
K.-Y. Whang, J. Jeon, K. Shim, J. Srivatava (Eds.): PAKDD 2003, LNAI 2637, pp. 148–158, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Learning Rules to Extract Protein Interactions from
Biomedical Text

Tu Minh Phuong, Doheon Lee�, and Kwang Hyung Lee

Department of BioSystems, KAIST
373-1 Guseong-dong Yuseong-gu Daejeon 305-701, KOREA
{phuong, dhlee, khlee}@bioif.kaist.ac.kr

Abstract. We present a method for automatic extraction of protein interactions
from scientific abstracts by combing machine learning and knowledge-based
strategies. This method uses sample sentences, which are parsed by a link
grammar parser, to learn extraction rules automatically. By incorporating
heuristic rules based on morphological clues and domain specific knowledge,
this method can remove the interactions that are not between proteins and
improve the performance of extraction process. We present experimental results
for a test set of MEDLINE abstracts. The results are encouraging and
demonstrate the feasibility of our method to perform accurate extraction
without need of manual rule building.

1 Introduction

The study of protein interactions is one of the most important issues in recent
molecular biology research, especially for system biology. Mining biological
literature for extracting protein interactions is essential for transforming discoveries
reported in the literature into a form useful for further computational analysis [5].
However, most of the interaction data are stored in free text format with irrelevant and
confusing text bodies, which makes automatic querying for specific information
inefficient. At the same time, manual identification and collection of protein
interaction data for storing in databases is time consuming and laborious. This
situation has made automatic extraction of protein interaction an attractive application
for information extraction researches.

The methods proposed for protein interaction extraction differ from each other by
their degrees of using natural language techniques, reliance on pre-specified protein
names, statistical or knowledge-based strategies, and ability to identify interaction
type.

Marcotte et. al. [5] used Bayesian approach to score the probability that an abstract
discusses the topic of interest. The score is computed based on the frequencies of
discriminating words found in the abstracts. However, this method allows only
ranking and selecting abstracts. Actual extraction must be performed manually.

� Corresponding author

 Learning Rules to Extract Protein Interactions from Biomedical Text 149

A number of researchers have taken simple pattern-matching approach to extract
interactions. Blaschke et. al. [1] used the simple pattern “protein A…interaction
verb…protein B” to detect and classify protein interactions in abstracts related to
yeast. They simplified the task assuming that protein names are pre-specified by
users. Ono and colleagues [7] presented a similar approach. By using part-of-speech
tags and simple rules, this approach transforms complex and compound sentences into
simple ones before applying pattern matching. However, this approach cannot
automatically detect new protein names. Instead, it uses lexical lookup and requires
protein name dictionaries.

Several publications proposed using natural language processing techniques for the
extraction task. Rindflesch et. al. [10] described EDGAR, a system that used a
stochastic part-of-speech tagger, a syntactic parser, and extensive knowledge source
(Unified Medical Language System) to identify names and binding relationships.
Other linguistic motivated approaches use different grammar formalisms with shallow
or full syntactic parsing. Yakushiji et. al. [15] applied a full syntactic parser to
produce so called argument structure of whole sentences before mapping the
argument structure to extraction slots. Park and his colleagues [8] used a syntactic
parser with combinatory categorical grammar to analyze sentences. However, without
special protein name verification this approach gives recall and precision rates of only
48 and 80 respectively. Thomas et. al. [14] adapted general-purpose information
extraction system Highlight to protein interaction extraction by tuning the vocabulary
and the part-of-speech tagger. This system groups sequences of words into phrases by
cascaded finite state machines. The authors added some kind of protein names
verification to the system and reported the interesting fact that more restrict name
verification rules lead to higher recall and precision.

All of the mentioned approaches and systems use hand-crafted extraction rules.
Tuning rules manually requires significant time and domain-specific knowledge. To
overcome this knowledge-engineering bottleneck, a number of automatic rule
learning systems have been made. One of such systems, RAPIER [2], employs
inductive logic programming techniques to learn so-called extraction fillers. Another
system, WHISK [12], learns extraction rules by gradually adding lexical and/or
semantic terms to an empty rule. However, these systems are designed for extracting
only independent pieces of data from general text. It is difficult to adapt these systems
to extracting relationships between terms – interactions between proteins in our case.

In this paper, we show how extraction rules can be automatically learned from
training samples. We use the link grammar parser to parse sentences. The sentences
with links are tagged by the user and serve input for the learning procedure. The
learned rules are then used to detect potential protein interactions. We describe the
heuristic rules that verify detected nouns and noun phrases if they are protein names
or not. The results and evaluation of an experiment on a test set of Medline abstracts
related to Saccharomyces cerevisiae are presented.

The remainder of the paper is organized as follows. A brief description of a link
grammar is given in subsection 1.1. Section 2 describes extraction process and
heuristic rules for protein name verification. The rule learning algorithm is described
in section 3. Experimental results are presented and discussed in section 4. Section 5
draws our conclusion.

150 T.M. Phuong, D. Lee, and K.H. Lee

1.1 Link Grammar

Link grammar is a dependency grammatical system introduced by D. Sleator, D.
Temperley, and J. Lafferty [11]. Rather than examine the constituents or categories a
word belongs to, the link grammar is based on a model that words within a text form
links with one another. A sample parse result by a link grammar parser for sentence
“The boy ran away from school” is shown in Fig.1.

D: connects determiner to nouns
S: connects subject-nouns to verbs
MV: verbs (adjectives) to modifying
phrases
J: connects prepositions to their objects

Fig. 1. A sample parse with links

The arcs between words are called “links” with the labels showing the link types.
For example, the verb “ran” is connected to “from school” identifying a prepositional
phrase by the link “MV”. The part-of-speech tags (nouns, verbs and so on) are also
added to some words as suffixes.

The uppercase letters of the link labels indicate the primary types of links (there are
107 primary link types for the link parser version 4.1), and the lowercase letters detail
the relationships of words. The meanings of several link labels uppercase letters are
given in the right part of Fig.1.

Each word in the link grammar must satisfy the linking requirements specifying
which types of links it can attach and how they are attached. These linking
requirements are stored in a dictionary. It is easy to express the grammar of new
words or words with irregular usage. We can just define the grammar for these words
and add them to the dictionary. It is how we deal with domain-specific terms and
jargon in our work.

The reason why we have decided to adopt the link grammar in our work is that the
grammar provides the simple and effective way to express relationships between
terms in a sentence. This feature is very important in detecting protein interactions.
We can follow the related links to find participants of an interaction without
concerning the rest of the sentence.

2 Extraction of Protein Interactions

In this section, we describe how to extract protein interactions using extraction rules
and heuristic rules for protein name verification. First, sentences are parsed by the
link parser; words are stemmed by the Porter stemming algorithm [9] to solve the
problem of inflection. Next, our method looks for terms involved in interactions by
following the links described in the extraction rules. Finally, the heuristic rules are
applied to verify if the terms detected from the previous step are protein names or not.
We describe the details for each step below.

 Learning Rules to Extract Protein Interactions from Biomedical Text 151

2.1 Rule Representation

In our method, rules are subsets of links that connect terms describing an interaction
within a sentence. Our method requires three terms for an interaction: two protein
names and a keyword that indicates the type of relationship betweens the proteins. We
use the following keywords: “interact”, “bind”, “associate”, and “complex” as well as
their inflections.

A rule always begins with a keyword and contains all intermediate links that
connect the keyword to the first and the second proteins. Consider a sample sentence,
which has the parse result shown in Fig.2a. In this example, the keyword is “binds”,
the pairs of proteins are “Ash1p” - “HO” and “Ash1p” - “Swi5p”. The links that
connect “binds” with the pairs of proteins names are shown in Fig. 2b. We can think
of the parsed sentence as a graph where words are vertices and links are edges. Then
the connection between the keyword and a protein name is the shortest path between
these two vertices. This connection is recorded as a rule.

(a) Parsed sentence with links

(b) Links from the keyword to protein names

Fig. 2. A sample of connections between a keyword and protein names

In order to store and process rules, we have adopted textual presentation for rules. A
rule for the above example is shown in Fig. 3.

bind S- @NAME1
bind MV+ to J+ @NAME2
=>bind(@NAME1,@NAME2)

Fig. 3. An example of rule representation

Each rule consists of three lines. The first and second lines specify the links to follow
for detecting the first and second protein names respectively. The third line is a
template for interaction output. For example, the second line of the sample rule in
Fig.3 looks for keyword “bind”. If the keyword is found, the rule looks further for a
word “to” which is on the right of “bind” and which is connected to “bind” by a link
“MV”. The next step is looking rightward for a word connected to “to” by “J”. This
word will be extended and considered as a candidate for protein name. The procedure
for name extension will be described in the next subsection. Our rules contain only
the part of link labels that consists of uppercase letters. The signs “+” and “-” next to

152 T.M. Phuong, D. Lee, and K.H. Lee

the link labels represent search directions for right and left respectively. We call
intermediate words in link paths between keywords and protein names (for example
word “to” in the above rule) nodes. A rule line can have any number of nodes.

Given a sentence, a rule is said to be satisfied if we can find all links and words
specified in the rule within this sentence. A rule can be applied many times to each
sentence to find all interactions satisfying the rule. For instance, applying the above
rule to the sentence depicted in Fig.2 will output two candidates of interactions
=>bind(Ash1p,HO) and =>bind(Ash1p,Swi5p).

Our rules allow a form of disjunction as well as use of wildcard “*”. Rule lines can
look like the following:

 bind MV+ to|after J+ @NAME2
or bind MV+ * J+ @NAME2

the first line looks for either “to” or “after”, connected by “MV” to “bind”, whereas
the second lines allows any word on the right of “bind” which are connected to “bind”
with “MV” link.

2.2 Name Extension and Verification

In practice, many protein names are compound words. For example, in the sample
sentence shown in Fig.4, protein names are “general transcription factor” and “TATA
binding protein” but not “IIA” and “TATA”. The rule matching procedure described
above can detect only two words “IIA” and “protein”. Thus, an additional step is
necessary for capturing compound names. The following procedure is designed to
solve this problem.

(a) If the leftmost word of a name is connected to the next word on the left by links
“G” or “GN” then extend the name to the left one word. From the above example,
we have: IIA=>factor IIA

(b) If the leftmost word of a name is connected to word or words on the left by links
“A” or “AN” then extend the name to the left by adding all the connected words:
factor IIA => general transcription factor IIA.

(c) If the rightmost word of a name is connected to a word on the right with link “G”
or “GN” then extend the name by adding the connected word to the right.

Fig. 4. An example of protein names which are compound words

Having an interaction with names detected as described above, we have to verify that
it is a desired interaction between two proteins rather than an interaction between two
non-proteins. The most obvious approach is to use a protein name dictionary for

 Learning Rules to Extract Protein Interactions from Biomedical Text 153

checking whether the detected names are protein names or not. Unfortunately, the
number of new proteins is growing rapidly, which challenges maintaining the
dictionary up to date. In this work, we verify detected names by applying several
heuristic rules (part of rules are adopted from [4], [13] and [14]) that give some score.
Examples of rules are:

�� If a name contains word or words with uppercase letters, digits, some special
symbols, the Greek letters then give the name score 1.0.

�� If a name ends with one of the following words (molecule, gene, bacteria, base)
then reject the name.

�� If a name ends with a word that has suffixes “ole, ane, ate, ide, ine, ite, ol, ose”
then reject the name.

�� If a name is compound words containing functional descriptor (adhesion, channel,
filament, junction), activity descriptors (regulated, releasing, promoting,
stimulating), other keywords (receptor, factor, protein) then give the name score
1.0.

�� If a name is compound words without special words described above then give the
name score 0.5.

�� If a name is single word with suffix “-in” then give score 0.5.

If a rejecting rule is triggered, the name is removed. If several scoring rules are
triggered, the highest score is recorded. Names with the scores higher than a
predefined threshold will be accepted as protein names. By adjusting the threshold,
we can emphasize the importance of precision (with higher threshold) or the
importance of recall (with lower threshold).

3 Learning Extraction Rules

In this section we describe how to learn extraction rules automatically. Our algorithm
requires a set of hand-tagged sentences. During the tagging process the user must
explicitly point out the first protein name, the second protein name, and the keyword
of each interaction. There may be more than one protein pair linked by one keyword
as well as more than one keyword within a sentence. For example, the sentence
presented in Fig. 4 would be tagged as

The /n1 general transcription factor IIA/n0 /v1
binds/v0 to the /n2 TATA binding protein/n0

Our algorithm begins with creating a rule for each interaction being tagged in the
training set. To create the first line of a rule, the algorithm looks in the link-parsed
sentence for the shortest path from the keyword to any word of the first name. The
rule line for the second name is created in the similar way. Applying this processing
to all the examples of a training set, we get a set of rules, each per a tagged
interaction. Some of rules can have duplicates. These duplicates are removed by a
pruning procedure. The rules retained after pruning are referred to in this paper as
specific rules.

There are two general design approaches for rule learning systems: compression
(or bottom-up) and covering (top-down). Compression-based systems begin with a set

154 T.M. Phuong, D. Lee, and K.H. Lee

of highly specific rules, typically one for each example, and gradually compress rule
sets by constructing more general rules, which subsume more specific ones. This
approach has been chosen in designing our algorithm. The reason of our choice is our
preference of overly specific rules to overly general ones. In information extraction,
there is a trade-off between high precision and high recall. For the potential
application of our algorithm – populating protein interactions into databases –
precision must be emphasized. The bottom-up approach tends to learn more specific
rules, which also are more precise.

The learning algorithm is shown in Fig. 5. Starting with a set of specific rules, the
algorithm generalizes rules by repeatedly calling two procedures
GENERALIZE_TERM and GENERALIZE_FRAGMENT. Each of the procedures
produces a set of more general rules CandidateSet. The rules used to build
CandiadetSet are stored in BaseSet. From the CandidateSet returned by
GENERALIZE_TERM, the algorithm looks for the best rule r0. This rule will
subsume the rules in BaseSet if its evaluation is not worse than the overall evaluation
of BaseSet. In the case of calling GENERALIZE_FRAGMENT, the whole
CandidateSet will subsume the whole RuleSet if the former performs not worse than
the latter.

To evaluate a rule r we use the Laplace estimation, given by:

1n

1p
Score(r)

+
+=

where n is the number of extractions made on the training set by r, and p is the
number of correct extractions.

The GENERALIZE_TERM procedure. This procedure performs generalization
over rule terms. We use word “term” to refer to any word staying at a node of the link
path given by the first line or the second line of a rule. For example, the rule shown in
Fig.3 has term “to” in the second line. The keyword and the variables @NAME are
special terms and are not considered during term generalization.

The procedure looks for rules that are different only by terms at one node in one of
first two lines. Such rules can be found easily by regular expression matching.
Consider the following rule lines:

interaction M+ between J+ @NAME2
interaction M+ of J+ @NAME2
interaction M+ with J+ @NAME2

These rule lines are different only by terms at the second node (denoted by i). If such
rules are found, they are added to BaseSet. The procedure then performs
generalization by creating two rules, one by replacing term at node i with disjunctions
of terms i from rules in BaseSet, and another by replacing term at node i by wildcard
‘*’. These two rules will form CandidateSet.

From the example above we have the following rules after generalization

 interaction M+ of|between|with J+ @NAME2
and interaction M+ * J+ @NAME2

 Learning Rules to Extract Protein Interactions from Biomedical Text 155

RuleSet � the set of specific rules from examples
loop
 GENERALIZE_TERM (RuleSet, BaseSet, CandidateSet)
 if CandidateSet is not empty
 find rule r0� CandidateSet with Score(r0)=max r�CandidateSet Score(r)
 if Score(r0) >= � r�BaseSet Score(r)
 RuleSet = r0�(RuleSet�BaseSet)
until CandidateSet is empty
loop
 GENERALIZE_FRAGMENT(RuleSet, CandidateSet)
 if CandidateSet is not empty
 if � r�CandidateSet Score(r) >= � r�RuleSet Score(r)
 RuleSet � CandidateSet
until CandidateSet is empty

GENERALIZE_TERM (RuleSet, BaseSet, CandidateSet)
 BaseSet � {}
 CandidateSet � {}
 for rule r�RuleSet
 for i=1 to number of nodes of r
 find all rules�RuleSet that differ from r by only the terms at node i
 if such rules found
 BaseSet � the found rules
 CandidateSet � disjuntions of the found rules
 CandidateSet = CandidateSet�r with term i replaced by ‘*’
 Return

GENERALIZE_FRAGMENT(RuleSet, CandidateSet)
 CandidateSet � {}
 For rule r�RuleSet
 Find a rule r��RuleSet that differ from r only by the suffix of one line
 if r� is found
 s � suffix of r
 s� � suffix of r�
 for each rule p�RuleSet with suffix sp
 if sp=s OR sp=s�
 replace sp by s|s�
 CandidateSet = CandidateSet � p

Fig. 5. The learning algorithm

The GENERALIZE_FRAGMENT procedure. We call rule fragment (or just
fragment) any part of a rule line (the first or the second line) that begins with a term,
which is not a keyword, and ends with a term (another or the same). In the example
above a fragment can be “of J+ @NAME2” or “@NAME2”. We call suffix any
fragment that contains the rightmost term. The procedure looks for a pair of rules that
differ from each other only by the suffixes of one line. If such pair is found, the
suffixes of the rules are recorded. There may be more than one pair of suffixes for

156 T.M. Phuong, D. Lee, and K.H. Lee

each pair of rules. Then the procedure looks for all rules in RuleSet with suffixes
identical to one of the recorded suffixes. Is such rules are found the procedure builds
more general rules from them by replacing their suffixes with the disjunction of the
recorded suffixes. The new rules are then added to CandidateSet. In the example
below, the first two rule lines have two pairs of suffixes (to J+ @NAME2; to J+
domain M+ of J+ @NAME2) and (@NAME2; domain M+ of J+
@NAME2)

bind MV+ to J+ @NAME2
bind MV+ to J+ domain M+ of J+ @NAME2
bind O+ to J+ @NAME2

Generalization using these suffixes produces the following rules
bind MV+ (to J+ @NAME2)|(to J+ domain M+ of J+ @NAME2)
bind O+ (to J+ @NAME2)|(to J+ domain M+ of J+ @NAME2)

bind MV+ to J+ (@NAME2)|(domain M+ of J+ @NAME2)
bind O+ to J+ (@NAME2)|(domain M+ of J+ @NAME2)

The underlying assumption of fragment generalization is that if two different suffixes
are found in the same position of two similar rules, the suffixes probably can appear
in similar contexts and therefore can replace each other in other rules.

Example. As an example of the learning process, consider generalizing the rules
based on the following three sentences (only fragments are shown)

“While Scd2 interacted with the R1 N-terminal domain of Shk1…”
“The interaction between Sec1p and Ssop is…”
“… we observed an interaction of Sp1 and ZBP-89…”

The following specific rules are created after parsing and processing links for these
sentences (for the purpose of this example, we consider only the second lines of the
rules produced)

interact M+ with J+ domain M+ of J+ @NAME2
interact M+ between J+ @NAME2
interact M+ of J+ @NAME2

During term generalization, the second and third lines are found to have only different
terms “between” and “of”. Thus, the lines are generalized to:

interact M+ with J+ domain M+ of J+ @NAME2
interact M+ * J+ @NAME2

During fragment generalization, these lines give two suffixes “@NAME2” and
“domain M+ of J+ @NAME2”, which are used to build the following general rule

interact M+ * J+ (@NAME2)|(domain M+ of J+ @NAME2)

This rule can be used, for example, to find the interaction between Spc72p and Kar1p
from the sentence:

“Here we show that the interaction between yeast protein Spc72p and the
N-terminal domain of Kar1p….”

which cannot be detected by the initial specific rules.

 Learning Rules to Extract Protein Interactions from Biomedical Text 157

4 Experimental Results

We present here experimental results on a set of abstracts from Medline, a literature
database available through PubMed [6]. The abstracts were obtained by querying
Medline with the following keywords: “Saccharomyces cerevisiae” and “protein” and
“interaction”. We filtered the returned 3343 abstracts and retained 550 sentences
containing at least one of four keywords “interact”, “bind”, “associate”, “complex” or
one of their inflections.

We adopt the standard cross validation methodology to test our algorithm. The
data collection is partitioned several times into a training set and a testing set, rules
are learned using the training set and then are evaluated using the test set. In our
experiment, ten-fold cross validation was done on the set of sentences. An extracted
interaction is considered correct if both extracted protein names are identical to those
tagged by the user. The order of protein names (which is the first, which is the
second) is not taken into consideration although experimental results show that the
order is retained.

We evaluate performance in terms of precision, the number of correct extracted
interactions divided by the total number of extracted interactions, and recall, the
number of correct extracted interactions divided by the total number of interactions
actually mentioned in the sentences.

In order to analyze the effect of term generalization and fragment generalization on
the results, four versions of the learning algorithm were tested. The first version uses
only specific rules without any generalization. The other two versions use either term
or fragment generalization. The full version uses both type of generalization as shown
in Fig. 5. Recalls and precisions of the four versions are given in Table. 1.

Table 1. Results of different versions of the learning algorithm

 Recall (%) Precision (%)

Without generalization 41 93

With term generalization only 48 89

With fragment generalization only 49 91

Full algorithm 60 87

These results show that whereas the generalization slightly decreases precision, it
leads to valuable improvement on recall. The results also show a little advantage of
fragment generalization over term generalization.

There are a number of publications addressing the similar task of extracting protein
interaction. Unfortunately, it is not simple to quantitatively compare our method with
these alternatives because they use different text corpora, different assumptions about
protein names, and different treatment of errors. For instance, Ono et.al. [7] describe
an extraction method with high recall and precision of 86% and 94% respectively.
However, they required the presence of protein name dictionaries, which are not
always available. It is more reasonable to compare our approach with those that do
not require pre-specified protein names or dictionaries. Thomas and his colleague [14]
present one of such systems with 58% recall and 77% precision. Park et. al. [8]
describe an extraction method using a combinatory categorical grammar for parsing
and detecting interactions. They report recall and precision rates of 48 and 80
respectively. Both of the systems require hand-crafted patterns or rules for detecting
protein interactions.

158 T.M. Phuong, D. Lee, and K.H. Lee

5 Conclusion

We have described an algorithm that automatically learns information extraction rules
from training sentences. The rules learned by our algorithm can be used in
combination with heuristic rules, which verify whether a noun phrase is protein name
or not, to extract protein interactions from scientific abstracts. The learning and
extraction algorithms exploit the link grammar parser to parse input sentences. The
grammar has been shown appropriated for expressing relationships between words.
This makes it possible to design a relative simple learning algorithm that can achieve
accurate extraction performance without the need of manual rule building.

Acknowledgement. We thank Dokyun Na and Hyejin Kam for tagging training
examples. The first author was supported by The Korea Foundation for Anvanced
Studies and The Natural Science Council of Vietnam.

References

1. Blaschke, A., Andrade, M.A., Ouzounis, C., Valencia, A.: Automatic extraction of
biological information from scientific text: protein-protein interactions. In: Proceedings of
the 5th Int. Conference on Intelligent Systems for Molecular Biology. AAAI Press (1999).

2. Califf, M.E.: Relational learning techniques for natural language information extraction.
PhD thesis. University of Texas, Austin (1998).

3. Freitag, D.:Machine learning for information extraction in informal domains. In: Machine
learning, 39. Kluwer Academic Publishers.(2000).

4. Fukuda, K., Tamura, A., Tsunoda, T., Takagi, T.: Toward information extraction:
identifying protein names from biological papers. In: Proceedings of the Pacific
Symposium on Biocomputing. (1998).

5. Marcotte, E.M., Xenarios, I., Eisenberg, D.: Mining literature for protein-protein
interactions. Bioinformatics. 17(4). Oxford University Press (2001)

6. Medline Pubmed: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
7. Ono, T., Hishigaki, H., Tanigami, A., Takagi, T.: Automated extraction of information on

protein-protein interactions from the biological literature. In: Bioinformatics. 17(2) (2001).
8. Park, J.C., Kim, H.S., Kim, J.J.: Bidirectional Incremental Parsing for Automatic Pathway

Identification with Combinatory Categorial Grammar. In: Proceedings of the Pacific
Symposium on Biocomputing (2001).

9. Porter, M.F.: An algorithm for suffix stripping. In: Program 14 (1980).
10. Rindflesch, T.C.,Tanabe, L.,Weinstein, J.,Hunter, L.: EDGAR: extraction of drugs, genes

and relations from the biomedical literature. In: Proceedings of the Pacific Symposium on
Biocomputing (2000).

11. Sleator, D., Temperley, D.: Parsing English with a Link Grammar. In: Proceedings of 3d
International Workshop on Parsing Technologies (1993).

12. Soderland, S.: Learning information extraction rules for semi-structured and free text. In:
Machine learning, 34. Kluwer Academic Publishers.(1999).

13. Tanabe, L., Wilbur, W.: Tagging gene and protein names in biomedical text. In:
Bioinformatics. 18(8). Oxford University Press (2002).

14. Thomas, J., Milward, D., Ouzounis, C., Pulman, S., Carroll, M.: Automatic extraction of
protein interactions from scientific abstracts. In: Proceedings of the Pacific Symposium on
Biocomputing (2000).

15. Yakushiji, A., Tateisi, Y., Miyao, Y., Tsujii, J.: Event Extraction from Biomedical Papers
Using a Full Parser. In: Proceedings of the Pacific Symposium on Biocomputing (2001).

	1 Introduction
	1.1 Link Grammar
	2 Extraction of Protein Interactions
	2.1 Rule Representation
	2.2 Name Extension and Verification

	3 Learning Extraction Rules
	4 Experimental Results
	5 Conclusion
	References

