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Abstract. We present a method for automatic extraction of protein interactions 
from scientific abstracts by combing machine learning and knowledge-based 
strategies. This method uses sample sentences, which are parsed by a link 
grammar parser, to learn extraction rules automatically. By incorporating 
heuristic rules based on morphological clues and domain specific knowledge, 
this method can remove the interactions that are not between proteins and 
improve the performance of extraction process. We present experimental results 
for a test set of MEDLINE abstracts. The results are encouraging and 
demonstrate the feasibility of our method to perform accurate extraction 
without need of manual rule building. 

1   Introduction 

The study of protein interactions is one of the most important issues in recent 
molecular biology research, especially for system biology. Mining biological 
literature for extracting protein interactions is essential for transforming discoveries 
reported in the literature into a form useful for further computational analysis [5]. 
However, most of the interaction data are stored in free text format with irrelevant and 
confusing text bodies, which makes automatic querying for specific information 
inefficient. At the same time, manual identification and collection of protein 
interaction data for storing in databases is time consuming and laborious. This 
situation has made automatic extraction of protein interaction an attractive application 
for information extraction researches. 

The methods proposed for protein interaction extraction differ from each other by 
their degrees of using natural language techniques, reliance on pre-specified protein 
names, statistical or knowledge-based strategies, and ability to identify interaction 
type. 

Marcotte et. al. [5] used Bayesian approach to score the probability that an abstract 
discusses the topic of interest. The score is computed based on the frequencies of 
discriminating words found in the abstracts. However, this method allows only 
ranking and selecting abstracts. Actual extraction must be performed manually. 
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A number of researchers have taken simple pattern-matching approach to extract 
interactions. Blaschke et. al. [1] used the simple pattern “protein A…interaction 
verb…protein B” to detect and classify protein interactions in abstracts related to 
yeast. They simplified the task assuming that protein names are pre-specified by 
users. Ono and colleagues [7] presented a similar approach. By using part-of-speech 
tags and simple rules, this approach transforms complex and compound sentences into 
simple ones before applying pattern matching. However, this approach cannot 
automatically detect new protein names. Instead, it uses lexical lookup and requires 
protein name dictionaries. 

Several publications proposed using natural language processing techniques for the 
extraction task. Rindflesch et. al. [10] described EDGAR, a system that used a 
stochastic part-of-speech tagger, a syntactic parser, and extensive knowledge source 
(Unified Medical Language System) to identify names and binding relationships. 
Other linguistic motivated approaches use different grammar formalisms with shallow 
or full syntactic parsing. Yakushiji et. al. [15] applied a full syntactic parser to 
produce so called argument structure of whole sentences before mapping the 
argument structure to extraction slots. Park and his colleagues [8] used a syntactic 
parser with combinatory categorical grammar to analyze sentences. However, without 
special protein name verification this approach gives recall and precision rates of only 
48 and 80 respectively. Thomas et. al. [14] adapted general-purpose information 
extraction system Highlight to protein interaction extraction by tuning the vocabulary 
and the part-of-speech tagger. This system groups sequences of words into phrases by 
cascaded finite state machines. The authors added some kind of protein names 
verification to the system and reported the interesting fact that more restrict name 
verification rules lead to higher recall and precision. 

All of the mentioned approaches and systems use hand-crafted extraction rules. 
Tuning rules manually requires significant time and domain-specific knowledge. To 
overcome this knowledge-engineering bottleneck, a number of automatic rule 
learning systems have been made. One of such systems, RAPIER [2], employs 
inductive logic programming techniques to learn so-called extraction fillers. Another 
system, WHISK [12], learns extraction rules by gradually adding lexical and/or 
semantic terms to an empty rule. However, these systems are designed for extracting 
only independent pieces of data from general text. It is difficult to adapt these systems 
to extracting relationships between terms – interactions between proteins in our case. 

In this paper, we show how extraction rules can be automatically learned from 
training samples. We use the link grammar parser to parse sentences. The sentences 
with links are tagged by the user and serve input for the learning procedure. The 
learned rules are then used to detect potential protein interactions. We describe the 
heuristic rules that verify detected nouns and noun phrases if they are protein names 
or not. The results and evaluation of an experiment on a test set of Medline abstracts 
related to Saccharomyces cerevisiae are presented. 

The remainder of the paper is organized as follows. A brief description of a link 
grammar is given in subsection 1.1. Section 2 describes extraction process and 
heuristic rules for protein name verification. The rule learning algorithm is described 
in section 3. Experimental results are presented and discussed in section 4. Section 5 
draws our conclusion. 
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1.1    Link Grammar 

Link grammar is a dependency grammatical system introduced by D. Sleator, D. 
Temperley, and J. Lafferty [11]. Rather than examine the constituents or categories a 
word belongs to, the link grammar is based on a model that words within a text form 
links with one another. A sample parse result by a link grammar parser for sentence 
“The boy ran away from school” is shown in Fig.1. 

 

D: connects determiner to nouns 
S: connects subject-nouns to verbs 
MV: verbs (adjectives) to modifying 
phrases 
J: connects prepositions to their objects 

Fig. 1. A sample parse with links 

The arcs between words are called “links” with the labels showing the link types. 
For example, the verb “ran” is connected to “from school” identifying a prepositional 
phrase by the link “MV”. The part-of-speech tags (nouns, verbs and so on) are also 
added to some words as suffixes. 

The uppercase letters of the link labels indicate the primary types of links (there are 
107 primary link types for the link parser version 4.1), and the lowercase letters detail 
the relationships of words. The meanings of several link labels uppercase letters are 
given in the right part of Fig.1. 

Each word in the link grammar must satisfy the linking requirements specifying 
which types of links it can attach and how they are attached. These linking 
requirements are stored in a dictionary. It is easy to express the grammar of new 
words or words with irregular usage. We can just define the grammar for these words 
and add them to the dictionary. It is how we deal with domain-specific terms and 
jargon in our work. 

The reason why we have decided to adopt the link grammar in our work is that the 
grammar provides the simple and effective way to express relationships between 
terms in a sentence. This feature is very important in detecting protein interactions. 
We can follow the related links to find participants of an interaction without 
concerning the rest of the sentence. 

2    Extraction of Protein Interactions 

In this section, we describe how to extract protein interactions using extraction rules 
and heuristic rules for protein name verification. First, sentences are parsed by the 
link parser; words are stemmed by the Porter stemming algorithm [9] to solve the 
problem of inflection. Next, our method looks for terms involved in interactions by 
following the links described in the extraction rules. Finally, the heuristic rules are 
applied to verify if the terms detected from the previous step are protein names or not. 
We describe the details for each step below. 
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2.1    Rule Representation 

In our method, rules are subsets of links that connect terms describing an interaction 
within a sentence. Our method requires three terms for an interaction: two protein 
names and a keyword that indicates the type of relationship betweens the proteins. We 
use the following keywords: “interact”, “bind”, “associate”, and “complex” as well as 
their inflections. 

A rule always begins with a keyword and contains all intermediate links that 
connect the keyword to the first and the second proteins. Consider a sample sentence, 
which has the parse result shown in Fig.2a. In this example, the keyword is “binds”, 
the pairs of proteins are “Ash1p” - “HO” and “Ash1p” - “Swi5p”. The links that 
connect “binds” with the pairs of proteins names are shown in Fig. 2b. We can think 
of the parsed sentence as a graph where words are vertices and links are edges. Then 
the connection between the keyword and a protein name is the shortest path between 
these two vertices. This connection is recorded as a rule. 

 
(a) Parsed sentence with links 

 

 

  
(b) Links from the keyword to protein names 

Fig. 2. A sample of connections between a keyword and protein names 

 
In order to store and process rules, we have adopted textual presentation for rules. A 
rule for the above example is shown in Fig. 3.  

 

bind S- @NAME1 
bind MV+ to J+ @NAME2 
=>bind(@NAME1,@NAME2) 

Fig. 3. An example of rule representation 

 
Each rule consists of three lines. The first and second lines specify the links to follow 
for detecting the first and second protein names respectively. The third line is a 
template for interaction output. For example, the second line of the sample rule in 
Fig.3 looks for keyword “bind”. If the keyword is found, the rule looks further for a 
word “to” which is on the right of “bind” and which is connected to “bind” by a link 
“MV”. The next step is looking rightward for a word connected to “to” by “J”. This 
word will be extended and considered as a candidate for protein name. The procedure 
for name extension will be described in the next subsection. Our rules contain only 
the part of link labels that consists of uppercase letters. The signs “+” and  “-” next to 
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the link labels represent search directions for right and left respectively. We call 
intermediate words in link paths between keywords and protein names (for example 
word “to” in the above rule) nodes. A rule line can have any number of nodes.  

Given a sentence, a rule is said to be satisfied if we can find all links and words 
specified in the rule within this sentence. A rule can be applied many times to each 
sentence to find all interactions satisfying the rule. For instance, applying the above 
rule to the sentence depicted in Fig.2 will output two candidates of interactions 
=>bind(Ash1p,HO) and =>bind(Ash1p,Swi5p). 

Our rules allow a form of disjunction as well as use of wildcard “*”. Rule lines can 
look like the following: 

 bind MV+ to|after J+ @NAME2 
or  bind MV+ * J+ @NAME2 

the first line looks for either “to” or “after”, connected by “MV” to “bind”, whereas 
the second lines allows any word on the right of “bind” which are connected to “bind” 
with “MV” link. 

2.2    Name Extension and Verification 

In practice, many protein names are compound words. For example, in the sample 
sentence shown in Fig.4, protein names are “general transcription factor” and “TATA 
binding protein” but not “IIA” and “TATA”. The rule matching procedure described 
above can detect only two words “IIA” and “protein”. Thus, an additional step is 
necessary for capturing compound names. The following procedure is designed to 
solve this problem. 

(a) If the leftmost word of a name is connected to the next word on the left by links 
“G” or “GN” then extend the name to the left one word. From the above example, 
we have: IIA=>factor IIA 

(b) If the leftmost word of a name is connected to word or words on the left by links 
“A” or “AN” then extend the name to the left by adding all the connected words: 
factor IIA => general transcription factor IIA. 

(c) If the rightmost word of a name is connected to a word on the right with link “G” 
or “GN” then extend the name by adding the connected word to the right. 

 

 
Fig. 4. An example of protein names which are compound words 

 
Having an interaction with names detected as described above, we have to verify that 
it is a desired interaction between two proteins rather than an interaction between two 
non-proteins. The most obvious approach is to use a protein name dictionary for 
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checking whether the detected names are protein names or not. Unfortunately, the 
number of new proteins is growing rapidly, which challenges maintaining the 
dictionary up to date. In this work, we verify detected names by applying several 
heuristic rules (part of rules are adopted from [4], [13] and [14]) that give some score. 
Examples of rules are: 

�� If a name contains word or words with uppercase letters, digits, some special 
symbols, the Greek letters then give the name score 1.0. 

�� If a name ends with one of the following words (molecule, gene, bacteria, base) 
then reject the name. 

�� If a name ends with a word that has suffixes “ole, ane, ate, ide, ine, ite, ol, ose” 
then reject the name. 

�� If a name is compound words containing functional descriptor (adhesion, channel, 
filament, junction), activity descriptors (regulated, releasing, promoting, 
stimulating), other keywords (receptor, factor, protein) then give the name score 
1.0. 

�� If a name is compound words without special words described above then give the 
name score 0.5. 

�� If a name is single word with suffix “-in” then give score 0.5. 

If a rejecting rule is triggered, the name is removed. If several scoring rules are 
triggered, the highest score is recorded. Names with the scores higher than a 
predefined threshold will be accepted as protein names. By adjusting the threshold, 
we can emphasize the importance of precision (with higher threshold) or the 
importance of recall (with lower threshold). 

3    Learning Extraction Rules 

In this section we describe how to learn extraction rules automatically. Our algorithm 
requires a set of hand-tagged sentences. During the tagging process the user must 
explicitly point out the first protein name, the second protein name, and the keyword 
of each interaction. There may be more than one protein pair linked by one keyword 
as well as more than one keyword within a sentence. For example, the sentence 
presented in Fig. 4 would be tagged as 

The /n1 general transcription factor IIA/n0 /v1 
binds/v0 to the /n2 TATA binding protein/n0 

Our algorithm begins with creating a rule for each interaction being tagged in the 
training set. To create the first line of a rule, the algorithm looks in the link-parsed 
sentence for the shortest path from the keyword to any word of the first name. The 
rule line for the second name is created in the similar way. Applying this processing 
to all the examples of a training set, we get a set of rules, each per a tagged 
interaction. Some of rules can have duplicates. These duplicates are removed by a 
pruning procedure. The rules retained after pruning are referred to in this paper as 
specific rules. 

There are two general design approaches for rule learning systems: compression 
(or bottom-up) and covering (top-down). Compression-based systems begin with a set 
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of highly specific rules, typically one for each example, and gradually compress rule 
sets by constructing more general rules, which subsume more specific ones. This 
approach has been chosen in designing our algorithm. The reason of our choice is our 
preference of overly specific rules to overly general ones. In information extraction, 
there is a trade-off between high precision and high recall. For the potential 
application of our algorithm – populating protein interactions into databases – 
precision must be emphasized. The bottom-up approach tends to learn more specific 
rules, which also are more precise. 

The learning algorithm is shown in Fig. 5. Starting with a set of specific rules, the 
algorithm generalizes rules by repeatedly calling two procedures 
GENERALIZE_TERM and GENERALIZE_FRAGMENT. Each of the procedures 
produces a set of more general rules CandidateSet. The rules used to build 
CandiadetSet are stored in BaseSet. From the CandidateSet returned by 
GENERALIZE_TERM, the algorithm looks for the best rule r0. This rule will 
subsume the rules in BaseSet if its evaluation is not worse than the overall evaluation 
of BaseSet. In the case of calling GENERALIZE_FRAGMENT, the whole 
CandidateSet will subsume the whole RuleSet if the former performs not worse than 
the latter. 

To evaluate a rule r we use the Laplace estimation, given by:  

1n

1p
Score(r)

+
+=  

where n is the number of extractions made on the training set by r, and p is the 
number of correct extractions. 

The GENERALIZE_TERM procedure. This procedure performs generalization 
over rule terms. We use word “term” to refer to any word staying at a node of the link 
path given by the first line or the second line of a rule. For example, the rule shown in 
Fig.3 has term “to” in the second line. The keyword and the variables @NAME are 
special terms and are not considered during term generalization. 

The procedure looks for rules that are different only by terms at one node in one of 
first two lines. Such rules can be found easily by regular expression matching. 
Consider the following rule lines: 

interaction M+ between J+ @NAME2 
interaction M+ of J+ @NAME2 
interaction M+ with J+ @NAME2 

These rule lines are different only by terms at the second node (denoted by i). If such 
rules are found, they are added to BaseSet. The procedure then performs 
generalization by creating two rules, one by replacing term at node i with disjunctions 
of terms i from rules in BaseSet, and another by replacing term at node i by wildcard 
‘*’. These two rules will form CandidateSet. 

From the example above we have the following rules after generalization 

   interaction M+ of|between|with J+ @NAME2 
and   interaction M+ * J+ @NAME2 
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RuleSet � the set of specific rules from examples 
loop 
 GENERALIZE_TERM (RuleSet, BaseSet, CandidateSet) 
 if CandidateSet is not empty 
   find rule r0� CandidateSet with Score(r0)=max r�CandidateSet Score(r) 
   if Score(r0) >= � r�BaseSet Score(r) 
    RuleSet = r0�(RuleSet�BaseSet) 
until CandidateSet is empty 
loop 
 GENERALIZE_FRAGMENT(RuleSet, CandidateSet) 
 if CandidateSet is not empty 
  if � r�CandidateSet Score(r) >= � r�RuleSet Score(r) 
   RuleSet � CandidateSet 
until CandidateSet is empty 
 
GENERALIZE_TERM (RuleSet, BaseSet, CandidateSet) 
 BaseSet � {} 
 CandidateSet � {} 
 for rule r�RuleSet 
  for i=1 to number of nodes of r 
   find all rules�RuleSet that differ from r by only the terms at node i 
   if such rules found 
    BaseSet � the found rules 
    CandidateSet � disjuntions of the found rules 
    CandidateSet = CandidateSet�r with term i replaced by  ‘*’ 
    Return 
 
GENERALIZE_FRAGMENT(RuleSet, CandidateSet) 
 CandidateSet � {} 
  For rule r�RuleSet 
   Find a rule r��RuleSet that differ from r only by the suffix of one line  
   if r� is found 
    s � suffix of r 
    s� � suffix of r� 
    for each rule p�RuleSet with suffix sp 
     if sp=s OR sp=s� 
      replace sp by s|s� 
       CandidateSet = CandidateSet  � p 
      

Fig. 5. The learning algorithm 

 
The GENERALIZE_FRAGMENT procedure. We call rule fragment (or just 
fragment) any part of a rule line (the first or the second line) that begins with a term, 
which is not a keyword, and ends with a term (another or the same). In the example 
above a fragment can be “of J+ @NAME2” or “@NAME2”. We call suffix any 
fragment that contains the rightmost term. The procedure looks for a pair of rules that 
differ from each other only by the suffixes of one line. If such pair is found, the 
suffixes of the rules are recorded. There may be more than one pair of suffixes for 
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each pair of rules. Then the procedure looks for all rules in RuleSet with suffixes 
identical to one of the recorded suffixes. Is such rules are found the procedure builds 
more general rules from them by replacing their suffixes with the disjunction of the 
recorded suffixes. The new rules are then added to CandidateSet. In the example 
below, the first two rule lines have two pairs of suffixes (to J+ @NAME2; to J+ 
domain M+ of J+ @NAME2) and (@NAME2; domain M+ of J+ 
@NAME2) 

bind MV+ to J+ @NAME2 
bind MV+ to J+ domain M+ of J+ @NAME2 
bind O+  to J+ @NAME2 

Generalization using these suffixes produces the following rules  
bind MV+ (to J+ @NAME2)|(to J+ domain M+ of J+ @NAME2) 
bind O+  (to J+ @NAME2)|(to J+ domain M+ of J+ @NAME2) 

bind MV+ to J+ (@NAME2)|(domain M+ of J+ @NAME2) 
bind O+  to J+ (@NAME2)|(domain M+ of J+ @NAME2) 

The underlying assumption of fragment generalization is that if two different suffixes 
are found in the same position of two similar rules, the suffixes probably can appear 
in similar contexts and therefore can replace each other in other rules. 

Example. As an example of the learning process, consider generalizing the rules 
based on the following three sentences (only fragments are shown) 

“While Scd2 interacted with the R1 N-terminal domain of Shk1…” 
“The interaction between Sec1p and Ssop is…” 
“… we observed an interaction of Sp1 and ZBP-89…” 

The following specific rules are created after parsing and processing links for these 
sentences (for the purpose of this example, we consider only the second lines of the 
rules produced) 

interact M+ with J+ domain M+ of J+ @NAME2 
interact M+ between J+ @NAME2 
interact M+ of J+ @NAME2 

During term generalization, the second and third lines are found to have only different 
terms “between” and “of”. Thus, the lines are generalized to: 

interact M+ with J+ domain M+ of J+ @NAME2 
interact M+ * J+ @NAME2 

During fragment generalization, these lines give two suffixes “@NAME2” and  
“domain M+ of J+ @NAME2”, which are used to build the following general rule 

interact M+ * J+ (@NAME2)|(domain M+ of J+ @NAME2) 

This rule can be used, for example, to find the interaction between Spc72p and Kar1p 
from the sentence:  

“Here we show that the interaction between yeast protein Spc72p and the 
N-terminal domain of Kar1p….” 

which cannot be detected by the initial specific rules. 
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4    Experimental Results 

We present here experimental results on a set of abstracts from Medline, a literature 
database available through PubMed [6]. The abstracts were obtained by querying 
Medline with the following keywords: “Saccharomyces cerevisiae” and “protein” and 
“interaction”. We filtered the returned 3343 abstracts and retained 550 sentences 
containing at least one of four keywords “interact”, “bind”, “associate”, “complex” or 
one of their inflections. 

We adopt the standard cross validation methodology to test our algorithm. The 
data collection is partitioned several times into a training set and a testing set, rules 
are learned using the training set and then are evaluated using the test set. In our 
experiment, ten-fold cross validation was done on the set of sentences. An extracted 
interaction is considered correct if both extracted protein names are identical to those 
tagged by the user. The order of protein names (which is the first, which is the 
second) is not taken into consideration although experimental results show that the 
order is retained. 

We evaluate performance in terms of precision, the number of correct extracted 
interactions divided by the total number of extracted interactions, and recall, the 
number of correct extracted interactions divided by the total number of interactions 
actually mentioned in the sentences.  

In order to analyze the effect of term generalization and fragment generalization on 
the results, four versions of the learning algorithm were tested. The first version uses 
only specific rules without any generalization. The other two versions use either term 
or fragment generalization. The full version uses both type of generalization as shown 
in Fig. 5. Recalls and precisions of the four versions are given in Table. 1. 

Table 1. Results of different versions of the learning algorithm 

 Recall (%) Precision (%) 

Without generalization 41 93 

With term generalization only 48 89 

With fragment generalization only 49 91 

Full algorithm 60 87 
 

These results show that whereas the generalization slightly decreases precision, it 
leads to valuable improvement on recall. The results also show a little advantage of 
fragment generalization over term generalization. 

There are a number of publications addressing the similar task of extracting protein 
interaction. Unfortunately, it is not simple to quantitatively compare our method with 
these alternatives because they use different text corpora, different assumptions about 
protein names, and different treatment of errors. For instance, Ono et.al. [7] describe 
an extraction method with high recall and precision of 86% and 94% respectively. 
However, they required the presence of protein name dictionaries, which are not 
always available. It is more reasonable to compare our approach with those that do 
not require pre-specified protein names or dictionaries. Thomas and his colleague [14] 
present one of such systems with 58% recall and 77% precision. Park et. al. [8] 
describe an extraction method using a combinatory categorical grammar for parsing 
and detecting interactions. They report recall and precision rates of 48 and 80 
respectively. Both of the systems require hand-crafted patterns or rules for detecting 
protein interactions. 
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5    Conclusion 

We have described an algorithm that automatically learns information extraction rules 
from training sentences. The rules learned by our algorithm can be used in 
combination with heuristic rules, which verify whether a noun phrase is protein name 
or not, to extract protein interactions from scientific abstracts. The learning and 
extraction algorithms exploit the link grammar parser to parse input sentences. The 
grammar has been shown appropriated for expressing relationships between words. 
This makes it possible to design a relative simple learning algorithm that can achieve 
accurate extraction performance without the need of manual rule building. 
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