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1. Introduction 

Face recognition has recently received significant attention (Zhao et al. 2003 and Jain et al. 
2004). It plays an important role in many application areas, such as human-machine 
interaction, authentication and surveillance. However, the wide-range variations of human 
face, due to pose, illumination, and expression, result in a highly complex distribution and 
deteriorate the recognition performance. In addition, the problem of machine recognition of 
human faces continues to attract researchers from disciplines such as image processing, 
pattern recognition, neural networks, computer vision, computer graphics, and psychology. 
A general statement of the problem of machine recognition of faces can be formulated as 
follows: Given still or video images of a scene, identify or verify one or more persons in the 
scene using a stored database of faces. 
In identification problems, the input to the system is an unknown face, and the system 
reports back the determined identity from a database of known individuals, whereas in 
verification problems, the system needs to confirm or reject the claimed identity of the input 
face.
The solution to the problem involves segmentation of faces (face detection) from cluttered 
scenes, feature extraction from the face regions, recognition or verification. Robust and 
reliable face representation is crucial for the effective performance of face recognition system 
and still a challenging problem. 
Feature extraction is realized through some linear or nonlinear transform of the data with 
subsequent feature selection for reducing the dimensionality of facial image so that the 
extracted feature is as representative as possible. 
Wavelets have been successfully used in image processing. Its ability to capture localized 
time-frequency information of image motivates its use for feature extraction. The 
decomposition of the data into different frequency ranges allows us to isolate the frequency 
components introduced by intrinsic deformations due to expression or extrinsic factors (like 
illumination) into certain subbands. Wavelet-based methods prune away these variable 
subbands, and focus on the subbands that contain the most relevant information to better 
represent the data. 
In this paper we give an overview of wavelet, multiresolution representation and wavelet 
packet for their use in face recognition technology. 

Source: Face Recognition, Book edited by: Kresimir Delac and Mislav Grgic, ISBN 978-3-902613-03-5, pp.558, I-Tech, Vienna, Austria, June 2007
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2. Introduction to wavelets 

Wavelets are functions that satisfy certain mathematical requirements and are used in 
presenting data or other functions, similar to sines and cosines in the Fourier transform. 
However, it represents data at different scales or resolutions, which distinguishes it from the 
Fourier transform. 

2.1 Continuous wavelet transform 

Wavelets are formed by dilations and translations of a single function  called mother 
wavelet so that the dilated and translated family 

is a basis of . The normalization ensures that  is independent of the scale 
parameter a and the position parameter b. The function is assumed to satisfy some 
admissibility condition, for example, 

(1)

where  is the Fourier transform of . The admissibility condition (1) implies  

(2)

The property (2) motivates the name wavelet. The “diminutive” appellation comes from the 
fact that can be well localized with arbitrary fine by appropriate scaling. For any 

 , the continuous wavelet transformation (CWT) is defined as  

However, in signal processing, we often use discrete wavelet transform (DWT) to represent 
a signal f(t) with translated version of a lowpass scaling function  and the dilated and 
translated versions of mother wavelet  (Daubechies, 1992). 

where the functions  and , form an 
orthonormal basis of .

The partial sum of wavelet    can be interpreted as the approximation of f
at the resolution 2j. The approximation of signals at various resolutions with orthogonal 
projections can be computed by multiresolution which is characterized by a particular 
discrete filter that governs the loss of information across resolutions. These discrete filters 
provide a simple procedure for decomposing and synthesizing wavelet coefficients at 
different resolutions (Mallat, 1999). 
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where { hk }, { gk } are discrete filter sequences, they satisfy respectively 

The two-channel filter bank method parallelly filters a signal by the lowpass filters h and 
highpass filter g followed by subsampling. The filter h removes the high frequencies and 
retains the low frequency components, the filter g removes the low frequencies and 
produces high frequency components. Together, they decompose the signal into different 
frequency subbands, and downsampling is used to keep half of the output components of 
each filter. For the wavelet transform, only the lowpass filtered subband is further 
decomposed. 

2.2 Two-dimensional wavelet transform 

The two-dimensional wavelet can also be constructed from the tensor product of one-
dimensional and by setting: 

where  are wavelet functions. Their dilated and translated 

family  and  forms an 
orthonormal basis of . For every , it can be represented as 

Similar to one-dimensional wavelet transform of signal, in image processing, the 
approximation of images at various resolutions with orthogonal projections can also be 
computed by multiresolution which characterized by the two-channal filter bank that 
governs the loss of information across resolutions. The one-dimensional wavelet 
decomposition is first applied along the rows of the images, then their results are further 
decomposed along the columns. This results in four decomposed subimages  L1, H1, V1, D1. 

These subimages represent different frequency localizations of the original image which 
refer to Low-Low, Low-High, High-Low and High-High respectively. Their frequency 
components comprise the original frequency components but now in distinct ranges. In each 
iterative step, only the subimage L1 is further decomposed. Figure 1 (Top) shows a two-
dimensional example of facial image for wavelet decomposition with depth 2. 
The wavelet transform can be interpreted as a multiscale differentiator or edge detector that 
represents the singularity of an image at multiple scales and three different orientations — 
horizontal, vertical, and diagonal (Choi & Baraniuk, 2003). Each image singularity is 
represented by a cascade of large wavelet coefficients across scale (Mallat, 1999). If the  
singularity is within the support of a wavelet basis function, then the corresponding wavelet 
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coefficient is large. Contrarily, the smooth image region is represented by a cascade of small 
wavelet coefficients across scale. Some researchers have studied several features of wavelet 
transform of natural images (Mallat, 1999) (Vetterli & Kovaèeviæ, 1995) (Choi & Baraniuk, 
2003):
• Multiresolution: Wavelet transform analyzes the image at different scales or 

resolutions.
• Locality: Wavelet transform decomposes the image into subbands that are localized in 

both space and frequency domains. 
• Sparsity: A wavelet coefficient is large only if the singularities are present in the 

support of a wavelet basis function. The magnitudes of coefficients tend to decay 
exponentially across scale. Most energy of images concentrate on these large 
coefficients. 

• Decorrelation: Wavelet coefficients of images tend to be approximately decorrelated 
because of the orthonormal property of wavelet basis functions. 

These properties make the wavelet domain of natural image more propitious to feature 
extraction for face recognition, compared with the direct spatial-domain. 

2.3 Wavelet-packet 

There are complex natural images with various types of spatial-frequency structures, which 
motivates the adaptive bases that are adaptable to the variations of spatial-frequency. 
Coifman and Meyer (Coifman & Meyer 1990) introduced an orthonormal multiresolution 
analysis which leads to a multitude of orthonormal wavelet-like bases known as wavelet 
packets. They are linear combinations of wavelet functions and represent a powerful 
generalization of standard orthonormal wavelet bases. Wavelet bases are one particular 
version of bases that represent piecewise smooth images effectively. Other bases are 
constructed to approximate various-type images of different spatial-frequency structures 
(Mallat, 1999). 

Figure 1. (Top) Two-dimensional wavelet decomposition of facial image with depth 2. 
(Bottom) Two-dimensional wavelet packet decomposition of facial image with depth 2 
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As a generalization of the wavelet transform, the wavelet packet coefficients also can be 
computed with two-channel filter bank algorithm. The two-channel filter bank is iterated  
over both the lowpass and highpass branch in wavelet packet decomposition. Not only L1 is 
further decomposed as in wavelet decomposition, but also H1, V1, D1 are further   
decomposed. This provides a quad-tree structure corresponding to a library of wavelet 
packet basis and images are decomposed into both spatial and frequency subbands, as 
shown in Fig 1. 

3. Preprocessing: Denoising 

Denoising is an important step in the analysis of images (Donoho & Johnstone 1998, Starck 
et al. 2002). In signal denoising, a compromise has to be made between noise reduction and 
preserving significant signal details. Denoising with the wavelet transform has been proved 
to be effective, especially the nonlinear threshold-based denoising schemes. Wavelet 
Transform implements both low-pass and high-pass filters to the signal. The low-frequency 
parts reflect the signal information, and the high-frequency parts reflect the noise and the 
signal details. Thresholding to the decomposited high-frequency coefficients on each level 
can effectively denoise the signal. 
Generally, denoising with wavelet consists of three steps: 
• Wavelet Decomposition. Transform the noisy data into wavelet domain. 
• Wavelet Thresholding. Apply soft or hard thresholding to the high-frequency 

coefficients, thereby suppress those coefficients smaller than certain amplitude. 
• Reconstruction. Transform back into the original domain. 
In the whole process, a suitable wavelet, an optimal decomposition level for the hierarchy 
and one appropriate thresholding function should be considered (Mallat 1999). But the 
choice of threshold is the most critical. 

3.1 Wavelet Thresholding 

Assuming the real signal  f [n] of size N is contaminated by the addition of a noise. This 
noise is modeled as the realization of a random process W[n]. The observed signal is  

The signal f is estimated by transforming the noisy data X with a decision operator Q. The 
resulting estimator is 

The goal is to minimize the error of the estimation, which is measured by a loss function. The 
square Euclidean norm is a familiar loss function. The risk of the estimator of  f is the 
average loss: 

The noisy data 

 X =  f + W (3) 

is decomposed in a wavelet basis . The inner product of (3) with bm gives  
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where .
A diagonal estimator of f from (3) can be written 

where m are thresholding functions. 
A wavelet thresholding is equivalent to estimating the signal by averaging it with a kernel 
that is locally adapted to the signal regularity. A filter bank of conjugate mirror filters 
decomposes a discrete signal in a discrete orthogonal wavelet basis. The discrete wavelets 

are translated modulo modifications near the boundaries. The 
support of the signal is normalized to [0, 1] and has N samples spaced by N–1. The scale 
parameter 2j thus varies from 2L = N–1 up to  2J <1: 

A thresholding estimator in this wavelet basis can be written 

where T is a hard thresholding or a soft thresholding. 
A hard thresholding estimator is implemented with 

A soft thresholding estimator is implemented with 

The threshold T is generally chosen so that there is a high probability that it is just above the 
maximum level of the noise. When WB is a vector of independent Gaussian random 
variables of variance 2 , the maximum amplitude of the noise has a very high probability of 
being just below . So we often choose the threshold . In this case, 
the soft thresholding guarantees with a high probability that 

. The estimator is at least as regular as f because its 
wavelet coefficients have a smaller amplitude. This is not true for the hard thresholding 
estimator, which leaves unchanged the coefficients above T , and which can therefore be 
larger than those of f because of the additive noise component. 
Face images with noise can be estimated by thresholding their wavelet coefficients. The 
image f [n1, n2] contaminated by a white noise is decomposed in a separable two-
dimensional wavelet basis. Figure 2 (a) is the original image, Figure 2 (b) is the noise image. 
Figure 2 (c, d) are obtained with a hard thresholding and a soft thresholding in a Symmlet 4 
wavelet basis. 



Wavelets and Face Recognition 65

Figure 2. (a) Original image, (b) Noisy image (SNR = 19.95), (c) Estimation with a hard 
thresholding in a separable wavelet basis (Symmlet 4), (SNR = 22.03),. (d) Soft thresholding 
(SNR = 19.96) 

The threshold   is not optimal, especially, when the noise W is not white, the 
variance of the noise depends on each vector bm of the basis. Thresholding estimators can be 
adapted.

3.2 Multiscale SURE Thresholds 

Piecewise regular signals have a proportion of large coefficients  that increases 
when the scale 2j increases. Indeed, a singularity creates the same number of large 
coefficients at each scale, whereas the total number of wavelet coefficients increase when the 
scale decreases. To use this prior information, one can adapt the threshold choice to the scale 
2j. At large scale 2j, the threshold Tj should be smaller in order to avoid setting to zero too 
many large amplitude signal coefficients, which would increase the risk. 

3.3 Translation Invariance 

Thresholding noisy wavelet coefficients create small ripples near discontinuities. Indeed, 
setting to zero a coefficient  subtracts  from f , which introduces oscillations 
whenever  is non-negligible. These oscillations are attenuated by a translation 
invariant estimation, consequently, can significantly improve the SNR. Thresholding 
wavelet coefficients of translated signals and translating back the reconstructed signals 
yields shifted oscillations created by shifted wavelets that are set to zero. The averaging 
partially cancels these oscillations, reducing their amplitude. Design of a translation 
invariant pattern recognition based on wavelets is still demanded. 

4. Wavelets for feature extraction 

Feature extraction in the sense of some linear or nonlinear transform of the data with 
subsequent feature selection is commonly used for reducing the dimensionality of facial 
image so that the extracted feature is as representative as possible. The images may be 
represented by their original spatial representation or by frequency domain coefficients. 
Features that are not obviously present in one domain may become obvious in the other 
domain. Unfortunately, Heisenberg uncertainty theorem implies that the information can 
not be compact in both spatial and frequency domain simultaneously. So, neither approach 
is ideally suited for all kinds of feature distribution. It motivates the use of the wavelet 
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transform which represents both the spatial and frequency domain simultaneously. 
Moreover, multiresolution analysis makes it more appropriate to represent and extract 
features across different scales. 
The wavelet transform or the wavelet packet transform have been used for feature 
extraction in face recognition. These are used in three ways: 
• Direct use of wavelet coefficients. 
• From combination of wavelet coefficients. 
• Searching the best feature in the wavelet packet library. 

4.1 Direct use of wavelet coefficients 

The simplest application of the wavelet transform for face recognition uses directly wavelet 
coefficients as features. The wavelet transform can locally detect the multiscale edges of 
facial images, the lineament edge information exists in the lowest spatial-frequency 
subband, while finer edge information presents in the higher spatial-frequency subband. 
The waveletface (Chien & Wu, 2002) is a wavelet based approach. It uses the wavelet 
transform to decompose the image data into four subimages via the low-pass and high-pass 
filters with respect to the column vectors and the row vectors of array pixels. Then the low 
spatial-frequency subimage is selected for further decomposition. The three-level lowest 
spatial-frequency subimage with a matrix of (nrow/8) x (ncol/8) is extracted as the feature 
vector, referred to as waveletface, where nrow x ncol is the resolution of facial image. 
Generally, low frequency components represent the basic figure of an image, which is less 
sensitive to image variations. These components form the most informative subimage 
gearing with the highest discriminating power. The waveletface can be expressed by a form 
of linear transformation: y= WTwavelet x, where WTwavelet x is composed of impulse responses of 
the low pass filter h. Different from some statistics based methods, such as eigenface and 
fisherface, see (Zhao et al 2003), the waveletface can be independently extracted without the 
effect of new enrolled users. Waveletface is an efficient method because no extra 
computation is needed. 

4.2 From combinations of wavelet coefficients 

The direct use of wavelet coefficients may not extract the most discriminative features for 
two reasons: 
• There is much redundant or irrelevant information contained in wavelet coefficients. 
• Can not recover new meaning underlying features which has more discriminative power. 
In order to overcome the deficiency of direct use of wavelet coefficients, it is possible to 
construct features from the combinations of wavelet coefficients to produce a low-
dimensional manifold with minimum loss of information so that the relationships and 
structure in the data can be identified. These can be done in two ways: 
• Use the statistical quantum of wavelet coefficients in each spatial-frequency subband as 

discriminative features. 
• Employ traditional transforms (e.g., PCA, LDA, ICA, AM, Neural Networks) to 

enhance and extract discriminative features in one or several special spatial-frequency 
subbands. 
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4.2.1 Use the statistical measures as discriminative features 

The statistical measures, e. g., mean, variance, are usually helpful to represent features or 
characteristics of data, it is simple and requires less computation load. 
Garcia et al. (Garcia et al., 1998) present a wavelet-based framework for face recognition. 
Each face is described by a subset of subband filtered images containing wavelet coefficients 
after two-level wavelet packet transform. These coefficients characterize the face texture and 
a set of simple statistical measures are used to reduce dimensionality and characterize 

textural information, which forms compact and meaningful feature vectors .
After the extraction of all the vectors of the training set, only the components with a mean 
value above a predefined threshold are considered for feature vector formation. It is 
supposed that each component pair is independent from the other component pairs of the 
feature vector. Then, the Bhattacharrya distance between two feature vectors k and  l  is 
computed on a component-pair basis 

in order to classify the face feature vectors into person classes. 
In fact, other statistical measures, e. g., other kinds of moments can be used in the above 
wavelet-based framework for face recognition. Moreover, the discrete density function of 
whole wavelet coefficients in each subband can be evaluated. The similarity measure of 
density function can be computed by some relative entropy, such as Kullback-Leibler 
divergence or J-divergence. 

4.2.2 Employ traditional transform in special subbands 

Generally, the wavelet coefficients are deficient to be good discriminative features, a further 
discriminant analysis is adopted to recover new meaningful underlying features which has 
more discriminative power. The traditional transforms (e.g., PCA, LDA, ICA, AM, Neural 
Networks) are very popular for their simplicity and practicality. They can be performed on 
one or several special spatial-frequency subbands which may be chosen by certain criterion. 
We (Feng et al. 2000) proposed a wavelet subband approach in using PCA for human face 
recognition. Three-level wavelet transform is adopted to decompose an image into different 
subbands with different frequency components. A midrange frequency subband is selected 
for PCA representation. The experiments show that it has low computation and higher 
accuracy, comparing with using original PCA directly in spatial domain. 
In (Dai & Yuen, 2006) we used a wavelet enhanced regularized discriminant analysis to 
solve the small sample size problem and applied it to human face recognition. We analyzed 
the role of the wavelet transform, low-pass filtering will reduce the dimension of input data 
but meanwhile increases the magnitude of the within-class covariance matrix so that the 
variation information plays too strong a role and the performance of the system will become 
poorer. It also overcomes the difficulty in solving a singular eigenvalue problem in 
traditional LDA. Moreover, a wavelet enhanced regularization LDA system for human face 
recognition is proposed to adequately utilize the information in the null space of withinclass 
scatter matrix (Dai & Yuen, 2003). 
Ekenel et al. (Ekenel & Sankur, 2005) introduced a ternary-architecture multiresolution face 
recognition system. They used the 2D discrete wavelet transform to extract multiple 
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subband face images. These subband images contain coarse approximations of the face as 
well as horizontal, vertical and diagonal details of faces at various scales. Subsequently, The 
PCA or ICA features are extracted from these subbands. They exploit these multiple 
channels by fusing their information for improved recognition. Their experiments show that 
it has good performance, especially against illumination perturbations. 
In ( Zhang et al., 2004), they proposed a modular face recognition scheme by combining the 
techniques of wavelet subband representations and kernel associative memories. By the 
wavelet transform, face images are decomposed and the computational complexity is 
substantially reduced by choosing a lower spatial-frequency subband image. Then an kernel 
associative memory (KAM) model are built up for each subject, with the corresponding 
prototypical images without any counter examples involved. Multiclass face recognition is 
thus obtained by simply holding these associative memories. When a probe face is 
presented, the KAM model gives the likelihood that the probe is from the corresponding 
class by calculating the reconstruction errors or matching scores. 
Illumination compensation is always a problem important but difficult to solve in face 
recognition. The wavelet transform decomposes the data into different frequency ranges 
which allows us to isolate the frequency components introduced by illumination effects into 
certain subspaces. We can use the subspaces that do not contain these illumination-based 
frequency components to better represent our data, so as to eliminate the influence of the 
illumination changes, before a face image is recognized. In (Zhang et al., 2005), a face 
compensation approach based on wavelet and neural network is proposed. A rough linear 
illumination compensation was first performed for the given face image, which can only 
compensate the lower frequency features and the effect is limited. The higher frequency 
features are not be compensated. But it can reduce the learning pressure of the neural 
network, accelerate the convergent rate and improve the learning accuracy as well as the 
extensibility of the network. The method can compensates the different scale features of the 
face image by using the multi-resolution characteristic of the wavelet and the self-adaptation 
learning and good spread ability of BP neural network. Their experiments show that it can 
solve the problem of illumination compensation in the face recognition process. 

4.3 Search local discriminant basis/coordinates in wavelet packet library 

As a generalization of the wavelet transform, the wavelet packet not only offers us an 
attractive tool for reducing the dimensionality by feature extraction, but also allows us to 
create localized subbands of the data in both space and frequency domains. A wavelet 
packet dictionary provides an over-complete set of spatial-frequency localized basis 
functions onto which the facial images can be projected in a series of subbands. The main 
design problem for a wavelet packet feature extractor is to choose which subset of basis 
functions from the dictionary should be used. Most of the wavelet packet dictionary 
methods that have been proposed in the literature are based on algorithms which were 
originally designed for signal compression such as the best basis algorithm (Coifman & 
Wicherhauser, 1992), or the matching pursuit algorithm (Mallat & Zhang, 1993). 
Saito and Coifman introduced the local discriminant basis (LDB) algorithm based on a best 
basis paradigm, searching for the most discriminant subbands (basis) that illuminates the 
dissimilarities among classes from the wavelet packet dictionary (Coifman & Satio, 1994) 
(Satio & Coifman, 1995). It first decomposes the facial images in the wavelet packet 
dictionary, then facial image energies at all coordinates in each subband are accumulated for 
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each class separately to form a spatial-frequency energy distribution per class on the 
subband. Then the difference among these energy distributions of each subband is 
measured by a certain “distance” function (e.g., Kullback-Leibler divergence), a complete 
local discriminant basis (LDB) is selected by the difference-measure function using the best 
basis algorithm (Coifman & Wicherhauser, 1992), which can represent the distinguishing 
facial features among different classes. After the basis is selected, the loadings of their 
coordinates are fed into a traditional classifier such as linear discriminant analysis (LDA) or  
classification tree (CT). Finally, the corresponding coefficients of probes are computed and 
fed to the classifier to predict their classes. 
Unfortunately, the energies may not be so indicative for discrimination sometimes, because 
not all coordinates in the LDB are powerful to distinguish different subjects. Many less 
discriminant coordinates may add up to a large discriminability for the LDB. An example of 
artificial problem was used to validate that it may be fail to select the right basis function as a 
discriminator (Saito & Coifman, 2002). So Saito and Coifman suggested a modified version of 
the LDB (MLDB) algorithm which uses the empirical probability distributions instead of the 
space-scale energy as their selection strategy to eliminate some less discriminant coordinates in 
each subband locally (Saito & Coifman, 2002). It estimates the probability density of each class 
in each coordinate in all subbands. Then the discriminative power of each subband is 
represented by the first N0 most discriminant coordinates in terms of the “distance” among the 
corresponding densities (e.g., Kullback-Leibler divergence among the densities). This 
information is then used for selecting a basis for classification as in original LDB algorithm. 
Although the MLDB algorithm may overcome some shortage of LDB, the selection of 
coordinates is only limited to each subband so that the coordinates in different subbands are 
still incomparable. Therefore, the MLDB algorithm gives an alternative to the original LDB. 
This LDB concept has become increasingly popular and has been applied to a variety of 
classification problems. Based on LDB idea, Kouzani et al. proposed a human face 
representation and recognition system based on the wavelet packet method and the best 
basis selection algorithm (Kouzani et al. 1997). An optimal transform basis, called the face 
basis, is identified for a database of the known face images. Then it is used to compress all 
known faces within the database in a single pass. For face recognition, the probe face image 
is transformed, and the compressed face is then compared against the database. The best 
filter and best wavelet packet decomposition level are also discussed there. 
Since features with good discriminant property may locate in different subbands, it is 
important to find them among all subbands instead of certain specific subbands. We 
proposed a novel local discriminant coordinates (LDC) method based on wavelet packet for 
face recognition to compensate for illumination, pose and expression variations (Liu et al. 
2007). The method searches for the most discriminant coordinates from the wavelet packet 
dictionary, instead of the most discriminant basis as in the LDB algorithm. The LDC idea 
makes use of the scattered characteristic of best discriminant features. In the LDC method, 
the feature selection procedure is independent of subbands, and only depends on the 
discriminability of all coordinates, because any two coordinates in the wavelet packet 
dictionary are comparable for their discriminability which is computed by a maximum a 
posterior logistic model based on a dilation invariant entropy. LDC based feature extraction 
not only selects low frequency components, but also middle frequency components whose 
judicious combination with low frequency components can improve the performance of face 
recognition greatly. 
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4.4 Robust issue 

It is known that a good feature extractor of face recognition system is claimed to select as 
more as possible the best discriminant features which are not sensitive to arbitrary 
environmental variations. Nastar et al. (Nastar & Ayach, 1996) investigated the relationship 
between variations in facial appearance and their deformation spectrum. They found that 
facial expressions and small occlusions affect the intensity manifold locally. Under 
frequency-based representation, only high-frequency spectrum is affected. Moreover, 
changes in pose or scale of a face and most illumination variations affect the intensity 
manifold globally, in which only their low-frequency spectrum is affected. Only a change in 
face will affect all frequency components. So there are no special subbands whose all 
coordinates are not sensitive to these variations. 
In each subband, there may be only segmental coordinates have enough discriminant power 
to distinguish different person, the remainder may be sensitive to environmental changes, 
So some methods based on the whole subband may also use these sensitive features which 
maybe affect their performance for face recognition. 
Moreover, there may be no special subbands containing all the best discriminant features, 
because the features not sensitive to environmental variations are always distributed in 
different coordinates of different subbands locally. So methods based on the segmental 
subbands may lose some good discriminant features. 
Furthermore, in different subbands, the amount and distribution of best discriminant 
coordinates are always different. Many less discriminant coordinates in one subband may 
add up to a larger discriminability than another subband whose discriminability is added 
up with few best discriminant coordinates and residual small discriminant coordinates. So 
the few best discriminant coordinates may be discarded by some methods which search for 
the best discriminate subbands, but usually only the few best discriminant coordinates are 
needed.
So the best discriminant information selection should be independent of their seated 
subbands, and only depends on their discriminability for face recognition. In addition, there 
may be some redundancy or collinearity in features which will affect the performance for 
face recognition. However, another limitation of using wavelet for face recognition is that 
the wavelet transform has no property of translation invariance. Mallat (Mallat, 1996) 
discussed that the wavelet representation not only contains spatial and frequency 
information, but also phase information. When the phase information varies with small 
translations, it will cause difficulties with matched filtering applications. For achieving 
translation invariance, it should contain some redundant information in the representing 
features.
The wide-range variations of human face, due to pose, illumination, and expression, require 
the wavelet transform to extract features that are translation invariant and to a certain extent 
scale invariant. This constitutes a trade-off between the amount of possible invariance and 
the sparseness of the wavelet representation. So a robust wavelet feature extractor should 
select a best discriminant features group with appropriate redundancy or co-linearity. 
However, searching such a wavelet feature extractor is a difficult task and needs further 
research.
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5. Conclusion 

Wavelets have been successfully used in image processing. Their ability to capture localized 
spatial-frequency information of image motivates their use for feature extraction. We give 
an overview of using wavelets in the face recognition technology. Due to limit of space the 
use of Gabor wavelets is not covered in this survey. Interested readers are referred to section 
8.3 for references. 
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