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Abstract. Let µ be the m−fold convolution of the standard Cantor measure and αm be

the lower extreme value of the local dimension of the measure µ. The values of αm for

m = 2, 3, 4 were showed in [4] and [5]. In this paper, we show that

α5 = |
log

[

2
3.25

(√
145cos(

arccos 427

59
√

145

3 ) + 5
)]

log 3
| ≈ 0.972638.

This values was estimated by P. Shmerkin in [5], but it has not been proved.
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1. Introduction

Let {Sj}m
j=1 be contractive similitudes on R

d and {pj}m
j (0 6 pj 6 1,

m
∑

j=1
pj = 1) be a set of

probability weights. Then, there exists a unique probability measure µ satisfying

µ(A) =

m
∑

j=1

pjµ(S−1
j (A))

for all Borel measurable sets A (see [1]). We call µ a self-similar measure and {Sj}m
j=1 a system

iterated functions.
When S1, ..., Sm are similarities with equal contraction ratio ρ ∈ (0, 1) on R, i.e., Sj(x) =

ρ(x + bj), bj ∈ R for j = 1, ..., m, the self-similar measure µ can be seen as follows: Let X0, X1, ...

be a sequence of independent identically distributed random variables each taking real values b1, ..., bm

with probability p1, ..., pm respectively. We define a random variable S =
∞
∑

i=1
ρiXi, then the probability

measure µρ induced by S :

µρ(A) = P{ω : S(ω) ∈ A}
is called a fractal measure and µρ ≡ µ (see [2]).

Let ν be the standard Cantor measure, then ν can be considered to be generated by the two

maps Si(x) = 1
3x + 2

3i, i = 0, 1 with weight 1
2 on each Si. Then the attractor of this system
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iterated functions is the standard Cantor set C, i.e., C = S0(C) ∪ S1(C). Let µ = ν ∗ ... ∗ ν be the

m−fold convolution of the standard Cantor measure. For m ≥ 3, this measure does not satisfy the

open set condition (see [2]), so the studying the local dimension of this measure in this case is very

difficult. Another convenient way to look at µ is as the distribution of the random sum, i.e., µ can be

obtained in the following way: Let X be a random variable taking values {0, 1, ...,m} with probality
pi = P (X = i) = Ci

m

2m , i = 0, 1, ...,m and let {Xn}∞n=1 be a sequence of independent random variable

with the same distribution as X . Let S =
∞
∑

j=1
3−jXj, Sn =

n
∑

j=1
3−jXj and µ, µn be the distribution

measure of S, Sn respectively. It is well known that µ is either singular or absolutely continuous (see

[2]).

Recall that let µ be a probability measure on R. For s ∈ supp µ, the local dimension of µ at s

is denoted by α(s) and defined by

α(s) = lim
h→0+

logµ(Bh(s))

logh

if the limit exists. Otherwise, let α(s) and α(s) denote the upper and lower dimension by taking the

upper and lower limits respectively. Let E = {α(s) : s ∈ supp µ} be the set of the attainable local
dimensions of the measure µ and for each m = 2, 3, ..., put

αm = inf{α(s) : s ∈ supp µ};

αm = sup{α(s) : s ∈ supp µ}.
It is showed in [4] that αm = m log 2

log 3 is an isolated point of E for all m = 2, 3, ... and

αm =
log 2

log 3
≈ 0.63093 if m = 2;

αm =
3 log2

log 3
− 1 ≈ 0.89278 if m = 3 or 4.

This results were proved by using combinatoric, it depends on some careful counting of the multiple

representations of s =
∞
∑

j=1
3−jxj, xj = 0, ..., m, and the associated probability. After that, in [5], Pablo

Shmerkin showed the αm for m = 2, 3, 4 by the other way. He used the spectral radius of matrixes

to define his results. He said that the identifying formulae for αm for m ≥ 5 was a difficult problem,

and he only estimated the values of αm for 5 6 m 6 10.

Now, in this paper, we are interested in the identifying αm for m = 5 and we show that our

result coincides with Pablo Shmerkin’s estimate. We have

2. Main result

Main Theorem. Let µ be the 5−fold convolution of the standard Cantor measure, then the lower
extreme value of the local dimension of µ is

α5 = |
log

[

2
3.25

(√
145cos(

arccos 427

59
√

145

3 ) + 5
)]

log 3
| ≈ 0.972638.



V.T.H. Thanh et al. / VNU Journal of Science, Mathematics - Physics 25 (2009) 57-68 59

The proof of our Maim Theorem is divided in to two steps. In Section 2.1 we will give some notations

and primary results. The Main Theorem is proved in Section 2.2.

2.1 Notations and Primary Results
Let ν be the standard Cantor measure and µ = ν ∗ ... ∗ ν (m−fold). Then, by similar proof as

the Lemma 4.4 in [5], we have

Proposition 1. Let ν be the standard Cantor measure, i.e., ν is induced by the two maps Si(x) =
1
3x + 2

3i, i = 0, 1 with weigh 1
2 on each Si. Then its m−fold convolution µ = ν ∗ ... ∗ ν is generated

by Si(x) = 1
3x + 2

3 i with weight Ci
m

2m on with Si for i = 0, 1, ...,m.

Proposition 2 ([4]). Let m ≥ 2, then α(s) = lim
n→∞

| logµn(sn)
n log 3 | provided that the limit exists. Otherwise,

we can replace α(s) by α(s) and α(s) and consider the upper and the lower limits.
Put D = {0, 1, ..., 5} and for each n ∈ N we denote

Dn = {(x1, ..., xn) : xi ∈ D}D∞ = {(x1, x2, ...) : xi ∈ D}.
For (x1, ..., xn) ∈ Dn, put

〈(x1, ..., xn)〉 = {(y1, ..., yn) ∈ Dn :
n

∑

i=1

3−iyi =
n

∑

i=1

3−ixi}.

If (z1, ..., zn) ∈ 〈(x1, ..., xn)〉, then we denote (z1, ..., zn) ∼ (x1, ..., xn). Clearly that if (z1, ..., zn) ∼
(x1, ..., xn) and (zn+1, ..., zm) ∼ (xn+1, ..., xm) then

(z1, ..., zm) ∼ (x1, ..., xm). (1)

We denote

〈(x1, ..., xn, x)〉 = {(y1, ..., yn, x) : (y1, ..., yn) ∈ 〈(x1, ..., xn)〉}.
The following lemma will be used frequently in this paper.

Lemma 1. Let sn =
n
∑

j=1
3−jxj , s′n =

n
∑

j=1
3−jx′

j be two points in supp µn. If sn = s′n then xn ≡ x′
n

(mod 3).
Proposition 3. Let x = (x1, x2, ...) = (2, 3, 2, 3, ...) ∈ D∞, we have

i) If n is even then (y1, ..., yn) ∈ 〈(x1, ..., xn)〉 = 〈(2, 3, ..., 2, 3)〉 iff
(y1, ..., yn) ∈ 〈(x1, ..., xn−1, 3)〉 or (y1, ..., yn) ∈ 〈(x1, ..., xn−2, xn−2, 0)〉.

ii) If n is odd then (y1, ..., yn) ∈ 〈(x1, ..., xn)〉 = 〈(2, 3, ..., 2, 3, 2)〉 iff
(y1, ..., yn) ∈ 〈(x1, ..., xn−1, 2)〉 or (y1, ..., yn) ∈ 〈(x1, ..., xn−2, xn−2, 5)〉.

Proof.
i) The case n is even.

If (y1, ..., yn) ∈ 〈(x1, ..., xn)〉 = 〈(2, 3, ..., 2, 3)〉 then we have
(y1 − 2)3n−1 + (y2 − 3)3n−2 + ... + (yn−1 − 2)3 + (yn − 3) = 0. (2)

Therefore, yn − 3 ≡ 0 (mod 3). Since yn ∈ D, we have yn = 3 or yn = 0.

a) If yn = 3 then yn − 3 = 0. By (2) we have
n−1
∑

j=1
3−jyj =

n−1
∑

i=1
3−ixi. Hence, (y1, ..., yn−1) ∈

〈(x1, ..., xn−1)〉. By (1) we have (y1, ..., yn) ∈ 〈(x1, ..., xn−1, 3)〉.
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b) If yn = 0 then yn − 3 = −3. By (2) we have

(y1 − 2)3n−2 + (y2 − 3)3n−3 + ... + (yn−2 − 3)3 + (yn−1 − 3) = 0.

Hence, (y1, ..., yn−2, yn−1) ∈ 〈(2, 3, ..., 2, 3, 3)〉= 〈(x1, ..., xn−2, xn−2)〉. By (1) we have (y1, ..., yn) ∈
〈(x1, ..., xn−2, xn−2, 0)〉.

Conveserly, if (y1, ..., yn) ∈ 〈(x1, ..., xn−1, 3)〉, then we have
(y1, ..., yn) ∈ 〈(x1, ..., xn)〉.

So we consider the case (y1, ..., yn) ∈ 〈(x1, ..., xn−2, xn−2, 0)〉.Then we have yn = 0 and (y1, ..., yn−1) ∈
〈(2, 3, ..., 2, 3, 3)〉. We will show that (y1, ..., yn) ∈ 〈(x1, ..., xn)〉. In fact, since (y1, ..., yn−1) ∈
〈(2, 3, ..., 2, 3, 3)〉, by Lemma 1 we have yn−1 − 3 ≡ 0 (mod 3). This implies that yn−1 = 3 or

yn−1 = 0.

a) If yn−1 = 3 then yn−1 − 3 = 0 and

(y1 − 2)3n−2 + (y2 − 3)3n−3 + ... + (yn−3 − 3)3 + (yn−2 − 3) = 0.

Therefore, (y1, ..., yn−2) ∼ (2, 3, ..., 2, 3) = (x1, ..., xn−2) and (yn−1, yn) = (3, 0). Since (3, 0) ∼
(2, 3), by (1) we have (y1, ..., yn) ∈ 〈(x1, ..., xn)〉.

b) If yn−1 = 0 then from (y1, ..., yn−1) ∼ (2, 3, ..., 2, 3, 3) we get

(y1 − 2)3n−2 + (y2 − 3)3n−3 + ... + (yn−2 − 3)3 − 3 = 0.

Hence,

(y1 − 2)3n−2 + (y2 − 3)3n−3 + ... + (yn−3 − 2)3 + yn−2 − 4 = 0. (3)

Therefore, yn−2 − 4 ≡ 0 (mod 3). Since yn−2 ∈ D, we have yn−2 = 4 or yn−2 = 1. We

consider the two following cases.

Case 1. yn−2 = 4, then (yn−2, yn−1, yn) = (4, 0, 0) and yn−2 − 4 = 0. By (3) we

have (y1, ..., yn−3) ∈ 〈(2, 3, ..., 2, 3, 2)〉. Since (4, 0, 0) ∼ (3, 2, 3), by (1) we have (y1, ..., yn) =

(y1, ..., yn−3, 4, 0, 0) ∈ 〈(2, 3, ..., 2, 3)〉 = 〈(x1, ..., xn)〉.
Case 2. yn−2 = 1, then yn−2 − 4 = −3 and (yn−2, yn−1, yn) = (4, 0, 0). From (3), we get

(y1 − 2)3n−4 + (y2 − 3)3n−3 + ... + (yn−4 − 3)3 + yn−3 − 3 = 0. (4)

Therefore, (y1, ..., yn−3) ∈ 〈(2, 3, ..., 2, 3, 3)〉. By similar argument, we get yn−3 = 0 or yn−3 = 3.

+) If yn−3 = 3 then (yn−3, yn−2, yn−1, yn) = (3, 1, 0, 0) and from (4) we get (y1, ..., yn−4) ∈
〈(2, 3, ..., 2, 3)〉. Since (3, 1, 0, 0)∼ (2, 3, 2, 3), we get (y1, ..., yn) ∈ 〈(2, 3, ..., 2, 3)〉= 〈(x1, ..., xn)〉.

+) If yn−3 = 0 then the form (4) is similar to the form (3). Thus, by repeating about argument

we get the proof of the proposition in this case of n.

ii) The case n is odd.

Assume that (y1, ..., yn) ∈ 〈(x1, ..., xn)〉 = 〈(2, 3, ..., 2, 3, 2)〉 then
(y1 − 2)3n−1 + (y2 − 3)3n−2 + ... + (yn−1 − 3)3 + yn − 2 = 0. (5)

This implies yn = 2 or yn = 5.

a) If yn = 2 then from (5), we have

(y1, ..., yn−1) ∈ 〈(2, 3, ..., 2, 3)〉= 〈(x1, ..., xn−1)〉.
This means

(y1, ..., yn) ∈ 〈(x1, ..., xn−1, 2)〉.
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b) If yn = 5 then from (5), we have

(y1 − 2)3n−2 + (y2 − 3)3n−3 + ... + (yn−2 − 2)3 + yn−1 − 2 = 0.

Therefore, (y1, ..., yn−1) ∼ (2, 3, ..., 2, 3, 2, 2) = (x1, ..., xn−2, xn−2). This implies

(y1, ..., yn) ∈ 〈(x1, ..., xn−2, xn−2, 5)〉.

Conversely, if (y1, ..., yn) ∈ 〈(x1, ..., xn−1, 2)〉 then we have immediately that (y1, ..., yn) ∈ 〈(x1, ..., xn)〉.
So we consider the following case

(y1, ..., yn) ∈ 〈(x1, ..., xn−2, xn−2, 5)〉.

then we have yn = 5 and

(y1, ..., yn−1) ∈ 〈(x1, ..., xn−2, xn−2)〉 = 〈(2, 3, ..., 2, 3, 2, 2)〉.

We will prove that (y1, ..., yn) ∈ 〈(x1, ..., xn)〉.
In fact, since (y1, ..., yn−1) ∈ 〈(2, 3, ..., 2, 3, 2, 2)〉, we have

(y1 − 2)3n−2 + (y2 − 3)3n−3 + ... + (yn−2 − 2)3 + yn−1 − 2 = 0. (6)

Therefore, yn−1 = 2 or yn−1 = 5.

a) If yn−1 = 2 then from (6), we have (y1, ..., yn−2) ∈ 〈(2, 3, ..., 2, 3, 2)〉 and (yn−1, yn) =

(2, 5). Since (2, 5) ∼ (3, 2), by (1) we have

(y1, ..., yn) ∈ 〈(2, 3, ..., 2, 3, 2)〉 = 〈(x1, ..., xn)〉.

b) If yn−1 = 5 then from (6), we have

(y1 − 2)3n−3 + (y2 − 3)3n−4 + ... + (yn−3 − 3)3 + yn−2 − 1 = 0. (7)

Therefore, yn−2 = 1 or yn−2 = 4.

b1) If yn−2 = 1 then from (7), we have (y1, ..., yn−3) ∈ 〈(2, 3, ..., 2, 3)〉 and (yn−2, yn−1, yn) =

(1, 5, 5). Since (1, 5, 5)∼ (2, 3, 2), by (1) we have

(y1, ..., yn) ∈ 〈(2, 3, ..., 2, 3, 2)〉 = 〈(x1, ..., xn)〉.

b2) If yn−2 = 4 then from (7), we have (y1, ..., yn−3) ∈ 〈(2, 3, ..., 2, 3, 2, 2)〉 and (yn−2, yn−1, yn) =

(4, 5, 5). Since (4, 5, 5) ∼ (5, 3, 2), by (1) we have (y1, ..., yn) ∈ 〈(2, 3, ...2, 3, 5, 3, 2)〉. Therefore, by
repeating above argument for the case yn−2 = 5 and

(y1, ..., yn−3) ∈ 〈(x1, ..., xn−2, xn−2)〉 = 〈(2, 3, ..., 2, 3, 2, 2)〉.

We have the assertion of the proposition.

From Proposition 3 we have the following corollary.

Corrolary 1. Let x = (x1, x2, ...) = (2, 3, 2, 3, ...) ∈ D∞. For each n ∈ N, put sn =
n
∑

i=1
3−ixi and

s′n =
n
∑

i=1
3−ix′

i, where (x′
1, ..., x

′
n−1, x

′
n) = (x1, ..., xn−1, xn−1). Then we have

i) µ1(s1) = µ1(s
′
1) = 10

25 , µ2(s2) = 110
210 , µ2(s

′
2) = 105

210 .
ii) µn(sn) = 10

25 µn−1(sn−1) + 1
25 µn−1(s

′
n−1).
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Proof. i) For n = 1 we have 〈(x1)〉 = 〈(x′
1)〉 = {(2)}. Therefore,

µ1(s1) = µ1(s
′
1) = P (X1 = 2) =

10

25
.

For n = 2 we have 〈(x1, x2)〉 = {(2, 3), (3, 0)} and 〈(x′
1, x

′
2)〉 = {(2, 2), (1, 5)}. Therefore,

µ2(s2) =
10

25
.
10

25
+

10

25
.
1

25
=

110

210
;

µ2(s
′
2) =

10

25
.
10

25
+

5

25
.
1

25
=

105

210
.

ii) By Proposition 3, we have

a) If n is even then

〈(x1, ..., xn)〉 = 〈(x1, ..., xn−1, 3)〉 ∪ 〈(x′
1, ..., x

′
n−1, 0)〉.

b) If n is odd then

〈(x1, ..., xn)〉 = 〈(x1, ..., xn−1, 2)〉 ∪ 〈(x′
1, ..., x

′
n−1, 5)〉.

Therefore, for all n ∈ N we have

µn(sn) = P (Xn = 2)µn−1(sn−1) + P (Xn = 5)µn−1(s
′
n−1)

=
10

25
µn−1(sn−1) +

1

25
µn−1(s

′
n−1).

The corollary is proved. �

To have the recurrence formula of µn(sn), we need the following proposition.

Proposition 4. Let x = (x1, x2, ...) = (2, 3, 2, 3, ...) ∈ D∞. For each n ∈ N, put (x′
1, ..., x

′
n) =

(x1, ..., xn−1, xn−1). Then we have
i) If n is even then (y1, ..., yn) ∈ 〈(x′

1, ..., x
′
n)〉 = 〈(2, 3, ..., 2, 3, 2, 2)〉 iff

(y1, ..., yn) ∈ 〈(x1, ..., xn−1, 2)〉 ∪ 〈(x1, ..., xn−2, 1, 5)〉 ∪ 〈(x′
1, ..., x

′
n−2, 4, 5)〉.

ii) If n is odd then (y1, ..., yn) ∈ 〈(x′
1, ..., x

′
n)〉 = 〈(2, 3, ..., 2, 3, 3)〉 iff

(y1, ..., yn) ∈ 〈(x1, ..., xn−1, 3)〉 ∪ 〈(x1, ..., xn−2, 4, 0)〉 ∪ 〈(x′
1, ..., x

′
n−2, 1, 0)〉.

Proof. i ) The case n is even.

a) If (y1, ..., yn) ∈ 〈(x1, ..., xn−1, 2)〉 then yn = 2 and (y1, ..., yn−1) ∈ 〈(x1, ..., xn−1)〉. Therefore,

by (1) we have

(y1, ..., yn) ∈ 〈(2, 3, ..., 2, 3, 2, 2)〉= 〈(x′
1, ..., x

′
n)〉.

b) If (y1, ..., yn) ∈ 〈(x1, ..., xn−2, 1, 5)〉 then yn = 5, yn−1 = 1 and

(y1, ..., yn−2) ∈ 〈(x1, ..., xn−2)〉 = 〈(2, 3, ..., 2, 3)〉.
Since (1, 5) ∼ (2, 2), by (1) we have

(y1, ..., yn) ∈ 〈(2, 3, ..., 2, 3, 2, 2)〉= 〈(x′
1, ..., x

′
n)〉.

c) If (y1, ..., yn) ∈ 〈(x1, ..., xn−2, 4, 5)〉 = 〈(2, 3, ..., 2, 3, 2, 2, 4, 5)〉 then by (1) we have

(y1, ..., yn) ∈ 〈(2, 3, ..., 2, 3, 2, 2)〉 = 〈(x′
1, ..., x

′
n)〉

since (2, 2, 4, 5) ∼ (2, 3, 2, 2).
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Conversely, if (y1, ..., yn) ∈ 〈(2, 3, ..., 2, 3, 2, 2)〉 then we have

(y1 − 2)3n−1 + (y2 − 3)3n−2 + ... + (yn−1 − 2)3 + yn − 2 = 0. (9)

Hence, yn = 2 or yn = 5.

a) If yn = 2 then yn − 2 = 0. Hence, from (9), we get

(y1, ..., yn−1) ∈ 〈(2, 3, ..., 2, 3, 2)〉 = 〈(x1, ..., xn−1)〉.
Therefore, (y1, ..., yn) ∈ 〈(x1, ..., xn−1, 2)〉.
b) If yn = 5 then yn − 2 = 3. Hence, from (9), we get

(y1 − 2)3n−2 + (y2 − 3)3n−3 + ... + (yn−2 − 3)3 + yn−1 − 1 = 0. (10)

This implies yn−1 = 1 or yn−1 = 4.

b1) If yn−1 = 1 then from (10) we have

(y1, ..., yn−2) ∈ 〈(2, 3, ..., 2, 3)〉= 〈(x1, ..., xn−2)〉.
Therefore, (y1, ..., yn) ∈ 〈(x1, ..., xn−2, 1, 5)〉.

b2) If yn−1 = 4 then from (10) we have

(y1, ..., yn−2) ∈ 〈(2, 3, ..., 2, 3, 2, 2)〉= 〈(x′
1, ..., x

′
n−2)〉.

Therefore, (y1, ..., yn) ∈ 〈(x1, ..., xn−2, 4, 5)〉.
ii) The case n is odd.

a) Clearly that if (y1, ..., yn) ∈ 〈(x1, ..., xn−1, 3)〉 then

(y1, ..., yn) ∈ 〈(2, 3, ..., 2, 3, 3)〉 = 〈(x′
1, ..., x

′
n)〉.

b) If (y1, ..., yn) ∈ 〈(x1, ..., xn−2, 4, 0)〉 = 〈(2, 3, ..., 2, 3, 2, 4, 0)〉 then by (1) we have

(y1, ..., yn) ∈ 〈(2, 3, ..., 2, 3, 3)〉 = 〈(x′
1, ..., x

′
n)〉,

since (4, 0) ∼ (3, 3).

c) If (y1, ..., yn) ∈ 〈(x′
1, ..., x

′
n−2, 1, 0)〉 = 〈(2, 3, ..., 2, 3, 3, 1, 0)〉 then by (1) we have

(y1, ..., yn) ∈ 〈(2, 3, ..., 2, 3, 3)〉 = 〈(x′
1, ..., x

′
n)〉,

since (3, 1, 0) ∼ (2, 3, 3).

Conversely, if (y1, ..., yn) ∈ 〈(x′
1, ..., x

′
n)〉 = 〈(2, 3, ..., 2, 3, 3)〉, then we have

(y1 − 2)3n−1 + (y2 − 3)3n−2 + ... + (yn−1 − 3)3 + yn − 3 = 0. (11)

Hence, yn = 3 or yn = 0.

a) If yn = 3 then yn − 3 = 0. Hence, from (11) we have

(y1, ..., yn−1) ∈ 〈(2, 3, ..., 2, 3)〉= 〈(x1, ..., xn−1)〉.
Therefore, by (1) we have (y1, ..., yn) ∈ 〈(x1, ..., xn−1, 3)〉.
b) If yn = 0 then yn − 3 = −1. Hence, from (11) we have

(y1 − 2)3n−2 + (y2 − 3)3n−3 + ... + (yn−2 − 2)3 + yn−1 − 4 = 0. (12)

This implies yn−1 = 1 or yn−1 = 4.

b1) If yn−1 = 1 then yn−1 − 1 = −3. Hence, from (12) we have

(y1, ..., yn−2) ∈ 〈(2, 3, ..., 2, 3, 3)〉 = 〈(x′
1, ..., x

′
n−2)〉.

This implies (y1, ..., yn) ∈ 〈(x′
1, ..., x

′
n−2, 1, 0)〉.
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b2) If yn−1 = 4 then yn−1 − 4 = 0. Hence, from (12) we have

(y1, ..., yn−2) ∈ 〈(2, 3, ..., 2, 3, 2)〉 = 〈(x1, ..., xn−2)〉.
This implies (y1, ..., yn) ∈ 〈(x1, ..., xn−2, 4, 0)〉. The proposition is proved. �

From Proposition 4, we have the following corollary, which will be used to establish the recur-

rence formula of µn(sn) for each n ∈ N.

Corrolary 2. Let x = (x1, x2, ...) = (2, 3, 2, 3, ...) ∈ D∞. For each n ∈ N, put sn =
n
∑

i=1
3−ixi and

s′n =
n
∑

i=1
3−ix′

i, where (x′
1, ..., x

′
n−1, x

′
n) = (x1, ..., xn−1, xn−1), we have

µn(s′n) =
10

25
µn−1(sn−1) +

5

210

(

µn−2(sn−2) + µn−2(s
′
n−2)

)

.

Proof. By Proposition 4, we have
a) If n is even then

〈(x′
1, ..., x

′
n)〉 = 〈(x1, ..., xn−1, 2)〉 ∪ 〈(x1, ..., xn−2, 1, 5)〉 ∪ 〈(x′

1, ..., x
′
n−2, 4, 5)〉.

Therefore,

µn(s′n) =
10

25
µn−1(sn−1) +

1

25
.
5

25
µn−2(sn−2) +

1

25
.
5

25
µn−2(s

′
n−2)

=
10

25
µn−1(sn−1) +

5

210
[µn−2(sn−2) + µn−2(s

′
n−2)].

b) If n is odd then

〈(x′
1, ..., x

′
n)〉 = 〈(x1, ..., xn−1, 3)〉 ∪ 〈(x1, ..., xn−2, 4, 0)〉 ∪ 〈(x′

1, ..., x
′
n−2, 1, 0)〉.

Therefore,

µn(s′n) =
10

25
µn−1(sn−1) +

1

25
.
5

25
µn−2(sn−2) +

1

25
.
5

25
µn−2(s

′
n−2)

=
10

25
µn−1(sn−1) +

5

210
[µn−2(sn−2) + µn−2(s

′
n−2)].

Hence,

µn(s′n) =
10

25
µn−1(sn−1) +

5

210

(

µn−2(sn−2) + µn−2(s
′
n−2)

)

.

The corollary is proved.

From Corollaries 1 and 2, we have

Corrolary 3. Let x = (x1, x2, ...) = (2, 3, 2, 3, ...) ∈ D∞. For each n ∈ N, put sn =
n
∑

i=1
3−ixi. Then

we have

µn(sn) =
10

25
µn−1(sn−1) +

15

210
µn−2(sn−2) −

45

215
µn−3(sn−3).

Proof. By Corollaries 1 and 2, we have

µn(sn) =
10

25
µn−1(sn−1) +

1

25
µn−1(s

′
n−1) (13)

µn−1(s
′
n−1) =

10

25
µn−2(sn−2) +

5

210

(

µn−3(sn−3) + µn−3(s
′
n−3)

)

(14)

µn−2(sn−2) =
10

25
µn−3(sn−3) +

1

25
µn−3(s

′
n−3). (15)
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From (13), (14) and (15), the assertion of the corollary follows.

2.2 The proof of the main theorem

Lemma 2. Let x = (x1, x2, ...) = (2, 3, 2, 3, ...) ∈ D∞. For each n ∈ N, put sn =
n
∑

i=1
3−ixi. Then

we have µn(sn) ≥ µn(tn) for all tn ∈ supp µn.

We will prove the lemma by induction. For n = 1 we have

µ1(s1) = P (X1 = 2) =
10

25
≥ µ1(t1) ∈ { 1

25
,

5

25
,

10

25
}

for all t1 ∈ supp µ1. Assume that the lemma is true for n = k, i.e.,

µk(sk) ≥ µk(tk) for all tk ∈ supp µk.

We will show that the lemma is true for n = k+1. For any y = (y1, y2, ...) ∈ D∞, put tn =
n
∑

i=1
3−iyi

for each n ∈ N, then tk+1 =
k+1
∑

i=1
3−iyi. We consider the following cases of yk+1.

Case 1. If yk+1 = 1 (or 4), then by Lemma 1, tk+1 has at most two representations

tk+1 = tk + 1.3−(k+1) = t′k + 4.3−(k+1).

Therefore, by induction hypothesis, we have

µk+1(tk+1) = µk(tk)P (Xk+1 = 1) + µk(t′k)P (Xk+1 = 4)

6 µk(tk)(
5

25
+

5

25
) =

10

25
µk(tk).

By Corollary 1 (ii), we have

µk+1(sk+1) >
10

25
µk(sk) ≥ µk+1(tk+1).

Case 2. If yk+1 = 0 (or 3), then by Lemma 1, tk+1 has at most two representations

tk+1 = tk + 0.3−(k+1) = t′k + 3.3−(k+1).

a) If yk = 0 (or 3), then (yk, yk+1) ∈ {(0, 0), (0, 3)}. Therefore, by Lemma 1 we have (y′1, ..., y
′
k+1) ∈

〈(y1, ..., yk+1)〉 iff

(y′k, y
′
k+1) ∈ {(0, 0), (3, 0), (2, 3), (5, 3), (0, 3), (1, 0), (3, 3), (4, 0), }.
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By induction hypothesis, we have

µk+1(tk+1) 6 µk−1(sk−1)[P (Xk = 0)P (Xk+1 = 0) + P (Xk = 3)P (Xk+1 = 0)

+P (Xk = 2)P (Xk+1 = 3) + P (Xk = 5)P (Xk+1 = 3)

+P (Xk = 0)P (Xk+1 = 3) + P (Xk = 3)P (Xk+1 = 3)

+P (Xk = 1)P (Xk+1 = 0) + P (Xk = 4)P (Xk+1 = 0)]

= µk−1(sk−1)(
1

25
.
1

25
+

10

25
.
1

25
+

10

25
.
1

25
+

10

25
.
10

25

+
1

25
.
10

25
+

10

25
.
10

25
+

5

25
.
1

25
+

5

25
.
1

25
)

=
241

210
µk−1(sk−1).

By hypothesis induction and Corollary 1 (ii), we have

µk+1(sk+1) >
10

25
µk(sk) ≥

241

210
µk−1(sk−1) = µk+1(tk+1).

b) If yk = 4 (or 1), then (yk, yk+1) ∈ {(4, 0), (4, 3)}. Therefore, by Lemma 1 we have (y′1, ..., y
′
k+1) ∈

〈(y1, ..., yk+1)〉 iff

(y′k, y
′
k+1) ∈ {(2, 0), (5, 0), (1, 3), (4, 3), (0, 3), (1, 0), (3, 3), (4, 0), }.

By induction hypothesis, we have

µk+1(tk+1) 6 µk−1(tk−1)[P (Xk = 2)P (Xk+1 = 0) + P (Xk = 5)P (Xk+1 = 0)

+P (Xk = 1)P (Xk+1 = 3) + P (Xk = 4)P (Xk+1 = 3)

+P (Xk = 0)P (Xk+1 = 3) + P (Xk = 1)P (Xk+1 = 0)

+P (Xk = 3)P (Xk+1 = 3) + P (Xk = 4)P (Xk+1 = 0)]

= µk−1(sk−1)(
10

25
.
1

25
+

1

25
.
1

25
+

5

25
.
10

25
+

5

25
.
10

25

+
1

25
.
10

25
+

5

25
.
1

25
+

10

25
.
10

25
+

5

25
.
1

25
)

=
231

210
µk−1(sk−1).

By hypothesis induction and Corollary 1 (ii), we have

µk+1(sk+1) >
10

25
µk(sk) ≥

231

210
µk−1(sk−1) ≥ µk+1(tk+1).

c) If yk = 2 (or 5), then (yk, yk+1) ∈ {(2, 0), (2, 3)}. Therefore, by Lemma 1 we have (y′1, ..., y
′
k+1) ∈

〈(y1, ..., yk+1)〉 iff

(y′k, y
′
k+1) ∈ {(0, 0), (3, 0), (2, 3), (5, 3), (1, 3), (4, 3), (2, 0), (5, 0), }.
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By induction hypothesis, we have

µk+1(tk+1) 6 µk−1(tk−1)[P (Xk = 0)P (Xk+1 = 0) + P (Xk = 3)P (Xk+1 = 0)

+P (Xk = 2)P (Xk+1 = 3) + P (Xk = 5)P (Xk+1 = 3)

+P (Xk = 2)P (Xk+1 = 0) + P (Xk = 5)P (Xk+1 = 0)

+P (Xk = 1)P (Xk+1 = 3) + P (Xk = 4)P (Xk+1 = 3)]

= µk−1(sk−1)(
1

25
.
1

25
+

10

25
.
1

25
+

10

25
.
1

25
+

10

25
.
10

25

+
5

25
.
10

25
+

5

25
.
10

25
+

10

25
.
1

25
+

1

25
.
1

25
)

=
231

210
µk−1(sk−1).

Therefore, by Corollary 1 (ii), we have

µk+1(sk+1) >
10

25
µk(sk) ≥

231

210
µk−1(sk−1) ≥ µk+1(tk+1).

Case 3. If yk+1 = 2 (or 5). This case is proved similarly to the Case 2.

Therefore, the lemma is proved.

By resolving Fibonacci recurrence formula of µn(sn) in Corollary 3, we have the following

corollary.

Corrolary 4. Let x = (x1, x2, ...) = (2, 3, 2, 3, ...) ∈ D∞. For each n ∈ N, put sn =
n
∑

i=1
3−ixi. Then

we have
µn(sn) = a1X

n
1 + a2X

n
2 + a3X

n
3

for

X1 =
2

3.25
[
√

145cos(
arccos 427

59
√

145

3
) + 5] ≃ 0, 3435055158

X2 =
−2

3.25
[
√

145 cos(
arccos 427

59
√

145

3
+

π

3
) + 5] ≃ 0, 04959875748

X3 =
−2

3.25
[
√

145 cos(
arccos 427

59
√

145

3
− π

3
) + 5] ≃ −0, 08060427328

and a1, a2, a3 are roots of the following system of three equations

µ1(s1) = a1X1 + a2X2 + a3X3

µ2(s2) = a1X
2
1 + a2X

2
2 + a3X

2
3

µ3(s3) = a1X
3
1 + a2X

3
2 + a3X

3
3 ,

where µ1(s1), µ2(s2), µ3(s3) are the values in Corollary 1.
From Lemma 2, Corollary 3 and Proposition 2, we have

Theorem. Let µ is the 5−fold convolution of the standard Cantor measure, then the lower extreme
value of the local dimension of µ is

α5 = |
log

[

2
3.25

(√
145 cos(

arccos 427

59
√

145

3 ) + 5
)]

log 3
| ≃ 0, 972638.
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