. In the HMM-based face 
recognition algorithms, 2D discrete cosine transform (DCT) is often used for generating 
feature vectors. For eliminating the varying illumination influence, Suzuki and Shibata 
(Suzuki & Shibata, 2006) presented a directional edge-based feature called averaged 
principal-edge distribution (APED) to replace the DCT feature. APED feature is generated 
from the spatial distributions of the four directional edges (horizontal, +45o, vertical, and 
−45o). 

 
4.1.3.2 Gradient-based Image 
Given two images I  and J  of some plannar Lambertian object taken under the same 
viewpoint, their gradient-based image �I and �J must be parallel at every pixel where they 
are difined. Probabilistically, the distribution of pixel values under varying illumination may 
be random, but the distribution of image gradients is not. 
Chen et al. (Chen et al., Chen) showed that the probability distribution of the image gradient 
is a function of the surface geometry and reflectance, which are the intrinsic properties of the 
face. The direction of image gradient is revealed to be insensitive to illumination change. S. 
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Samsung (Samsung, 2005) presented integral normalized gradient image for face recognition. 
The gradient is normalized with a smoothed version of input image and then the result is 
integrated into a new greyscale image. To avoid unwanted smoothing effects on step edge 
region, anisotropic diffusion method is applied. 

 
4.1.3.3 Wavelet-based Image 
Gomez-Moreno et al. (Gomez-Moreno et al., 2001) presented an efficient way to extract the 
illumination from the images by exploring only the low frequencies into them jointly with 
the use of the illumination model from the homomorphic filter. The low frequencies where 
the illumination information exists can be gained by the discrete wavelet transform. In 
another point of view, Du and Ward (Du & Ward, 2005) performed illumination 
normalization in the wavelet domain. Histogram equalization is applied to low-low 
sub-band image of the wavelet decomposition, and simple amplification is performed for 
each element in the other 3 sub-band images to accentuate high frequency components. 
Uneven illumination is removed in the reconstructed image obtained by employing inverse 
wavelet transform on the modified 4 sub-band images. 
Gudur and Asari (Gudur & Asari, 2006) proposed a Gabor wavelet based Modular PCA 
approach for illumination robust face recognition. In this algorithm, the face image is divided 
into smaller sub-images called modules and a series of Gabor wavelets at different scales and 
orientations. They are applied on these localized modules for feature extraction. A modified 
PCA approach is then applied for dimensionality reduction. 

 
4.1.3.4 Quotient Image 
Due to the varying illumination on facial appearance, the appearances can be classified into 
four components: diffuse reflection, specular reflection, attached shadow and cast shadow. 
Shashua et al. (Shashua & Riklin-Raviv, 2001) proposed quotient image (QI), which is the 
ratio of albedo between a face image and linear combination of basis images for each pixel. 
This ratio of albedo is illumination invariant. However, the QI assumes that a facial 
appearance includes only diffuse reflection. Wang et al. (Wang et al., 2004) proposed self 
quotient image (SQI) by using only single image. The SQI was obtained by using the 
Gaussian function as a smoothing kernel function. The SQI however is neither synthesized at 
the boundary between a diffuse reflection region and a shadow region, nor at the boundary 
between a diffuse reflection region and a specular reflection region. Determining the 
reflectance type of an appearance from a single image is an ill-posed problem. 
Chen et al. (Chen et al., 2005) proposed total variation based quotient image (TVQI), in which 
light estimated by solving an optimal problem so-called total variation function. But TVQI 
requires complex calculation. Zhang et al. (Zhang et al., 2007) presented morphological 
quotient image (MQI) based on mathematical morphological theory. It uses close operation, 
which is a kind of morphological approach, for light estimation. 

 
4.1.3.5 Local Binary Pattern 
Local Binary Pattern (LBP) (Ojala et al., 2002) is a local feature which characterizes the 
intensity relationship between a pixel and its neighbors. The face image can be divided into 
some small facets from which LBP features can be extracted. These features are concatenated 
into a single feature histogram efficiently representing the face image. LBP is unaffected by 

any monotonic grayscale transformation in that the pixel intensity order is not changed after 
such a transformation. For example, Li et al. (Li et al., 2007) used LBP features to compensate 
for the monotonic transform, which can generate an illumination invariant face 
representation. 

 
4.1.3.6 3D Morphable Model 
The 3D Morphable model is based on a vector space representation of faces. In this vector 
space, any convex combination of shape and texture vectors of a set of examples describes a 
realistic human face. The shape and texture parameters of the model can be separated from 
the illumination information. 
Blanz and Vetter (Blanz & Vetter, 2003) proposed a method based on fitting a 3D Morphable 
model, which can handle illumination and viewpoint variations, but they rely on manually 
defined landmark points to fit the 3D model to 2D intensity images. 
Weyrauch et al. (Weyrauch et al., 2004) used a 3D Morphable model to generate 3D face 
models from three input images of each person. The 3D models are rendered under varying 
illumination conditions to build a large set of synthetic images. These images are then used to 
train a component-based face recognition system. 

 
4.2 Active Approaches 
The idea of active approaches: apply active sensing techniques to capture images or video 
sequences of face modalities which are invariant to environmental illumination. 
Here we introduce two main classes as follows. 

 
4.2.1 3D Information 
3D face information can be acquired by active sensing devices like 3D laser scanners or stereo 
vision systems. It constitutes a solid basis for face recognition, which is invariant to 
illumination change. Illumination is extrinsic to 3D face intrinsic property. Humans are 
capable to recognize some person in the uncontrolled environment (including the varying 
illumination), precisely because they learn to deal with these variations in the real 3D world. 
3D information can be represented in different ways, such as range image, curvature 
features, surface mesh, point set, and etc. The range image representation is the most 
attractive. Hesher et al. (Hesher et al., 2003) proposed range image to represent 3D face 
information. Range images have the advantage of capturing shape variation irrespective of 
illumination variability. Because the value on each point represents the depth value which 
does not depend on illumination. 
Many surveys (Kittler et al., 2005; Bowyer et al., 2006; Abate et al., 2007) on 3D face 
recognition have been published. However, the challenges of 3D face recognition still exist 
(Kakadiaris et al., 2007): ⑴ 3D capture creates larger data files per subject which implies 
significant storage requirements and slower processing. The conversion of raw 3D data to 
efficient meta-data must thus be addressed. ⑵ A field-deployable system must be able to 
function fully automatically. It is therefore not acceptable to assume user intervention for 
locating key landmarks in a 3D facial scan. ⑶ Actual 3D capture devices have a number of 
drawbacks when applied to face recognition, such as artifacts, small depth of field, long 
acquisition time, multiple types of output, high price, and etc. 
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Samsung (Samsung, 2005) presented integral normalized gradient image for face recognition. 
The gradient is normalized with a smoothed version of input image and then the result is 
integrated into a new greyscale image. To avoid unwanted smoothing effects on step edge 
region, anisotropic diffusion method is applied. 

 
4.1.3.3 Wavelet-based Image 
Gomez-Moreno et al. (Gomez-Moreno et al., 2001) presented an efficient way to extract the 
illumination from the images by exploring only the low frequencies into them jointly with 
the use of the illumination model from the homomorphic filter. The low frequencies where 
the illumination information exists can be gained by the discrete wavelet transform. In 
another point of view, Du and Ward (Du & Ward, 2005) performed illumination 
normalization in the wavelet domain. Histogram equalization is applied to low-low 
sub-band image of the wavelet decomposition, and simple amplification is performed for 
each element in the other 3 sub-band images to accentuate high frequency components. 
Uneven illumination is removed in the reconstructed image obtained by employing inverse 
wavelet transform on the modified 4 sub-band images. 
Gudur and Asari (Gudur & Asari, 2006) proposed a Gabor wavelet based Modular PCA 
approach for illumination robust face recognition. In this algorithm, the face image is divided 
into smaller sub-images called modules and a series of Gabor wavelets at different scales and 
orientations. They are applied on these localized modules for feature extraction. A modified 
PCA approach is then applied for dimensionality reduction. 

 
4.1.3.4 Quotient Image 
Due to the varying illumination on facial appearance, the appearances can be classified into 
four components: diffuse reflection, specular reflection, attached shadow and cast shadow. 
Shashua et al. (Shashua & Riklin-Raviv, 2001) proposed quotient image (QI), which is the 
ratio of albedo between a face image and linear combination of basis images for each pixel. 
This ratio of albedo is illumination invariant. However, the QI assumes that a facial 
appearance includes only diffuse reflection. Wang et al. (Wang et al., 2004) proposed self 
quotient image (SQI) by using only single image. The SQI was obtained by using the 
Gaussian function as a smoothing kernel function. The SQI however is neither synthesized at 
the boundary between a diffuse reflection region and a shadow region, nor at the boundary 
between a diffuse reflection region and a specular reflection region. Determining the 
reflectance type of an appearance from a single image is an ill-posed problem. 
Chen et al. (Chen et al., 2005) proposed total variation based quotient image (TVQI), in which 
light estimated by solving an optimal problem so-called total variation function. But TVQI 
requires complex calculation. Zhang et al. (Zhang et al., 2007) presented morphological 
quotient image (MQI) based on mathematical morphological theory. It uses close operation, 
which is a kind of morphological approach, for light estimation. 

 
4.1.3.5 Local Binary Pattern 
Local Binary Pattern (LBP) (Ojala et al., 2002) is a local feature which characterizes the 
intensity relationship between a pixel and its neighbors. The face image can be divided into 
some small facets from which LBP features can be extracted. These features are concatenated 
into a single feature histogram efficiently representing the face image. LBP is unaffected by 

any monotonic grayscale transformation in that the pixel intensity order is not changed after 
such a transformation. For example, Li et al. (Li et al., 2007) used LBP features to compensate 
for the monotonic transform, which can generate an illumination invariant face 
representation. 

 
4.1.3.6 3D Morphable Model 
The 3D Morphable model is based on a vector space representation of faces. In this vector 
space, any convex combination of shape and texture vectors of a set of examples describes a 
realistic human face. The shape and texture parameters of the model can be separated from 
the illumination information. 
Blanz and Vetter (Blanz & Vetter, 2003) proposed a method based on fitting a 3D Morphable 
model, which can handle illumination and viewpoint variations, but they rely on manually 
defined landmark points to fit the 3D model to 2D intensity images. 
Weyrauch et al. (Weyrauch et al., 2004) used a 3D Morphable model to generate 3D face 
models from three input images of each person. The 3D models are rendered under varying 
illumination conditions to build a large set of synthetic images. These images are then used to 
train a component-based face recognition system. 

 
4.2 Active Approaches 
The idea of active approaches: apply active sensing techniques to capture images or video 
sequences of face modalities which are invariant to environmental illumination. 
Here we introduce two main classes as follows. 

 
4.2.1 3D Information 
3D face information can be acquired by active sensing devices like 3D laser scanners or stereo 
vision systems. It constitutes a solid basis for face recognition, which is invariant to 
illumination change. Illumination is extrinsic to 3D face intrinsic property. Humans are 
capable to recognize some person in the uncontrolled environment (including the varying 
illumination), precisely because they learn to deal with these variations in the real 3D world. 
3D information can be represented in different ways, such as range image, curvature 
features, surface mesh, point set, and etc. The range image representation is the most 
attractive. Hesher et al. (Hesher et al., 2003) proposed range image to represent 3D face 
information. Range images have the advantage of capturing shape variation irrespective of 
illumination variability. Because the value on each point represents the depth value which 
does not depend on illumination. 
Many surveys (Kittler et al., 2005; Bowyer et al., 2006; Abate et al., 2007) on 3D face 
recognition have been published. However, the challenges of 3D face recognition still exist 
(Kakadiaris et al., 2007): ⑴ 3D capture creates larger data files per subject which implies 
significant storage requirements and slower processing. The conversion of raw 3D data to 
efficient meta-data must thus be addressed. ⑵ A field-deployable system must be able to 
function fully automatically. It is therefore not acceptable to assume user intervention for 
locating key landmarks in a 3D facial scan. ⑶ Actual 3D capture devices have a number of 
drawbacks when applied to face recognition, such as artifacts, small depth of field, long 
acquisition time, multiple types of output, high price, and etc. 
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4.2.2 Infrared Spectra Information 
Infrared (IR) image represents a viable alternative to visible imaging in the search for a 
robust and practical face recognition system.  
According to astronomy division scheme, the infrared portion of the electromagnetic 
spectrum can be divided into three regions: near-infrared (Near-IR), mid-infrared (Mid-IR) 
and far-infrared (Far-IR), named for their relation to the visible spectrum. Mid-IR and Far-IR 
belong to Thermal-IR (see Fig. 5). These divisions are not precise. There is another more 
detailed division (James, 2009). 
 

Fig. 5. Infrared as Part of the Electromagnetic Spectrum 
 
Thermal-IR directly relates to the thermal radiation from object, which depends on the 
temperature of the object and emissivity of the material. For Near-IR, the image intensifiers 
are sensitive. 

 
4.2.2.1 Thermal-IR 
Thermal IR imagery has been suggested as an alternative source of information for detection 
and recognition of faces. Thermal-IR cameras can sense temperature variations in the face at 
a distance, and produce thermograms in the form of 2D images. The light in the thermal IR 
range is emitted rather than reflected. Thermal emissions from skin are an intrinsic property, 
independent of illumination. Therefore, the face images captured using Thermal-IR sensors 
will be nearly invariant to changes in ambient illumination (Kong et al., 2005). 
Socolinsky and Selinger (Socolinsky & Selinger, 2004, a) presented a comparative study of 
face recognition performance with visible and thermal infrared imagery, emphasizing the 
influence of time-lapse between enrollment and probe images. They showed that the 
performance difference between visible and thermal face recognition in a time-lapse scenario 
is small. In addition, they affirmed that the fusion of visible and thermal face recognition can 
perform better than that using either alone. Gyaourova et al. (Gyaourova et al., 2004) 
proposed a method to fuse the both modalities of face recognition. Thermal face recognition 
is not perfect enough. For example, it is opaque to glass which can lead to facial occlusion 
caused by eyeglasses. Their fusion rule is based on the fact that the visible-based recognition 
is less sensitive to the presence or absence of eyeglasses. Socolinsky and Selinger (Socolinsky 
& Selinger, 2004, b) presented visible and thermal face recognition results in an operational 
scenario including both indoor and outdoor settings. For indoor settings under controlled 

illumination, visible face recognition performs better than that of thermal modality. 
However, Outdoor recognition performance is worse for both modalities, with a sharper 
degradation for visible imagery regardless of algorithm. But they showed that fused of both 
modalities performance outdoors is nearing the levels of indoor visible face recognition, 
making it an attractive option for human identification in unconstrained environments. 

 
4.2.2.2 Near-IR 
Near-IR has advantages over both visible light and Thermal-IR (Zou et al., 2005). Firstly, 
since it can be reflected by objects, it can serve as active illumination source, in contrast to 
Thermal-IR. Secondly, it is invisible, making active Near-IR illumination friendly to client. 
Thirdly, unlike Thermal-IR, Near-IR can easily penetrate glasses. 
However, even though we use the Near-IR camera to capture face image, the environmental 
illumination and Near-IR illumination all exist in the face image. Hizem et al. (Hizem et al., 
2006) proposed to maximize the ratio between the active Near-IR and the environmental 
illumination is to apply synchronized flashing imaging. But in outdoor settings, the Near-IR 
energy in environmental illumination is strong. Zou et al. (Zou et al., 2005) employed a light 
emitting diode (LED) to project Near-IR illumination, and then capture two images when the 
LED on and off respectively. The difference between the two images can be independent of 
the environment illumination. But when the face is moving, the effect is not good. To solve 
this problem, Zou et al. (Zou et al., 2007, b) proposed an approach based on motion 
compensation to remove the motion effect in the difference face images. 
Li et al. (Li et al., 2007) presented a novel solution for illumination invariant face recognition 
based on active Near-IR for indoor, cooperative-user applications. They showed that the 
Near-IR face images encode intrinsic information of the face, which is subject to a monotonic 
transform in the gray tone. Then LBP (Ojala et al., 2002) features can be used to compensate 
for the monotonic transform so as to derive an illumination invariant face representation. 
Above active Near-IR face recognition algorithms need that both the enrollment and probe 
samples are captured under Near-IR conditions. However, it is difficult to realize in some 
actual applications, such as passport and driver license photos. In addition, due to the 
distance limitation of Near-IR, many face images can only be captured only under visible 
lights. Chen et al. (Chen et al., 2009) proposed a novel approach, in which the enrollment 
samples are visual light images and probe samples are Near-IR images. Based on learning the 
mappings between images of the both modalities, they synthesis visual light images from 
Near-IR images effectively. 

 
5. Illumination Processing in Video-based Face Recognition 

Video-based face recognition is being increasingly discussed and occasionally deployed, 
largely as a means for combating terrorism. Unlike face recognition in still, it has its own 
unique features, such as temporal continuity and dependence between two neighboring 
frames (Zhou et al., 2003). In addition, it requires high real time in contrast to face recognition 
in still. Their differences are compared in Table 1. 
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perform better than that using either alone. Gyaourova et al. (Gyaourova et al., 2004) 
proposed a method to fuse the both modalities of face recognition. Thermal face recognition 
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illumination, visible face recognition performs better than that of thermal modality. 
However, Outdoor recognition performance is worse for both modalities, with a sharper 
degradation for visible imagery regardless of algorithm. But they showed that fused of both 
modalities performance outdoors is nearing the levels of indoor visible face recognition, 
making it an attractive option for human identification in unconstrained environments. 
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since it can be reflected by objects, it can serve as active illumination source, in contrast to 
Thermal-IR. Secondly, it is invisible, making active Near-IR illumination friendly to client. 
Thirdly, unlike Thermal-IR, Near-IR can easily penetrate glasses. 
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2006) proposed to maximize the ratio between the active Near-IR and the environmental 
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energy in environmental illumination is strong. Zou et al. (Zou et al., 2005) employed a light 
emitting diode (LED) to project Near-IR illumination, and then capture two images when the 
LED on and off respectively. The difference between the two images can be independent of 
the environment illumination. But when the face is moving, the effect is not good. To solve 
this problem, Zou et al. (Zou et al., 2007, b) proposed an approach based on motion 
compensation to remove the motion effect in the difference face images. 
Li et al. (Li et al., 2007) presented a novel solution for illumination invariant face recognition 
based on active Near-IR for indoor, cooperative-user applications. They showed that the 
Near-IR face images encode intrinsic information of the face, which is subject to a monotonic 
transform in the gray tone. Then LBP (Ojala et al., 2002) features can be used to compensate 
for the monotonic transform so as to derive an illumination invariant face representation. 
Above active Near-IR face recognition algorithms need that both the enrollment and probe 
samples are captured under Near-IR conditions. However, it is difficult to realize in some 
actual applications, such as passport and driver license photos. In addition, due to the 
distance limitation of Near-IR, many face images can only be captured only under visible 
lights. Chen et al. (Chen et al., 2009) proposed a novel approach, in which the enrollment 
samples are visual light images and probe samples are Near-IR images. Based on learning the 
mappings between images of the both modalities, they synthesis visual light images from 
Near-IR images effectively. 

 
5. Illumination Processing in Video-based Face Recognition 

Video-based face recognition is being increasingly discussed and occasionally deployed, 
largely as a means for combating terrorism. Unlike face recognition in still, it has its own 
unique features, such as temporal continuity and dependence between two neighboring 
frames (Zhou et al., 2003). In addition, it requires high real time in contrast to face recognition 
in still. Their differences are compared in Table 1. 
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Face Recognition in Video Face Recognition in Still 

Low resolution faces High resolution faces 

Varying illumination Even illumination 

Varying pose Frontal pose 

Varying expression Neutral expression 

Video sequences Still image 

Continuous motion Single motion 

Table 1. The comparison between face recognition in video and in still 
 
Most existing video-based face recognition systems (Gorodnichy, 2005) are realized in the 
following scheme: the face is first detected and then tracked over time. Only when a frame 
satisfying certain criteria (frontal pose, neutral expression and even illumination on face) is 
acquired, recognition is performed using the technique of face recognition in still. However, 
maybe the uneven illumination on face always exists, which lead that we cannot find a 
suitable time to recognize the face. 
Using the same algorithms, the recognition result of video-based face recognition is not 
satisfying like face recognition in still. For example, the video-based face recognition 
systems were set up in several airports around the United States, including Logan Airport in 
Boston, Massachusetts; T. F. Green Airport in Providence, Rhode Island; San Francisco 
International Airport and Fresno Airport in California; and Palm Beach International 
Airport in Florida. However, the systems have never correctly identified a single face in its 
database of suspects, let alone resulted in any arrests (Boston Globe, 2002). Some 
illumination processing algorithms mentioned in Section 3 can be applied for video-based 
face recognition, but we encounter three main problems at least: ⑴ Video-based face 
recognition systems require higher real-time performance. Many illumination processing 
algorithms can achieve a very high recognition rate, but some of them take much more 
computational time. 3D face modeling is a classic one. Building a 3D face model is a very 
difficult and complicated task in the literature even though structure from motion has been 
studied for several decades. ⑵ In video sequences, the direction of illumination on face is 
not single. Due to the face moving or the environmental illumination changing, the 
illumination on face is in dynamic change. Unlike illumination processing for face 
recognition in still, the algorithms need more flexible. If the light source direction cannot 
change suddenly, the illumination condition on face only depend on the face motion. The 
motion and illumination are correlative. ⑶ In contrast to general high resolution still 
image, video sequences often have low resolution (less than 80 pixels between two eyes). 
For illumination processing, it would be more difficulty. According to the three problems, 
we introduced some effective algorithms for video-based face recognition. 

 
5.1 Real-time Illumination Processing 
Unlike the still image, the video sequences are displayed at a very high frequency (about 10 – 
30 frames/second). So it’s important to improve the real-time performance of illumination 
processing for video-based face recognition.  

Chen and Wolf (Chen & Wolf, 2005) proposed a real-time pre-processing system to 
compensate illumination for face processing by using scene lighting modeling. Their system 
can be divided into two parts: global illumination compensation and local illumination 
compensation (see Fig. 6). For global illumination compensation, firstly, the input video 
image is divided into four areas so as to save the processing power and memory. And then 
the image histogram is modified to a pre-defined luminance level by a non-linear function. 
After that, the skin-tone detection is performed to determine the region of interest (ROI) and 
the lighting update information for the following local illumination compensation. The 
detection is a watershed between global illumination compensation and local illumination 
compensation. For local illumination compensation, firstly, the local lighting is estimated 
within the ROI determined from the previous stage. After obtaining the lighting information, 
a 3D face model is applied to adjust the luminance of the face candidate. The lighting 
information is not changed if there is no update request sent from the previous steps. 
 

Fig. 6. Global and local illumination compensation 
 
Arandjelović and Cipolla (Arandjelović & Cipolla, 2009) presented a novel and general face 
recognition framework for efficient matching of individual face video sequences. The 
framework is based on simple image processing filters that compete with unprocessed 
greyscale input to yield a single matching score between individuals. It is shown how the 
discrepancy between illumination conditions between novel input and the training data set 
can be estimated and used to weigh the contribution of two competing representations. They 
found that not all the probe video sequences should be processed by the complex algorithms, 
such as a high-pass (HP) filter and SQI (Wang et al., 2004). If the illumination difference 
between training and test samples is small, the recognition rate would decrease with HP or 
SQI in contrast to non-normalization processing. In other words, if the illumination 
difference is large, normalization processing is the dominant factor and recognition 
performance is improved. If this notation is adopted, a dramatic performance improvement 

(a) Global illumination (b) Local illumination 
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would be offered to a wide range of filters and different baseline matching algorithms, 
without sacrificing their online efficiency. Based on that, the goal is to implicitly learn how 
similar the probe and training samples illumination conditions are, to appropriately 
emphasize either the raw input guided face comparisons or of its filtered output. 

 
5.2 Illumination change relating to face motion and light source 
Due to the motion of faces or light sources, the illumination conditions on faces can vary over 
time. The single and changeless illumination processing algorithms can be unmeaning. The 
best way is to design an illumination compensation or normalization for the specific 
illumination situation. There is an implicit problem in this work: how to estimate the 
illumination direction. If the accuracy of the illumination estimation is low, the same to the 
poor face detection, the latter work would be useless. Here we will introduce several 
illumination estimation schemes as follows. 
Huang et al. (Huang et al., 2008) presented a new method to estimate the illumination 
direction on face from one single image. The basic idea is to compare the reconstruction 
residuals between the input image and a small set of reference images under different 
illumination directions. In other words, the illumination orientation is regard as label 
information for training and recognition. The illumination estimation is to find the nearest 
illumination condition in the training samples for the probe. The way to estimate 
illumination of an input image adopted by the authors is to compute residuals for all the 
possible combinations of illumination conditions and the location of the minimal residual is 
the expectation of illumination. 
Wang and Li (Wang & Li, 2008) proposed an illumination estimation approach based on 
plane-fit, in which environmental illumination is classified according to the illumination 
direction. Illumination classification can help to compensate uneven illumination with 
pertinence. Here the face illumination space is expressed well by nine face illumination 
images, as this number of images results in the lowest error rate for face recognition (Lee et 
al., 2005). For more accurate classification, illumination direction map, which abides by 
Lambert’s illumination model, is generated. BHE (Xie & Lam, 2005) can weaken the light 
contrast in the face image, whereas HE can enhance the contrast. The difference between the 
face image processed by HE and the same one processed by BHE, which can reflect the light 
variance efficiently, generates the illumination direction map (see Fig. 7). 
In order to make the direction clearer in the map, the Laplace filter and Gaussian low pass 
filter are also applied. In order to estimate the illumination orientation, a partial least square 
plane-fit is carried out on the current pixel of the illumination direction map. In actual, I�x, y� 
is the fitted value. Suppose f�x, y� is the observed value at �x, y�. Then the least square 
between I�x, y� (I�x, y� � �x � �y � �� and f�x, y� is shown in Eq. (7). 
 

� � ∑ �f�x, y� � ��x � �y � �����,�                       (7) 
 
note: x, y,�f�x, y� are known, so S is the function of a, b and c. 
The illumination orientation can be defined as the value as follows: 
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where β denotes the illumination orientation on the illumination direction map. 
 

Fig. 7. Generation of illumination direction map 
 
For the same person, the value of β  is greatly different with illumination orientation 
variations; for different persons, the value of β  is similar with the same illumination 
orientation. β can be calculated to make the lighting category determined. 
Supposing that the light source direction is fixed, the surface of a moving face cannot change 
suddenly over a short time period. So the illumination varying on face can be regarded as a 
continuous motion. The face motion and illumination are correlative. 
Basri and Jacobs (Basri & Jacobs, 2003) analytically derived a 9D spherical harmonics based 
on linear representation of the images produced by a Lambertian object with attached 
shadows. Their work can be extended from the still image to video sequences, where the 
video sequences can be only regarded as some separate frames, but it is inefficient. Xu and 
Roy-Chowdhury (Xu & Roy-Chowdhury, 2005; Xu & Roy-Chowdhury, 2007) presented a 
theory to characterize the interaction of face motion and illumination in generating video 
sequences of a 3D face. The authors showed that the set of all Lambertian reflectance 
functions of a moving face, illuminated by arbitrarily distant light sources, lies “close” to a 
bilinear subspace consisting of 9 illumination variables and 6 motion variables. The bilinear 
subspace formulation can be used to simultaneously estimate the motion, illumination and 
structure from a video sequence. The problem, how to deal with both motion and 
illumination, can be divided into two stages: � the face motion is considered, and the change 
in its position from one time instance to the other is calculated. The change of position can be 
referenced as the coordinate change of the object. � the effect of the incident illumination ray, 
which is projected onto face, and reflected conform to the Lambert’s cosine law. For the 
second stage, incorporating the effect of the motion, Basri and Jacob’s work is used. 
However, the idea, supposing that the illumination condition is related to the face motion, 
has a certain limitation. If the environment illumination varies suddenly (such as a flash) or 
illumination source occultation, the relation between motion and illumination is not credible. 
All approaches conforming to the supposition would not work. 



Illumination	Processing	in	Face	Recognition 203

would be offered to a wide range of filters and different baseline matching algorithms, 
without sacrificing their online efficiency. Based on that, the goal is to implicitly learn how 
similar the probe and training samples illumination conditions are, to appropriately 
emphasize either the raw input guided face comparisons or of its filtered output. 

 
5.2 Illumination change relating to face motion and light source 
Due to the motion of faces or light sources, the illumination conditions on faces can vary over 
time. The single and changeless illumination processing algorithms can be unmeaning. The 
best way is to design an illumination compensation or normalization for the specific 
illumination situation. There is an implicit problem in this work: how to estimate the 
illumination direction. If the accuracy of the illumination estimation is low, the same to the 
poor face detection, the latter work would be useless. Here we will introduce several 
illumination estimation schemes as follows. 
Huang et al. (Huang et al., 2008) presented a new method to estimate the illumination 
direction on face from one single image. The basic idea is to compare the reconstruction 
residuals between the input image and a small set of reference images under different 
illumination directions. In other words, the illumination orientation is regard as label 
information for training and recognition. The illumination estimation is to find the nearest 
illumination condition in the training samples for the probe. The way to estimate 
illumination of an input image adopted by the authors is to compute residuals for all the 
possible combinations of illumination conditions and the location of the minimal residual is 
the expectation of illumination. 
Wang and Li (Wang & Li, 2008) proposed an illumination estimation approach based on 
plane-fit, in which environmental illumination is classified according to the illumination 
direction. Illumination classification can help to compensate uneven illumination with 
pertinence. Here the face illumination space is expressed well by nine face illumination 
images, as this number of images results in the lowest error rate for face recognition (Lee et 
al., 2005). For more accurate classification, illumination direction map, which abides by 
Lambert’s illumination model, is generated. BHE (Xie & Lam, 2005) can weaken the light 
contrast in the face image, whereas HE can enhance the contrast. The difference between the 
face image processed by HE and the same one processed by BHE, which can reflect the light 
variance efficiently, generates the illumination direction map (see Fig. 7). 
In order to make the direction clearer in the map, the Laplace filter and Gaussian low pass 
filter are also applied. In order to estimate the illumination orientation, a partial least square 
plane-fit is carried out on the current pixel of the illumination direction map. In actual, I�x, y� 
is the fitted value. Suppose f�x, y� is the observed value at �x, y�. Then the least square 
between I�x, y� (I�x, y� � �x � �y � �� and f�x, y� is shown in Eq. (7). 
 

� � ∑ �f�x, y� � ��x � �y � �����,�                       (7) 
 
note: x, y,�f�x, y� are known, so S is the function of a, b and c. 
The illumination orientation can be defined as the value as follows: 
 

� � ����,��
��

����,��
���

�����
� �

� �
∑ ���,����,�
∑ ���,����,�

                   (8) 

 

where β denotes the illumination orientation on the illumination direction map. 
 

Fig. 7. Generation of illumination direction map 
 
For the same person, the value of β  is greatly different with illumination orientation 
variations; for different persons, the value of β  is similar with the same illumination 
orientation. β can be calculated to make the lighting category determined. 
Supposing that the light source direction is fixed, the surface of a moving face cannot change 
suddenly over a short time period. So the illumination varying on face can be regarded as a 
continuous motion. The face motion and illumination are correlative. 
Basri and Jacobs (Basri & Jacobs, 2003) analytically derived a 9D spherical harmonics based 
on linear representation of the images produced by a Lambertian object with attached 
shadows. Their work can be extended from the still image to video sequences, where the 
video sequences can be only regarded as some separate frames, but it is inefficient. Xu and 
Roy-Chowdhury (Xu & Roy-Chowdhury, 2005; Xu & Roy-Chowdhury, 2007) presented a 
theory to characterize the interaction of face motion and illumination in generating video 
sequences of a 3D face. The authors showed that the set of all Lambertian reflectance 
functions of a moving face, illuminated by arbitrarily distant light sources, lies “close” to a 
bilinear subspace consisting of 9 illumination variables and 6 motion variables. The bilinear 
subspace formulation can be used to simultaneously estimate the motion, illumination and 
structure from a video sequence. The problem, how to deal with both motion and 
illumination, can be divided into two stages: � the face motion is considered, and the change 
in its position from one time instance to the other is calculated. The change of position can be 
referenced as the coordinate change of the object. � the effect of the incident illumination ray, 
which is projected onto face, and reflected conform to the Lambert’s cosine law. For the 
second stage, incorporating the effect of the motion, Basri and Jacob’s work is used. 
However, the idea, supposing that the illumination condition is related to the face motion, 
has a certain limitation. If the environment illumination varies suddenly (such as a flash) or 
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5.3 Illumination Processing for Low Resolution faces 
As a novel input, it is difficult to capture a high resolution face in an arbitrary position of the 
video. But we can obtain a single high quality video of a person of interest, for the purpose of 
database enrolment. This problem is of interest in many applications, such as law 
enforcement. For low resolution faces, it is harder to adopt illumination processing, 
especially pixel-by-pixel algorithms. 
However, it clearly motivates the use of super-resolution techniques in the preprocessing 
stages of recognition. Super-resolution concerns the problem of reconstructing 
high-resolution data from a single or multiple low resolution observations. Formally, the 
process of making a single observation can be written as the following generative model: 
 

x �� �t�x�� � n�                               (9) 
 

where x�  is the high-resolution image; t�·� is an appearance transformation (e.g. due to 
illumination change, in the case of face images); n is additive noise; � is the downsampling 
operator. 
Arandjelović and Cipolla (Arandjelović & Cipolla, 2006) proposed the Generic 
Shape-Illumination (gSIM) algorithm. The authors showed how a photometric model of 
image formation can be combined with a statistical model of generic face appearance 
variation, learnt offline, to generalize in the presence of extreme illumination changes. gSIM 
performs face recognition by extracting and matching sequences of faces from unconstrained 
head motion videos and is robust to changes in illumination, head pose and user motion 
pattern. For the form of gSIM, a learnt prior is applied. The prior takes on the form of an 
estimate of the distribution of non-discriminative, generic, appearance changes caused by 
varying illumination. It means that unnecessary smoothing of person-specific, discriminative 
information is avoided. In the work, they make a very weak assumption on the process of 
image formation: the intensity of each pixel is a linear function of the albedo a�j� of the 
corresponding 3D point: 
 

X�j� � a�j� · s�j�                            (10) 
 

where s  is a function of illumination parameters , which is not modeled explicitly. 
Lambertian reflectance model is a special case. 
Given two images X� and X�, which are both the same person under the same pose, are of 
different illuminations. 
 

∆ log X�j� � log s��j� � log s��j� � d��j�                 (11) 
 
So the difference between these logarithm-transformed images is not relative to the face 
albedo. Under the very general assumption that the mean energy of light incident on the 
camera is proportional to the face albedo at the corresponding point, d� is approximately 
generic i.e. not dependent on the person’s identity. 
However, this is not the case when dealing with real images, as spatial discretization 
differently affects the appearance of a face at different scales. In another paper (Arandjelović 
& Cipolla, 2007) of the authors, they proposed not to explicitly compute super-resolution 
face images from low resolution input; rather, they formulated the image formation model 

in such a way that the effects of illumination and spatial discretization are approximately 
mutually separable. Thus, they showed how the two can be learnt in two stages: ⑴ a 
generic illumination model is estimated from a small training corpus of different individuals 
in varying illumination. ⑵ a low-resolution artifact model is estimated on a person-specific 
basis, from an appearance manifold corresponding to a single sequence compounded with 
synthetically generated samples. 

 
6. Recent State-of-art Methods of Illumination Processing in Face Recognition 

How to compensate or normalize the uneven illumination on faces is still a puzzle and hot 
topic for face recognition researchers. There are about 50 IEEE papers on illumination 
processing for face recognition within past 12 months. Here we illuminated some excellent 
papers published on the important conferences (e.g. CVPR and BTAS) or journals (such as 
IEEE Transactions on Pattern Analysis and Machine Intelligence) since 2008. Many papers, 
which have been introduced in the former sections, are not restated. 

Fig. 8. Illumination Normalization Framework for Large-scale Features 
 
Xie et al. (Xie et al., 2008) proposed a novel illumination normalization approach shown in 
Fig. 8. In the framework, illumination normalization whereas small-scale features (high 
frequency component) are only smoothed. Their framework can be divided into 3 stages: ⑴ 
Adopt an appropriate algorithm to decompose the face image into 2 parts: large-scale 
features and small-scale features. Methods in this category include logarithmic total 
variation (LTV) model (Chen et al., 2006), SQI (Wang et al., 2004) and wavelet transform 
(Gomez-Moreno et al., 2001) based method. However, some of the methods discard the 
large-scale features of face images. In this framework, the authors  
use LTV. ⑵ Eliminate the illumination information from the large-scale features by some 
algorithms, such as HE, BHE (Xie & Lam, 2005) and QI (Shashua & Riklin-Raviv, 2001) etc. 
In addition, these methods also distort the small-scale features simultaneously during the 
normalization process. ⑶ a normalized face image is generated by combination of the 
normalized large-scale feature image and smoothed small-scale feature image. 
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Holappa et al. (Holappa et al., 2008) presented an illumination processing chain and 
optimization method for setting its parameters so that the processing chain explicitly tailors 
for the specific feature extractor. This is done by stochastic optimization of the processing 
parameters using a simple probability value derived from intra- and inter-class differences of 
the extracted features as the cost function. Moreover, due to the general 3D structure of faces, 
illumination changes tend to cause different effects at different parts of the face image (e.g., 
strong shadows on either side of the nose, etc.). This is taken into account in the processing 
chain by making the parameters spatially variant. The processing chain and optimization 
method can be general, not for any specific face descriptor. To illuminate the chain and 
optimization method, the authors take LBP (Ojala et al., 2002) for example. LBP descriptor is 
relatively robust to different illumination conditions but severe changes in lighting still pose 
a problem. To order to solve this problem, they strive for a processing method that explicitly 
reduces such intra-class variations that the LBP description is sensitive to. Unlike other 
slowly processed interactive methods, the authors use only logarithmic transformation of 
pixel values and convolution of the input image region with small sized filter kernels, which 
makes the method very fast. The complete preprocessing and feature extraction chain is 
presented in Fig. 9. For the optimization method, the scheme adopted by the authors is to 
maximize the probability that the features calculated from an image region, that the filter to 
be optimized is applied to, are closer to each other in the intra class case than in the extra 
class case. 
 
Face recognition in uncontrolled illumination experiences significant degradation in 
performance due to changes in illumination directions and skin colors. The conventional 
color CCD cameras are not able to distinguish changes of surface color from color shifts 
caused by varying illumination. However, multispectral imaging in the visible and near 
infrared spectra can help reduce color variations in the face due to changes in illumination 
source types and directions. Chang et al. (Chang et al., 2008) introduced the use of 
multispectral imaging and thermal infrared imaging as alternative means to conventional 
broadband monochrome or color imaging sensors in order to enhance the performance of 
face recognition in uncontrolled illumination conditions. Multispectral imaging collects 
reflectance information at each pixel over contiguous narrow wavelength intervals over a 
wide spectral range, often in the visible and Near-IR spectra. In multispectral imaging, 
narrowband images provide spectral signatures unique to facial skin tissue that may not be 
detected using broadband CCD cameras. Thermal-IR imagery is less sensitive to the 
variations in face appearance caused by illumination changes. Because the Thermal-IR 
sensors only measure the heat energy radiation, which is independent of ambient lighting. 
Fusion techniques have been exploited to improve face recognition performance. 

Fig. 9. Illumination Normalization Framework for Large-scale Features 

The fusion of Thermal-IR and visible sensors is a popular solution to illumination-invariant 
face recognition (Kong et al., 2005). However, face recognition based on multispectral image 
fusion is relatively unexplored. The image based fusion rule can be divided into two kinds: 
pixel-based and feature-based fusion. The former is easy to implement but more sensitive to 
registration errors than the latter. Feature based fusion methods are computationally more 
complex but robust to registration errors. 

Fig. 10. (a) Example de-illumination training data for the Small Faces. Each column 
represents a source training set for a particular illumination model. In this case: illumination 
from the right; illumination from the top; illumination from the left; illumination from the 
bottom. The far right column is the uniformly illuminated target training data from which 
the derivatives are generated. (b) Example re-illumination training data for the Small Faces. 
The far left column is the uniformly illuminated source training data. Each remaining column 
represents the quotient image source training set for a particular illumination model. In this 
case: illumination from the right; illumination from the top; illumination from the left; 
illumination from the bottom. 
 
Moore et al. (Moore et al., 2008) proposed a machine learning approach for estimating 
intrinsic faces and hence de-illuminating and re-illuminating faces directly in the image 
domain. For estimation of an intrinsic component, the local linear constraints on images are 
estimated in terms of derivatives using multi-scale patches of the observed images, 
comprising from a three-level Laplacian Pyramid. The problem of decomposing an observed 
face image into its intrinsic components (i.e. reflectance and albedo) is formulated as a 
nonlinear regression problem. For de-illuminating faces (see Fig. 10(a)), with the non-linear 
regression, the derivatives of the face image are estimated from a given class as it would 
appear with a uniform illumination. The uniformly illuminated image can then be 
reconstructed from these derivatives. So the de-illumination step can be regarded as an 
estimation problem. For re-illuminating faces (see Fig. 10(b)), it is just like an adverse stage of 
de-illuminating faces. The goal has changed from calculating the de-illuminated face to 
calculating new illuminations and the input images are de-illuminated faces. Besides these 
differences, the illumination estimation involves the same basic steps of estimating 
derivative values and integrating them to form re-illuminated images. 
 

(a) (b) 
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slowly processed interactive methods, the authors use only logarithmic transformation of 
pixel values and convolution of the input image region with small sized filter kernels, which 
makes the method very fast. The complete preprocessing and feature extraction chain is 
presented in Fig. 9. For the optimization method, the scheme adopted by the authors is to 
maximize the probability that the features calculated from an image region, that the filter to 
be optimized is applied to, are closer to each other in the intra class case than in the extra 
class case. 
 
Face recognition in uncontrolled illumination experiences significant degradation in 
performance due to changes in illumination directions and skin colors. The conventional 
color CCD cameras are not able to distinguish changes of surface color from color shifts 
caused by varying illumination. However, multispectral imaging in the visible and near 
infrared spectra can help reduce color variations in the face due to changes in illumination 
source types and directions. Chang et al. (Chang et al., 2008) introduced the use of 
multispectral imaging and thermal infrared imaging as alternative means to conventional 
broadband monochrome or color imaging sensors in order to enhance the performance of 
face recognition in uncontrolled illumination conditions. Multispectral imaging collects 
reflectance information at each pixel over contiguous narrow wavelength intervals over a 
wide spectral range, often in the visible and Near-IR spectra. In multispectral imaging, 
narrowband images provide spectral signatures unique to facial skin tissue that may not be 
detected using broadband CCD cameras. Thermal-IR imagery is less sensitive to the 
variations in face appearance caused by illumination changes. Because the Thermal-IR 
sensors only measure the heat energy radiation, which is independent of ambient lighting. 
Fusion techniques have been exploited to improve face recognition performance. 
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fusion is relatively unexplored. The image based fusion rule can be divided into two kinds: 
pixel-based and feature-based fusion. The former is easy to implement but more sensitive to 
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complex but robust to registration errors. 
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represents a source training set for a particular illumination model. In this case: illumination 
from the right; illumination from the top; illumination from the left; illumination from the 
bottom. The far right column is the uniformly illuminated target training data from which 
the derivatives are generated. (b) Example re-illumination training data for the Small Faces. 
The far left column is the uniformly illuminated source training data. Each remaining column 
represents the quotient image source training set for a particular illumination model. In this 
case: illumination from the right; illumination from the top; illumination from the left; 
illumination from the bottom. 
 
Moore et al. (Moore et al., 2008) proposed a machine learning approach for estimating 
intrinsic faces and hence de-illuminating and re-illuminating faces directly in the image 
domain. For estimation of an intrinsic component, the local linear constraints on images are 
estimated in terms of derivatives using multi-scale patches of the observed images, 
comprising from a three-level Laplacian Pyramid. The problem of decomposing an observed 
face image into its intrinsic components (i.e. reflectance and albedo) is formulated as a 
nonlinear regression problem. For de-illuminating faces (see Fig. 10(a)), with the non-linear 
regression, the derivatives of the face image are estimated from a given class as it would 
appear with a uniform illumination. The uniformly illuminated image can then be 
reconstructed from these derivatives. So the de-illumination step can be regarded as an 
estimation problem. For re-illuminating faces (see Fig. 10(b)), it is just like an adverse stage of 
de-illuminating faces. The goal has changed from calculating the de-illuminated face to 
calculating new illuminations and the input images are de-illuminated faces. Besides these 
differences, the illumination estimation involves the same basic steps of estimating 
derivative values and integrating them to form re-illuminated images. 
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Most public face databases lack images with a component of rear (more than 90 degrees from 
frontal) illumination, either for training or testing. Wagner et al. (Wagner et al., 2009) made 
an experiment (see Fig. 11) which showed that training faces with the rear illumination can 
help to improve the face recognition. The experiment is that the girl should be identified 
among 20 subjects, by computing the sparse representation (Wright et al., 2009) of her input 
face with respect to the entire training set. The absolute sum of the coefficients associated 
with each subject is plotted on the right. The figure also show the faces reconstructed with 
each subject’s training images weighted by the associated sparse coefficients. The red line 
corresponds to her true identity, subject 12. For the upper row of the figure, the input face is 
well-aligned (the white box) but only 24 frontal illuminations are used in the training for 
recognition. For the lower row of the figure, informative representation is obtained by using 
both well-aligned input face and sufficient (all 38) illuminations in the training. A conclusion 
can be drawn that illuminations from behind the face are also needed to sufficiently 
interpolate the illumination of a typical indoor (or outdoor) environment in the training. If 
not have, the representation will not necessarily be sparse or informative. 

Fig. 11. Recognition Performance with and without rear illumination on faces for training 
 
In order to solve the problem, the authors designed a training acquisition system that can 
illuminate the face from all directions above horizontal. The illumination system consists of 
four projectors that display various bright patterns onto the three white walls in the corner of 
a dark room. The light reflects off of the walls and illuminates the user’s head indirectly. 
After taking the frontal illuminations, the chair is rotated by 180 degrees and then pictures 
are taken from the opposite direction. Having two cameras speeds the process since only the 
chair needs to be moved in between frontal and rear illuminations. The experiment results 
are satisfying. However, it is impossible to obtain 
samples of all target persons using the training acquisition system, such as law enforcement 
for terrorists. 
 
Wang et al. (Wang et al., 2008) proposed a new method to modify the appearance of a face 
image by manipulating the illumination condition, even though the face geometry and 
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Most public face databases lack images with a component of rear (more than 90 degrees from 
frontal) illumination, either for training or testing. Wagner et al. (Wagner et al., 2009) made 
an experiment (see Fig. 11) which showed that training faces with the rear illumination can 
help to improve the face recognition. The experiment is that the girl should be identified 
among 20 subjects, by computing the sparse representation (Wright et al., 2009) of her input 
face with respect to the entire training set. The absolute sum of the coefficients associated 
with each subject is plotted on the right. The figure also show the faces reconstructed with 
each subject’s training images weighted by the associated sparse coefficients. The red line 
corresponds to her true identity, subject 12. For the upper row of the figure, the input face is 
well-aligned (the white box) but only 24 frontal illuminations are used in the training for 
recognition. For the lower row of the figure, informative representation is obtained by using 
both well-aligned input face and sufficient (all 38) illuminations in the training. A conclusion 
can be drawn that illuminations from behind the face are also needed to sufficiently 
interpolate the illumination of a typical indoor (or outdoor) environment in the training. If 
not have, the representation will not necessarily be sparse or informative. 

Fig. 11. Recognition Performance with and without rear illumination on faces for training 
 
In order to solve the problem, the authors designed a training acquisition system that can 
illuminate the face from all directions above horizontal. The illumination system consists of 
four projectors that display various bright patterns onto the three white walls in the corner of 
a dark room. The light reflects off of the walls and illuminates the user’s head indirectly. 
After taking the frontal illuminations, the chair is rotated by 180 degrees and then pictures 
are taken from the opposite direction. Having two cameras speeds the process since only the 
chair needs to be moved in between frontal and rear illuminations. The experiment results 
are satisfying. However, it is impossible to obtain 
samples of all target persons using the training acquisition system, such as law enforcement 
for terrorists. 
 
Wang et al. (Wang et al., 2008) proposed a new method to modify the appearance of a face 
image by manipulating the illumination condition, even though the face geometry and 
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Gradient-based image has been proved to insensitive to illumination. Based on that, Zhang et 
al. (Zhang et al., 2009) proposed an illumination insensitive feature called Gradientfaces for 
face recognition. Gradientfaces is derived from the image gradient domain such that it can 
discover underlying inherent structure of face images since the gradient domain explicitly 
considers the relationships between neighboring pixel points. Therefore, Gradientfaces has 
more discriminating power than the illumination insensitive measure extracted from the 
pixel domain. 
Given an arbitrary image I�x, y�  under variable illumination conditions, the ratio of 
y-gradient of I�x, y� (�I��,���� ) to I�x, y� (�I��,���� ) is an illumination insensitive measure. Then 
Gradientfaces (G) of image I can be defined as 
 

G � ������ �I����������I�����������, G� � � �0, 2π�.                   (12) 

 
where I����������  and I����������  are the gradient of image I  in the x , y  direction, 
spectively. 
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Gradient-based image has been proved to insensitive to illumination. Based on that, Zhang et 
al. (Zhang et al., 2009) proposed an illumination insensitive feature called Gradientfaces for 
face recognition. Gradientfaces is derived from the image gradient domain such that it can 
discover underlying inherent structure of face images since the gradient domain explicitly 
considers the relationships between neighboring pixel points. Therefore, Gradientfaces has 
more discriminating power than the illumination insensitive measure extracted from the 
pixel domain. 
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