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Abstract: A module M is called a uniform extending if every uniform submodule of M is
essential in a direct summand of M. A module M is called a countably ¥— uniform extending
if M™) is uniform extending. In this paper, we discuss the question of when a countably ¥ —
uniform extending module is ¥— quasi - injective? We also characterize QF rings by the class
of countably ¥— uniform extending modules.

1. Introduction

Throughout this note, all rings are associative with identity and all modules are unital right
modules. The Jacobson radical and the injective hull of M are denoted by J(M) and E(M). If the
composition length of a module M is finite, then we denote its length by [(M).

For a module M consider the following conditions:

(C1) Every submodule of M is essential in a direct summand of M.

(C3) Every submodule isomorphic to a direct summand of M is itself a direct summand.

(C3) If A and B are direct summands of M with AN B = 0, then A @ B is a direct summand of
M.

Call a module M a CS - module or an extending module if it satisfies the condition (C}); a
continuous module if it satisfies (C1) and (Cs), and a quasi-continuous if it satisfies (C}) and (C3).
We now consider a weaker form of CS - modules. A module M is called a uniform extending if every
uniform submodule of M is essential in a direct summand of M. We have the following implications:

Injective = quasi - injective = continuous =- quasi - continuous = CS =- uniform extending.

(C2) = (C5)

We refer to [1] and [2] for background on C'S and (quasi-)continuous modules.

A module M is called a (countably) ¥—uniform extending (CS, quasi - injective, injective) module
if M) (respectively, M ™) is uniform extending (CS, quasi - injective, injective) for any set A.
Note that IN denotes the set of all natural numbers.

In this paper, we discuss the question of when a countably >— uniform extending module is >—
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quasi - injective? We also characterize QF rings by the class of countably ¥— uniform extending
modules.

2. Introduction

Lemma 2.1. Let M = ®;c1M; be a continuous module where each M; is uniform. Then the following
conditions are equivalent:

(i) M is countably S—uniform extending,

(ii) M is Y— quasi - injective.

By Lemma 2.1, if M is a module with finite right uniform dimension such that M & M satisfies
(C3), then we have:

Proposition 2.2 Let M be a module with finite right uniform dimension such that M & M satisfies
(C3). Then M is countably Y —uniform extending if and only if M is Y—quasi - injective.

Proof. If M is countably ¥—uniform extending, then M & M is uniform extending. Since M & M has
finite uniform dimension, M & M is C'S. By M ® M has (Cj3), hence M @ M is quasi - continuous.
This implies that M is quasi - injective. Thus M is continuous module. Since M has finite uniform
dimension, thus M = U; @ ... ® U, with U; is uniform. By M is countably >— uniform extending
and by Lemma 2.1, M is ¥— quasi - injective.

If M is ¥— quasi - injective then M is countably X —uniform extending, is clear.

Corollary 2.3. For M = M1 & ... & M,, is a direct sum of uniform local modules M; such that M;
does not embed in J(Mj) for any i,j =1, ...,n the following conditions are equivalent :

(a) M is X—quasi - injective;

(b) M is countably >.—uniform - extending.

Proof. The implications (a) = (b) is clear.

(b) = (a). By (b), M @ M is extending module. By [4, Lemma 1.1], M; & M; has (C3), hence
M; @ M; is quasi - continuous. By [5, Corollary 11], M & M is quasi - continuous. By Proposition
2.2, we have (a).

By Lemma 2.1 and Corollary 2.3, we characterized properties QF of a semiperfect ring by class
countably ¥ —uniform extending modules.

Corollary 2.4. Let R be a semiperfect ring with R = et R ® ... ® e, R where each e;R is a local
right and {e;}}'_ is an orthogonal system of idempotents. Moreover assume that each ejR is not
embedable in any e;J (i,j =1,2,...,n). the following conditions are equivalent:

(a) R is QF - ring;

(b) Rp is Y—injective;

(c) RR is countably > —uniform - extending.

Proof. (a) <= (b), is clear.

(b) <= (¢), by Corollary 2.3.

Proposition 2.5. Let R be a right continuous semiperfect ring, the following conditions are equivalent:

(a) R is QF - ring;

(b) Rp is Y—injective;

(c) RR is countably > —uniform - extending.

Proof. (a) <= (b), (b) = (c) are clear.
(¢) = (b). Write Rp = R & ... & R,, where each R; is unifom. Since Rp is right continuous,
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countably ¥—uniform extending, thus Rp is X—quasi - injective (by Lemma 2.1). Hence Rp is
Yl—injective, proving (b).

Let M = @, ; U;, with all U; uniform. We give properties of a closed submodule of M.

Lemma 2.6. ([6, Lemma 1]) Let {U;,Vi € I} be a family of uniform modules. Set M = @, ; U;. If
A is a closed submodule of M, then there is a subset I of I, such that A@(@P,;cr U;) C° M.

By Lemma 2.1 and Lemma 2.6, we have:

Theorem 2.7. Let M = @, ; U; where each U is uniform. Assume that M is countably Y—uniform
- extending. Then the following conditions are equivalent:

(i) M is ¥— quasi - injective;

(ii) M satifies (C3);

(iii) M satifies (Cs) and if X C M, X = @, ; U; (with J C I) then X C% M.

Proof. The implications (i) => (¢i) and (ii) = (¢47) are clear.

(i1i) = (7). We show that M satisfies (C5), i.e., for two submodules X, Y of M, with X =2 Y and
Y C% M, X is also a direct summand of M. Note that Y is a closed submodule of M. By Lemma 2.6,
there is a subset F' of I such that: Y @ (P, Us) C¢ M. By hypothesis, Y, P, U; % M and M
satifies (C3), we have M =Y @(P,;cpUs). f F =T then X =Y = 0. Thus X C¥ M. If F # I,
set J = I\F', and we have M = (P, ; U;) B(D,cpUi). Thus X =Y =2 M/ P, . p U = P, ; Us.
By hypothesis (iii), X C® M, as required.

Finally, we show that M is an extending module. Let us consider A is a closed submodule of
M. By hypothesis A is a closed submodule of M and by Lemma 2.6, there is a submodule V; of
M such that Vi = @, U;, where F' C I satisfying: A@P(P,cpUs) C® M. Set Vo = @, Us
with K = I\F. Let p1,p2 be the projection of M onto V; and V5, then ps |4 is a monomorphism
(because ANV; = 0). Let h = pi(p2 |4)~' be the homomorphism py(A) — V;. We then have
A={x+ h(z) |z € pa(A)}. Next, we aim to show next that h cannot be extended in V5.

Suppose that h: B — Vi, where pa(A) C B C Vs, is an extending of & in V. Set C' = {x+h(x) |
x € B}, we have A® V; C¢ M, pa(A) = pa(A@P Vi) C€ po(M) = Va. Hence po(A) C¢ B C Vs,
and thus A C¢ C. Since A is a closed submodule, we have A = C, p2(A) = B. Thus h= h.

Let us consider k € K, set X = U Npa(A). We can see that X # 0,Vk € K. Therefore X, is
uniform module. Set Ay = {z + h(x) | z € Xi}, we have X}, = Ay and Ay, is a uniform submodule
of A. Suppose that Ay, C¢ P C Uy, @ V3. Since A N V; =0, we have PN V; = 0, and thus ps |p is
a monomorphism. Set hy = h |p2( Ay)- Because h cannot be extended, we see that hj cannot too. Set
A =p1(p2 |p) 7' p2(M) — V4. Thus ) is an extending of hy and hence pa(P) = po(Ay). Since
p2 |p is a monomorphism and A C¢ P. It follow that Ay = P.

Hence Ay is a uniform closed submodule and M is a uniform extending (because M is countably
Y —uniform - extending). Thus A, C® M. Since Ay is a closed submodule of M and by Lemma
2.6, there is a submodule V3 of M such that V3 = @, U;, where L C I satisfying A, @ V3 C° M.
Since Ar C® M, V3 C® M and M satifies (C3), we have Ay & V3 C® M, Ay & V3 = M.
Suppose that V; = @;cyU; where J = I\L. Then M = Ay ® V5 = V,; @ V3, and we have
Ay =2 M/Vs =V, ®V3/V3 = V. Because Ay, is a uniform module, | J |= 1, ie., A = U;(j € I) we
infer that X, & Ay = U,. Therefore X, C® M. But X, C Uy C% M and hence X, = Uy, for all
k € F. Therefore po(A) = V2, and we have A = V3. Note that A = V5, = @, Ui, we must have
A C%® M. Therefore M is an extending module. But M satisfies (Cy), and thus M is a continuous
module. Therefore by Lemma 2.1, proving ().
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By Lemma 2.1 and Theorem 2.7, we characterized QF property of a ring with finite right uniform
dimension by the class countably ¥— uniform extending modules.
Theorem 2.8. Let R be a ring with finite right uniform dimension such that R%N
the following conditions are equivalent:

(a) Ry is self - injective;

(b) (R® R)r satisfies (C3);

(c) Rp satisfies (C3);

(d) Rp is Y—injective;

(e) R is QF - ring.
Proof.The implications (a) = (b), (a) = (¢), (d) = (a) and (d) <= (e) are clear.

(b) = (d). Because Rp has finite uniform dimension, therefore (R @ R)p has finite uniform

)

is uniform extending,

dimension. But R%N) is a uniform extending, thus(R @ R)g is a uniform extending, and hence
(R® R)pR is extending. Because (R @ R)g has (C3), thus (R® R)g is a quasi - continuous modules.
Therefore, Ry is quasi - injective, and thus Rp = Ry & ... ® R, where each R; is uniform. By Rp
is continuous and R%N) is uniform extending we have Rp is X— quasi - injective (by Lemma 2.1).
Hence Rp is Y —injective, proving (d).

(¢) = (d). By Rp has finite uniform dimension, thus Rz = Ry @ ... ® R,, with R; is uniform. By
Theorem 2.7, Ry is X —injective, proving (d).

A ring R is called a right CS if R is CS module. By Theorem 2.8, we have.

Corollary 2.9. Let R be a right CS ring with finite right uniform dimension such that every extending
right R—module is countably Y. —uniform - extending. If (R @ R)g satisfies (Cs) then R is QF ring.
Proof. Since Rp is CS, thus R%N) is uniform extending. By Theorem 2.8, Rp is X —injective.
Therefore, R is QF ring.

Lemma 2.10. Let Uy, Uy be uniform modules such that [(Uy) = [(Us) < co. Set U = Uy @ Us. Then
U satisfies (C3).

Proof.(a) By [7], End(U;) and End(Us) are local rings. We show that U satisfies (C3), i.e., for two
direct summands S1, Sy of U with S1 NSy, =0, S; @ Sy is also a direct summand of U. Note that,
since u - dim(U) = 2, the following case is trivial:

If one of the Sgs has uniform dimension 2, the other is zero.

Hence we consider the case that both Sy, 52 are uniform. Write U = Sy & K. By Azumaya’s
Lemma (cf. [8, 12.6, 12.7]), either So & K = So ® U;, or So & K = S5 ® U;. Since ¢ and j can
interchange with each other, we need only to consider one of the two possibilities. Let us consider the
case U = Sy @ K = Sy @ Uy = U; @ Us. Then it follows So = Uy, Write U = S; @ H. Then either
U=5SoH=50U,orS1®H=51Us.

IfU = S1® H = S ® Uy, then by modularity we get S1 @ Se = S1® X where X = (S1®52)NU;.
From here we get X = Sy = Us,. Since [(Uy) = [(Us) = I(X), we have U; = X, and hence
S1®S,=5eU;=U.

IfU = S1®H = S ®Us, then by modularity we get S;® Sy = S1 BV where V = (51 ®S2)NUs.
From here we get V' = Sy 2 U,. Since [(Us) = I(V), we have Uy = V, and hence S; & Sy =
S1dU; =U.

Thus U satisfies (C3), as desired.

By Lemma 2.10 and Proposition 2.2, we have:

Proposition 2.11. For M = M; & ... ® M, is a direct sum of uniform modules M; such that
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I(My) =1(Ms) = ... = (M) < oo, the following conditions are equivalent :

(a) M is Y—quasi - injective;

(b) M is countably >.—uniform - extending.

Proof. (a) = (b) is clear.

(b) = (a). By (b) and by Lemma 2.10, M; & M, is quasi - continuous. By [5, Corollary 11],
M @® M 1is quasi - continuous. By Proposition 2, we have (a).

Lemma 2.12. Let R be a ring with R = e1 R ® ... ® e, R where each e;R is a uniform right ideal
and {e;}} is a system of idempotents. Moreover, assume that l(e1R) = l(eaR) = ... = l(epR) < 0.
Then R is right self - injective if and only if (R® R)R is CS.

Proof. By Lemma 2.10 and by [2, 2.10].

By Lemma 2.1 and Lemma 2.12, we have:

Proposition 2.13. Let R be a ring with R = et R® ... ® e, R where each e; R is a uniform right ideal
and {e;}} is a system of idempotents. Moreover, assume that l(e1R) = l(eaR) = ... = l(enR) < o0,
the following conditions are equivalent:

(a) R is QF - ring;

(b) Ry is Y—injective;

(c) RR is countably > —uniform - extending.

Proof. (a) <= (b), (b) = (c) are clear.

(¢) = (b). By (R® R)r has finite uniform dimension and by (c), (R® R) g is CS. By Lemma 2.12,
Rp is a continuous module. By Lemma 2.1, Ry is X>—quasi - injective. Hence Rp is > —injective,
proving (b).

Proposition 2.14. Let R be a right Noetherian ring and M a right R— module such that M = ®;c 1 M;
is a direct sum of uniform submodules M;. Suppose that M &M satisfies (Cs), the following conditions
are equivalent:

(a) M is Y—quasi - injective;

(b) M is countably >.—uniform - extending.

Proof.(a) = (b) is clear.

(b) = (a). By M; @ M; is direct summand of M @& M and by hypothesis (b), thus M; @ M; is

quasi - continuous. Hence M; is M;— injective for any 4,j € I. Note that R is a right Noetherian
ring, thus M is quasi - injective (see [2, Proposition 1.18]), i.e., M satifies (C3). By Theorem 2.7,
we have (a).
Proposition 2.15. Let R be a right Noetherian ring and M a right R— module such that M = ®;c 1 M;
is a direct sum of uniform local submodules M;. Suppose that M; does not embed in J(Mj) for any
1,7 € I, the following conditions are equivalent:

(a) M is Y—quasi - injective;

(b) M is countably >.—uniform - extending.

Proof.(a) = (b) is clear.

(b) = (a). By (b), M @ M is uniform - extending. Hence M; ® M; is CS for any i,j € I. By
[4, Lemma 1.1], M; @ Mj is quasi - continuous, thus M; is M;— injective for any 4, j € I. Therefore
M is quasi - injective (see [2, Proposition 1.18]), i.e., M satifies (Cs). By Theorem 2.7, we have (a).
Proposition 2.16. Let R be a right Noetherian ring and M a right R— module such that M = ®;c 1 M;
is a direct sum of uniform submodules M;. Suppose that [(M;) =n < oo for any i € I, the following
conditions are equivalent:
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(a) M is Y—quasi - injective;

(b) M is countably >.—uniform - extending.
Proof. By Lemma 2.10, Theorem 2.7 and [2, Proposition 1.18].
Proposition 2.17. There exists a right Noetherian ring R and a right R— module countably Y —uniform
- extending M such that M = ;e M; is a direct sum of uniform submodules M;, M satisfies (Cs)
but is not X—quasi - injective.
Proof.Let R = Z be the ring of integer numbers, then R is a right (and left) Noetherian ring, and let
M=R ®Ry®..® R, with Ry = Ry = ... = R,, = Rg = Zz. We have M®™N) = @2 M; with
M; = M, we imply M = (R; @ ... ® R,)™ = Z(MN)_ By [1, page 56], M is countably ¥.—uniform
- extending. Since R; = Zyz is a uniform module for any ¢ = 1, 2, ...,n thus M is a finite direct sum
of uniform submodules. But also by [1, page 56], M is not countably >— CS module. Therefore, M
is not countably >—quasi - injective, i.e., M is not X —quasi - injective. If n = 1, then M satisfies
(C3), as desired.
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