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ABSTRACT
Motivation: The transcription of a gene is largely determ-
ined by short sequence motifs that serve as binding sites for
transcription factors. Recent findings suggest direct relation-
ships between the motifs and gene expression levels. In this
work, we present a method for identifying regulatory motifs.
Our method makes use of tree-based techniques for recover-
ing the relationships between motifs and gene expression
levels.
Results: We treat regulatory motifs and gene expression
levels as predictor variables and responses, respectively, and
use a regression tree model to identify the structural rela-
tionships between them. The regression tree methodology is
extended to handle responses from multiple experiments by
modifying the split function. The significance of regulatory ele-
ments is determined by analyzing tree structures and using a
variable importance measure. When applied to two data sets
of the yeast Saccharomyces cerevisiae, the method success-
fully identifies most of the regulatory motifs that are known to
control gene transcription under the given experimental con-
ditions, and suggests several new putative motifs. Analysis of
the tree structures also reconfirms several pairs of motifs that
are known to regulate gene transcription in combination.
Availability: http://if.kaist.ac.kr/~phuong/RegTree
Contact: doheon@kaist.ac.kr

1 INTRODUCTION
Living cells respond to changing environmental conditions
by regulating the expression of specific genes. This regula-
tion occurs at several levels, one of which is transcriptional
regulation. The transcription of a gene is controlled by diverse
regulatory proteins called transcriptional factors (TFs), which
bind to specific DNA sequences in the promoter region of
the gene. Each TF recognizes a unique family of binding
sites based on sequence binding preferences that arise through
the energetic interactions between the atoms of the TF and
those of the DNA sequence. The binding sites are short

∗To whom correspondence should be addressed.

sequences (motifs) that average 5–20 bp in length. How a col-
lection of TFs regulates the transcription of a gene depends
to a large extent on the binding sites found in the gene’s
promoter. Hence, identifying and characterizing regulatory
motifs that serve as TF binding sites is important for our
understanding of the complex regulation of gene expression.
Because experimental identification of regulatory motifs is
difficult and time-consuming, researchers have long looked
for computational approaches to this problem.

The main sources of data for studying regulatory elements
are genome sequencing projects and DNA microarray data
on the expression levels of many or all genes in a genome.
A popular strategy is to look for conserved motifs upstream of
genes that are believed to be co-regulated [reviewed in (Ohler
and Niemann, 2001)]. First, genes with similar expression
patterns across experimental conditions are grouped together
by applying clustering analysis to genome-wide expression
data sets (Eisen et al., 1998). The assumption here is that
co-expressed genes are also co-regulated. Then, a motif dis-
covery algorithm is used to search the sequences upstream
of genes within each cluster for motifs that are common
to them. These sequence motifs are plausible candidates
for binding sites implicated in transcriptional regulation.
There are many algorithms and methods that can be used
to search for conserved sequences (Lawrence et al., 1993;
Bailey and Elkan, 1995; van Helden et al., 1998; Sinha and
Tompa, 2002). Bussemaker et al. (2001) noted that despite
the success in the identification of many motifs, this strategy
has a drawback: there are genes in the cluster without the
motif, and many genes with the motif do not respond. To
overcome this shortcoming, Holmes and Bruno (2000) sug-
gested that researchers should cluster genes based on both
gene expression patterns and promoter sequences. However,
although their approach might theoretically overcome this
limitation, no effective algorithm has yet been implemented
to demonstrate its advantage in real data.

In a recent paper, Segal et al. (2003) described a probab-
ilistic method for identifying modules of co-regulated genes
together with their regulators. This method takes as input a set
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of candidate regulatory genes and a gene expression data set.
Based on the assumption that the regulators are themselves
transcriptionally regulated, the method uses the Expecta-
tion Maximization algorithm to search simultaneously for
a partition of genes into modules and for a regulation program
for each module. A Bayesian score is used to evaluate how
well a regulation program can explain the expression behavior
of the genes in the module as a function of the expression level
of a small set of regulators. A motif finder then searches for
conserved motifs upstream of the genes in each module.

Another approach to the identification of regulatory motifs
is based on the association between gene expression values
and the abundance of motifs (Bussemaker et al., 2001; Keles
et al., 2002). This approach models expression levels for
a single experiment as linear functions of sequence motifs.
A linear regression procedure is used to fit the model and
select the motifs that contribute most heavily to the model.
The underlying assumption is that if a motif represents a
functional binding site for an active TF, then the presence
of the motif contributes additively to the expression level of
the gene under the given experimental condition. Conlon et al.
(2003) proposed a modification to this method by applying a
sequence analysis algorithm for choosing only statistically
over-represented motifs as inputs for the linear regression
procedure.

In this paper, we formulate the problem in the regression
framework and present a method for identifying regulatory
motifs using tree-based regression models. The tree-based
regression paradigm was introduced by Breiman et al. (1984)
for dealing with a single response, and was later extended
for use in handling multiple responses (Segal, 1992). When
used for multiple responses, it is called a multivariate regres-
sion tree [some authors use the term ‘multivariate tree’ to
refer to the classification trees whose splits are based on
testing more than one variable (Broadley and Utgoff, 1995;
Quinlan, 1993)]. Multivariate regression trees are useful when
the goal is to identify strata with common covariate values and
homogeneous multiple outcomes (Segal, 1992). In this work,
we treat motif occurrences by the number of times motifs
appear in gene promoters as predictor variables and the expres-
sion levels across different experimental conditions as mul-
tiple responses; then, we construct a multivariate regression
tree that fits the data. The motifs that are important for fitting
are then considered plausible regulatory motifs. We evaluate
the importance of the motifs by analyzing the structure of the
tree as well as using a technique based on surrogate splits.

2 METHODS
2.1 Regression tree methodology for a single

response
In this section we give a brief introduction to the tree-based
models. We refer the reader to Breiman et al. (1984) for
further details. Suppose that there are p predictor variables

X1, X2, . . . , Xp and a response Y . The values of Xj and Y are
observed for n learning cases. In the context of motif iden-
tification, p variables Xi are the motifs, response Y is the
expression level for a single time point and n learning cases
are the genes.

A regression tree is a binary tree constructed by repeatedly
splitting (sub)sets of learning cases into two descendant sub-
sets. Each node of a tree contains a subset of cases. A node
that does not have descendant nodes is a terminal node. The
root node comprises the entire learning sample. The left and
right child nodes contain disjoint subsets of the parent con-
tent and are defined by splitting the parent node. To construct
a regression tree, the following must be specified:

(1) The rule to split a node.

(2) The method to determine the tree size.

Splitting is a critical step in tree-based techniques. Briefly,
suppose that a predictor Xi is an ordered variable. Two sub-
groups result from answering the question ‘is xi ≤ c?’. Cases
for which the answer is ‘yes’ go to the left node, and those for
which the answer is ‘no’ go to the right node. The cutoff value
c is in the range of observed values of xi . For a given number of
predictor variables and a given set of cutoff values, there may
be many allowable splits. A tree-growing algorithm chooses
the best split for each node based on a split function φ(s, g)

that can be evaluated for each split s in each node g. A split is
chosen so as to get the distributions of responses in the child
nodes are most homogeneous. Two such split functions are
discussed by Breiman et al. (1984): least squares (LS) and
least absolute deviation (LAD). Here we will focus on LS.

Let us assume that g is a node containing a subgroup of cases
{(xi , yi)}, where xt

i = (xi1, . . . , xip), (at is the transpose of
vector a), and that ng is the total number of cases in g. The
within node sum-of-squares is given by

SS(g) =
∑

i∈g

(yi − ȳ(g))2 (1)

where

ȳ(g) = 1

ng

∑

i∈g

yi

For a split s that partitions g into left and right child nodes
gL and gR, the LS split function is

φ(s, g) = SS(g) − (SS(gL) + SS(gR)) (2)

The best split s∗ is that which maximizes φ(s, g):

s∗ = argmax
s∈S

(φ(s, g))

where S is the set of all allowable splits. The non-negativity
of the split function ensures that recursive splitting will
create smaller nodes with increased homogeneity. The
algorithm proceeds recursively until some stop criterion is
met. Typically, a minimum node size is specified or splitting
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stops when SS(g) drops below a certain level, e.g. 1% of the
sum-of-square of the root node.

2.2 Multiple responses
Now consider a situation in which more than one response is
observed. In such a multivariate regression setting, each learn-
ing case has both a vector of predictor variables and a vector
of responses yt

i = (yi1, . . . , yiq), e.g. a vector of expres-
sion levels from multiple experiments. How then is the split
function in Equation (2) to be generalized to this situation?

An obvious generalization is to rewrite the within-node
sum-of-squares in Equation (1) as follows (Segal, 1992):

SS(g) =
∑

i∈g

(yi − ȳ(g))tV−1(yi − ȳ(g)) (3)

where V is the covariance matrix of yi in the root node
and ȳ(g) is the average of yi within node g. Then, the
split function remains the same as in Equation (2). Segal
(1992) noted that taking V to be the pooled sample covari-
ance matrix of the responses in the root node corresponds to
a two-sample Hotelling’s T 2 statistic. He also noted that any
two-sample statistic provides a split function that optimizes
between-node separation rather than within-node homogen-
eity. With the new generalized split functions, the recursive
algorithm proceeds as in the case with a single response.

2.3 Determining the tree size
A crucial aspect of tree construction is avoiding overfitting and
underfitting, i.e. avoiding trees with too many nodes or too few
nodes. Breiman et al. (1984) proposed a pruning algorithm
that determines the tree size as follows: (a) initially, grow a
large tree; (b) starting with the initial tree, define a nested
sequence of its subtrees using cost-complexity; (c) select an
optimal subtree from this sequence by cross-validation.

For step (b), a tree cost-complexity must be defined. Let
R(g) be the cost of a node g. Then, the cost of a tree G

is defined as R(G) = ∑
g∈G̃ R(g), where G̃ is the set of

terminal nodes of G. Further, define the complexity of G as
the number of terminal nodes |G̃|. Then, the cost-complexity
of G is defined as

Rα(G) = R(G) + α|G̃|, α > 0, (4)

where α is the complexity parameter that penalizes the number
of the terminal nodes.

For the case of multiple responses, Zhang (1998) introduced
the following cost function for φ(s, g)

R(G) =
∑

g∈G̃

∑

i∈g

(yi − ȳ(g))tV−1(yi − ȳ(g)) (5)

where V and ȳ(g) are estimated from the learning sample
(based on which the initial tree is grown). Once R(G) is
defined, steps (b) and (c) are carried out as described in
(Breiman et al., 1984).

2.4 Surrogate splits and variable importance
In general, regression analysis can have two purposes:
(1) to predict the values of the response variables in the future;
(2) to understand the structural relationships between the
responses and the measured variables. Our main purpose is
not to predict but to discover those predictor variables (motifs)
that are most relevant to the responses. Hence, a question of
interest is: which variables are the most important? In other
words, how do we rank those variables that, while not giv-
ing the best split of a node and thus do not appear in the
tree structure, may give the second-best or third-best split. By
using such variables to split the node we can obtain a tree that
is almost as accurate as the original tree.

Breiman et al. (1984) proposed a measure of variable
importance based on surrogate splits. For a given node g,
suppose that s∗ is the optimal split. The surrogate split s̃m on
variable Xm for s∗ is defined as the split that best predicts
the results of s∗ in comparison with other splits on Xm. That
is, the child nodes that result from splitting g by s̃m show
the greatest intersection with those that result from splitting
g by s∗. Then, the measure of importance of variable Xm is
defined as

M(Xm) =
∑

g∈G

φ(s̃m, g) (6)

whereφ is the split function. If there is more than one surrogate
split on Xm at a node, we take the one with the larger φ.

3 IMPLEMENTATION AND RESULTS
3.1 Regression trees and regulatory motif

discovery
When a transcription factor binds to an appropriate motif, it
regulates the expression level of the respective gene. Thus,
motifs can be considered as predictors that explain changes
in expression levels. For a gene i, we introduce a vector of
predictor variables xt

i = (xi1, . . . , xip), where xij is the num-
ber of times motif j appears in the promoter of i. The vector
of responses for i is yt

i = (yi1, . . . , yiq), where yij is the
logarithm base 2 of the expression level of gene i in sample
point j .

To build the tree model, first we need to decide which
sequence motifs will be motif candidates and therefore will
be predictor variables. The simplest way is to enumerate all
the sequences in the genes’ promoters as potential motifs
(Bussemaker et al., 2001; Keles et al., 2002). However, this
method has several drawbacks. First, because the number of
all possible sequences is very large, only short sequences
(up to 8 bp) can be considered. Second, most of considered
sequences are not present in the final models while they can
make noise that affect the model selection process.

Here, we take a more reasonable approach to selecting can-
didate motifs. Our method is similar to that proposed by
Conlon et al. (2003). In particular, we take only sequences

752

 by guest on M
arch 8, 2011

bioinform
atics.oxfordjournals.org

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/


Regression trees for motif identification

that are conserved over genes. These motifs can be found
using a motif finding algorithm such as AlignACE (Hughes
et al., 2000) or MEME (Bailey and Elkan, 1995). The details
of motif selection are given below.

3.2 Data sets
3.2.1 Candidate motifs For experiments, we used the set
of 356 motifs compiled by Pilpel et al. (2001) as candid-
ate motifs. The motif matrices are derived by applying the
motif finding program AlignACE to the upstream regions of
genes in the MIPS (Mewes et al., 2000) functional categor-
ies. Of the 356 motifs, 25 are known motifs described in the
biological literature. The details of motif collection and the
list of all 356 motifs with motif matrices can be found at
http://genetics.med.harvard.edu/~tpilpel/MotComb.html

For each motif, the number of times the motif appears in
the promoter regions of genes is counted by applying program
ScanACE (Hughes et al., 2000). This program takes a mat-
rix of motifs and scans a set of target sequences (promoters
of the genes in this case) for similar motifs. When applying
ScanACE to the promoters of the genes in Saccharomyces
cerevisiae, Pilpel et al. (2001) found 4483 promoter regions
that contain motifs from the above set. We counted xij from
these data.

3.2.2 Microarray data We tested the tree model on two
sets of microarray data for the yeast S.cerevisiae, specifically,
the cell cycle data set of Cho et al. (1998) and the sporulation
data set of Chu et al. (1998).

Cho et al. (1998) collected gene expression level data at
17 time points separated by 10 min intervals across two
full cell cycles. Following Tavazoie et al. (1999), we dis-
carded two time points (90 and 100 min) due to less efficient
labeling of their mRNA during the hybridization. From the
total 6220 genes, the 3000 most-variable genes were selected.
In this selection, the metric of variation was the ratio between
the standard variation and mean of the expression levels of
each gene across the time points. Of the 3000 genes retained,
only 2584 genes contain motifs from our set of candidate
motifs.

We selected only genes that have observed data for at least
80% of sample points. The missing values were replaces with
the mean of the observed data over sample points. In both
experimental data sets, the percentage of missing elements
is very low and it is therefore unlikely that our conclusions
are affected by missing data. The expression data were then
normalized so that the sum of squared values of expression
levels for each gene was equal to unity [see e.g. Tavazoie et al.
(1999) for details].

The second data set was taken from http://cmgm.stanford.
edu/pbrown/sporulation. This data set consists of the expres-
sion levels of about 6200 genes over 10 sample points during
meiosis and spore formation. Following Eisen et al. (1998),
we selected the 2473 most-variable genes and applied the

selection and transformation procedures described above to
this data matrix.

3.3 Tree construction
During the growing phase we do not partition any node with
less than 60 genes. In addition, we do not consider splits that
result in nodes with less than 30 genes (i.e. about 1% of all
genes). That ensures a reasonable number of genes in every
node to make conclusion about motifs. After growing initial
trees by using φ(s, g) as the split function, we pruned the trees
with the cost function R(G). We used 10-fold cross-validation
to estimate the subtree costs and standard errors.

3.4 Results
The final trees of the cell cycle and sporulation data sets are
shown in Figures 1 and 2, respectively. In these figures, the
numbers inside circles are the node indices. The split used for a
node is shown below the circle in the form ‘motif i name ⇐ n’,
which means that genes with more than n instances of motif i

in their promoters go to the right node, and other genes go to
the left node. For putative motifs with long names, we show
only the motif number. The names of these motifs are given
in Table 3.1

The trees tend to grow leftward, with less genes going
to the right child node at each split. This is normal for our
application, in which the known functional regulatory motifs
are present in only a small number of gene promoters. For
example, of the 2584 genes in the first data set, only 124 genes
have motif MCB in their promoters. The remaining 2460
genes, therefore, go to the left node 1.

Among the motifs in the tree structure, MCB, SCB, ECB
and MCM1 were mentioned previously by Cho et al. (1998).
In particular, motifs MCB and ECB have a strong effect
on transcription in the late G1 phase, SCB is active in the
early G1 phase, and MCM1 plays a regulatory role dur-
ing the G2 and M phases. Although the tree model does
not give direct information about when a motif is active,
it can be inferred by analyzing the mean temporal profile
(Tavazoie et al., 1999) of the node containing the motif (the
right child node after splitting a node using the motif ). The
motif AAAANGTAAACAA that has a high score in Cho et al.
(1998) is very similar to the motif SFF (GTAAACAAA). Other
motifs—RAP1, MET31-32 and mRRPE(M3A)—were found
by Tavazoie et al. (1999), who applied clustering analysis
to the same data set. Our tree model failed to identify motif
STRE, which was found by these authors.

We ranked all the motifs using the variable importance
measure based on surrogate splits. The top 20 motifs for the
cell cycle data set are listed in Table 1 with their normal-
ized importance measures M . The motivation for analyzing
this table is to identify additional motifs that do not appear in

1Motif names are taken from Pilpel et al. (2001), see our website for
sequences.
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Fig. 1. Regression tree for the cell cycle data set.

Fig. 2. Regression tree for the sporulation data set.
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Table 1. Top ranked motifs for the cell cycle data set using surrogate splits: M
is the importance measure and putative motifs are given by the motif numbers

Motif M Motif M

MCB 1 ABF1 0.172
SFF 0.40 13 0.161
mRRPE(M3A) 0.379 246 0.152
PAC 0.363 MET31-32 0.150
MCM1 0.357 SCB 0.137
SFF 0.330 96 0.133
102 0.197 MCM1 0.125
ECB 0.193 184 0.116
m_RRSE3 0.183 88 0.114
RAP1 0.175 221 0.112

Table 2. Top ranked motifs for the sporulation data set

Motif M Motif M

RAP1 1 154 0.176
mRRPE(M3A) 0.782 m_RPE58 0.163
RPN4 0.761 176 0.162
MCB 0.641 PAC 0.161
m_RPE72 0.355 SFF 0.161
m_RPE52 0.269 31 0.157
HSE 0.261 m_RPE8 0.153
Ume6(URS1) 0.248 57 0.148
304 0.184 141 0.142
ndt80(MSE) 0.178 49 0.139

the tree structure but that may be relevant to the expression
data. We found that most motifs that appear in the tree have
high ranking in Table 1. There are several additional putative
motifs, which are ranked lower.

For the sporulation data set, the most important motifs iden-
tified by the regression tree are RPN4, RAP1, MCB, URS1,
Ntd80(MSE), SFF, mRRPE(M3A) and PAC. Regulatory ele-
ments MSE and URS1 are known to play active roles in the
regulation of gene expression during sporulation (Chu et al.,
1998). Another motif, MCB, is one of the highly scored
motifs found in (Bussemaker et al., 2001). The top 20 ranked
variables for the sporulation data set are shown in Table 2.

The trees obtained for the cell cycle and sporulation data
sets also suggest some previously unknown motifs: numbers
13, 40, 88 and 281 in Figure 1, and numbers 46, 57, 73, 287
in Figure 2 (names are given in Table 3). Some of these motifs
possibly have role in transcription regulation.

In Figure 1, we can see several nodes that are defined by
paths containing combinations of motifs. For instance, node 6
results from the path containing MCB and SCB, node 16 cor-
responds to a combination of mRRPE(M3A) and PAC, node
14 corresponds to MCM1 and SFF, and node 26 corresponds
to SFF and ECB. These combinations of motifs are consistent
with those reported by Pilpel et al. (2001). From the tree in

Figure 2, we find one motif combination—mRRPE(M3A) and
PAC—which is among the findings of Pilpel et al. (2001).

As regression trees split genes into homogeneous sub-
groups, it is interesting to examine the groups of genes within
the terminal nodes. For each terminal node we plotted expres-
sion profiles of the genes in the node and calculated deviation
(not shown here due to lack of space). We found that ter-
minal nodes located closer to the root are more homogeneous
than those located further from the root. The analysis also
shows that while most genes within a terminal node have sim-
ilar expression profiles, the expression profiles of some genes
deviate from the mean. This tendency is stronger for terminal
nodes that are more distant from the root, which may reflect
the fact that splits closer to the root are more important and that
their respective motifs have a stronger effect in transcriptional
regulation.

4 DISCUSSION
In this study we have developed a new approach to the iden-
tification of regulatory elements based on regression trees.
Tree-based methods are more suitable than parametric meth-
ods when the data set is large both in terms of the number of
observations and the number of variables, which is the norm
for genetics data. To handle expression data from multiple
experiments, we adopted the approach proposed by Segal
(1992). This approach extends the traditional tree model to
cases with multiple responses by introducing generalized split
functions. As a special case, our method can be applied to data
from a single experimental condition; in that case, it is more
similar to the approach of Bussemaker et al. (2001).

Our approach is similar to that used in previous studies
(Bussemaker et al., 2001; Keles et al., 2002; Conlon et al.,
2003) in that it considers motifs as predictors, gene expression
levels as responses and then uses regression fitting to extract
most relevant predictors. However, unlike the prior works, the
tree model does not require the linearity assumption or any
assumption about the relationships between variables. More
importantly, by using the multivariate regression tree model,
our approach can simultaneously handle expression data col-
lected over multiple experiments. As noted by Bussemaker
et al. (2001), using expression data from multiple experiments
reduces the negative effect of noise and missing data. Another
characteristic of the model is that it clusters genes into homo-
geneous groups when constructs trees. However, clustering
here is different from that used by Eisen et al., (1999) in
that it considers simultaneously expression data and motifs;
clustering is integrated directly with motif identification.

Experiments in which the proposed approach was applied
to two-data sets of the yeast S.cerevisiae demonstrated the
ability of our method to identify biologically verified regulat-
ory motifs. For the cell cycle and sporulation data sets, we
identified most of the motifs known to be active in the given
experimental conditions and suggest several new putative
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Table 3. Putative motifs from tree structures and importance ranking

Motif Motif

13 m_ion_transporters_orfnum2SD_n7 46 m_breakdn_of_lipids_fatty_acids_and_isoprenoids_orfnum2SD_n8
31 m_pentose-phosphate_pathway_orfnum2SD_n7 49 m_regulation_of_amino-acid_metabol_orfnum2SD_n11
40 m_biogenesis_of_cytoskeleton_orfnum2SD_n5 88 m_regulat_of_lipid_fatty-acid_isoprenoid_biosynth_orfnum2SD_n8
73 m_metal_ion_transporters_orfnum2SD_n10 96 m_other_proteolytic_degradation_orfnum2SD_n2
57 m_organization_of_cytoplasm_orfnum2SD_n27 102 m_other_transcription_activities_orfnum2SD_n5

141 m_glyoxylate_cycle_orfnum2SD_n19 176 m_organization_of_cell_wall_orfnum2SD_n20
221 m_anion_transporters_orfnum2SD_n19 184 m_pheromone_response_generation_orfnum2SD_n12
287 m_g-proteins_orfnum2SD_n11 246 m_regulation_of_amino-acid_metabolism_orfnum2SD_n15
154 m_peroxisomal_organization_orfnum2SD_n28 281 m_other_energy_generation_activities_orfnum2SD_n4

regulatory elements. The tree models additionally revealed
several motif combinations, which are known to have combin-
atorial effects on transcriptional regulation. Our approach of
filtering motif candidates prior to tree construction reduced the
computational complexity while simultaneously increasing
the specificity of the results.

Despite these successes, our method fails to identify cer-
tain motifs, e.g. STRE from the cell cycle data set. A possible
reason is that the hierarchical nature of tree construction makes
it unable to capture transcriptional responses that are a super-
position of independent processes. If several motifs participate
independently in the same regulatory event, the tree model
generally picks up only one representative.

Although in the experiments we constructed trees from the
putative/known motifs compiled by Pilpel et al. (2001), our
approach will probably be able to take as input any set of
candidate motifs that are statistically significant over genes.
In combination with a method that can prepare such a set
of motifs, our approach can identify the motifs (including
de novo ones) that are significant for given microarray exper-
iments. Due to similarity with the clustering approach in
splitting genes into homogeneous groups our approach will
succeed in collections of microarray experiments that allow
differentiating clusters of genes based on their expression
profiles.
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