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Abstract. The problem about periodic solutions for the family of linear differential equation
Lu= <% - aA> w(z,t) = vG(u— f)
is considered on the multidimensional sphere 2 € S™ under the periodicity condition |;—g =
u|y—p and [, u(, t)dw = 0.
Here a is given real, v is a fixed complex number, Gu(x, t) is a linear integral operator,
and A is the Laplace operator on S”™. It is shown that the set of parameters (v, b) for which
the above problem admits a unique solution is a measurable set of full measure in C x R,

This work further develops part of the authors’ result in [1, 2|, on the problem on the periodic
solution to the equation (L — A)u = vG(u — f). Here L is Schrodinger operator on sphere S™ and A
belongs to the spectrum of L. Particularly, the authors consider the case that A is an eigenvalue of L
( the case which can be always converted to the case A = 0 ). It is shown that the main results are all
right (but) on the complement of eigenspace of A in the domain of .

1. We consider the problem on periodic solutions for the nonlocal Schrodinger type equation

<13 _ aA> W 1) — vGlu—f), (1)
with these conditions :
o = ult—p; / u(z, t)dx = 0. (2)
Sn

Here u(x,t) - is a complex function on S™ X [0,b], S™ - is the multidimensional sphere, n > 2;
a # 0, v - are given complex numbers, f(z,1) - is a given function. The change of variables ¢ = br
reduces our problem to a problem with a fixed period, but with a new equation in which the coefticient

of the 7— derivative is equal to 7

1
<—,i - aA> w(x, br) = vG(u(x, br) — f(2,bT)).
2. Thus, problem (1), (2) tumns into the problem on periodic solution of the equation
Lu= <—,— - aA> w(z, t) = vG(u(z, t) — f(z,1)), (3)
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with the following conditions:
o = ulg—1, / w(z, t)dx = 0. (4)
Sn

Here Gu(z,t) = / g(z, y)uly,t)dy (dy is the Lebesgue-Hausdorff measure on the sphere S™) is an

5
integral operator on the space L2(S™ X [0, 1]) with smooth kernel g(x, y) defined on S™ x S™ such
that

/ g(@,y)dx =0 (5)
for all ¢ in S™.

The differential operation %bi — aA is assumed to be defined for the functions u(x,t) €
C>°(S™ x [0,1]) such that ul;—o = ul—; and with the condition [, u(x,t)dx = 0. Let L - denote
the closure of this operation %biat —aA in H = Ly(5™ x [0,1]). So an element v € H belongs to
the domain D(L) of L = li —aA , if and only if there is a sequence {u;} C C*(S™ x [0, 1])
wjl¢—0 = ujl¢—1 and fSn ujzdm = 0, such that limu; = w, lim Lu; = Lu in H. Let Ho is a subspace
of space Ly(S™ x [0, 1]),

Ho = {u(z,t) € Lo(S™ x [0,1]) w(z, t)dx = 0}.

|
5n
It is well known that the eigenvalues of the Laplace operator A on the sphere S™ are of the form
—k(k+n—1),k € Z, k > 0 and that A admits the corresponding orthonormal basis of eigenfunction
wr(x) € C™(S™)(see, e.g [3]).
Lemma 1. The finctions cpm(x,t) = 2Ty (), k,m € Z, k > 0 are eigenfunctions of the
operator L in the space Hy that correspond to the eigenvalues

2 2
Akm:$+akz(k’+n—1):$+>\k (6)

These functions form an orthonormal basis in Ho. The domain of L is given by the formula
D(L) = {u= Z Uk E€km | Z |)\kmukm|2 < o0, Z |ukm|2 < oo}
m,k€ k>0

The spectrum o (L) in the closure of the set { g }.
Lemma 2.

et < = [ lotePacay
sn Jgn
Proof. We have

Gata )= | [ ateputnnyasf < [

Sn

l9(as )|y / fuly, )] 2dy

Sn

1
||Gu(m,t)||2/ / |Gu(a, t)|2dedt <
O 7

/o1 /n </Sn lg(@, y)I*dy /Sn |U(y7t)|2dy> dx dt
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1
Gule, D)2 < /S /S g, ) Pdedy /S / fu(y, )Pyt — M|l

1G]] < Mo.
The lemma is proved.
We note that the Laplace operator is formally selfadjoint relative to the scalar product (u, v) =
/ w(z)v(x)dx on the space C*°(S™). The product A, o G = A,G coincides with the integral
Sn

operator with the kernel A, g(z,y). Let the function A,g(x,y) be continuous on S™ x S™. We put
M = max{|[A. G, [|G][}-
Lemma 3. Let v = Gu — ZkaG k>0 Vkm €k, Then
|t M2Julf?
(k(k+n—-1))2 = (k(k+n—1))2%
where Qg = (ALGU, e ), and > |agm|? < M2||ul|?.
Proof. Since the Laplace operator is selfadjoint, for £ > 0 we have
Ak = (ALGu, ep) = (Gu, Apepm (2, 1)) = (Gu, —k(k +n — 1)egm (2, 1))
opm = —k(k +n —1){Gu, egm(x,t)) = —k(k+n — 1)vgm.

(7)

|Ukm|2 -

It follows that

|’Uk |2 |akm|2
T (k(ktn—1))%
By the Parseval identity, we have > |ag,|? = ||AGul|* < M?||u||?, whence
|’Uk |2 < M2||u||2

(k(k+n—1))%
The lemma is proved.

We assume that a is a real number. Then by Lemma 1, the spectrum o(L) lies on the real
axis. Most typical and interesting is the case where the number ab/(27) is irrational. In this case,
0 # AemVk,m € Z, k > 0 and the H.-Weyl theorem (see, e.g., [4]), says that, in this case, the set of
the numbers Ag, is everywhere dense on R and o(L) = R. Then in the subspace Hj the inverse

operator L~ ! is well defined , but unbounded. The expression for this inverse operator involves small
denominators.

_ Vk
L lu(z,t) = Z )\—mekm, (8)
km
where vy, 1s the Fourier coefficient of the series
vz, t) = Z Vkorn Chm. -
kme k>0

For positive numbers o and C, let A,(C) denote the set of all positive b such that

C
Al > - (9)

forall m,k € Z, k > 0.
This definition shows that the set A, (C') extends as C' reduces and as o grows. Therefore, in
what follows, to prove that such a set or its part is nonempty, we require that C' > 0 be sufficiently
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small and o sufficiently large. Let A, denote the union of the sets A, (C) over all C' > 0. If inequality
(9) 1s fulfilled for some b and all m, k, then it is fulfilled for m = 0; this provides a condition necessary
for the nonemptiness of A, (C):

C <k'ak(k+n—1) Vk>0. (10)

We put d = mingez g0k "7 lak(k+n — 1) > 0.
Theorem 1. The sets A,(C), A, are Borel. The set A, has full measure, i.e., its complement to the
half-line R is of zero measure.

Proof. Obviously, the sets A,(C) are closed in RT. The set A, = U As(1/r) - is Borel, being a
r=1

d
countable union of closed sets. We show that A, has full measure in R™. Suppose b, [ >0, C < 3

we consider the complement (0, 1)\ A,(C). This set consists of all positive numbers b, for which there
exist m, k, such that

C
Ak | < T (11)

Solving this inequality for b, we see that, for m, k fixed. the number b form an interval I ,,, =
(mayg, mB), where m = 1,2, 3, ...,
2 2
g = o Be= e
lak(k +n—1)|+ lak(k +mn —1)]

k1+0 B k1+0

The length of Iy ,,, 1s My, with

B 4rCl—1=°
ak(k+n—1)2 - C22-20"

o

: d :
Since ' < 3 by assumption, we have

167C

oL < . 12
M= 3kleak(k +n— 1)|2 (12)

For k fixed and m varying, there are only finitely many of intervals I, that intersect the given segment
(0,1). Such intervals arise for the values of m = 1, 2..., satisfying may <[, ie.,

l
0<m< 2—(|akz(kz +n—1)|+Ck177).
T
. 1 o .
Since Ck~ 177 < §|akz(kz +n —1)|, we can write simpler restrictions on m :

[ 3 [

The measure of the intervals indicated ( for k& fixed ) is dominated by 6k§k, where Sk = gk(l)
is the sum of all integers m satisfying (13). Summing an arithmetic progression, we obtain

~ l
S < ﬁ|ak(l€+n—1)|{l|akz(kz+n—1)|+7r}. (14)
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Passing to the union of the intervals in question over & and m, and using (12), we see that

HO.D\AO) < 3 ad < OS(0),
k=0

where

B o= 8{l|ak(k+n —1)|+ 7}
SS(Z)X; Skl o lak(k tn—1)] "

Observe that the quantity
lNak(k+n—1)| +=x

mlak(k +n — 1)
is dominated by a constant D; therefore,
8 = 1
S < DY | 1y < oo,
k=1

We have
1((0,0)\ Ax) < p((0,0)\ Ax(C)) < CS(1) YO > 0.

173

It follows that p((0,1) \ A,) =0 VI > 0. Thus,u((0,00) \ A,) = 0 and A,- has full measure. The

theorem is proved.

Theorem 2. Suppose g(x,y) is a function defined on S™ x S™ such that the function A,g(x,y) is
continuous on S™ x S™ and [, g(x,y)de =0 Vy € S™. Let 0 < o < 1, and let b € A,(C). Then in

the space Hy the inverse operator L' is well defined, and the operator L~ o G is compact.

Proof. Since b € A,(C), we have A\p,, #0 Y k,m € Z, k > 0 so that L' is well defined and

k,2+2a
looks like the expression in (8). Observe that lim Gkt =1))° = 0 as k — oo. Therefore, given
2420 ( )2

£ > 0, we can find an integer kg > 0, such that (elk 1 —1))2 < IVE

Lilfu(x, 1) = Qi v + Qrpov, v = Gu,

Vkm Vkm
Q¥ = E N, Chm: Qk02’U:E N, Chm-

0<k<ky ~ km kko ~ R

where

For the operator ()i, we have

for all & > kg. We write

2

0<k<ko [t
Observe that if 0 < k& < kg, then

1

lim S =0
|T + ak(k +n—1)?
: 1 : :

as |m| — oo. Therefore, the quantity S is dominated by a constant C'(ko).

|T+ak’(kz+n—1)|2
Then
1Qeo1v]” <) [vrm|*Cko) < C(ko)|Jv]|?,

which means that (), is a bounded operator.



174 D.K. Hoi / VNU Journal of Science, Mathematics - Physics 25 (2008) 169-177

Consider the operator ()i, o G. By Lemma 3 and (9), we have

|Ukm|2
Qustll? = Qa0 Gl = 3 5y <
ek | R
2
e L 2 9495 L g,2C 5 2 2 2
2R < ()22 L2 < .
Y G ST T S (GG X ekl < Sl
k>ko k>ko

Consequently, ||Qx,, o G|| < e.
Since ' is compact and Q)g,, 1s bounded, Q)x,, o ¢ is compact. Next, we have

||L710G_Qk01 OGH - ||Qk02 OGH <e&.

Thus, we see that the operator L~! o (G is the limit of sequence of compact operators. Therefore, it is
compact itself. The theorem is proved.

We denote K = K, = L' o G.
Theorem 3. Suppose b € A,(C). Then problem (1),(2) admits a unique periodic solution with period
b for all v € C, except, possibly, an at most countable discrete set of values of v.

Proof. Equation (1) reduces to
(Ll oG - Y= 10a(y).

v

: 1 1
We write L ' oG — — = K — —.
v v

Since K = L~ ! o (G is a compact operator, its spectrum o(K) is at most countable, and the

1
limit point of o(K) (if any ) can only be zero. Therefore, the set S = {v # 0 | — € o(K)} is at most
v

. 1., . . . .
countable and discrete, and for all v # 0, v ¢ S the operator (K — —) is invertible, i.e., equation (1)
v

is uniquely solvable. The theorem is proved.

We pass to the question about the solvability of problem (1), (2) for fixed v. We need to study
the structure of the set £ C C x RT, that consists of all pairs (v, b), such that v # 0 and % ¢ o(Kp),
where K, = L1 o G.

Theorem 4. E is a measurable set of full measure in C x RT.

For the proof, we need several auxiliary statements.

—~ 1
Lemma 4. For any = > 0 there exists an integer ko such that || Ky, — Kp|| < & forall b € AU(;), 0<

o<1, where r =1,2, ...,

_ VEkm I Vkm
Kyu= Ly ‘v = e Kpu = -
R Db v TR D v
K0
k,2+2a

£

(k(k+n—1))2 ~ <7’M>2 for all

Proof. Observe that for any € > 0 there is an integer kg such that

k> ko, 0<o <1 Wehave

=g VEkm
Ky — Kp)u= K pu= E ———€Lm
( b b) kob = >\km<b) k
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k,2+20

~ vm rozm
||(Ky — Kp)ul|* = || Kgpul |* = ZI S Z< .

k>ko k>ko k(k+n—1))2

£ £
o) 2 ol < r2<m>2M2||u||2 = <Jull®
0

Thus || Ky — Kp|| = || Kis|| < = as required.
1
Lemma 5. The operator-valued function b — Ky, is continuous for b € A,(—).
r

1
Proof. Suppose b, b+ Ab <€ A, ( ) and £ > 0. By Lemma 4 there exists an integer ko ( independent
of b, b+ Ab) such that ||Kb—Kb|| = ||Kk0b|| < £ and ||Kb+Ab_Kb+Ab|| = ||Kk0(b+Ab)|| < £. Next,

Kpnp — Ky = (Kprab + Ky (or-a0) — (Kb + Kig),

whence we obtain

[ Ky a0 — Kbl| < | Kprab = Kbl + [ Kigoran) || + [ Kol |-

Consider the operators Kpap, [A(/b. We have

~ 1 1
(Kprap— Kp)u=> ( - )Vkm€hm
322 N6+ A8 N (0)
—_— —— |Ab|2 |’Ukm|2 Am2mr2
By — Kprmgu]|2 — —=22 . (15)
01 807, 2= (0 1 ADE e

1
fo+Abe A, (=), 1<k<ky, 0<o<l,then
r

2
Vkim -
by |(4bk+|Ab) R L A
4m?2r? 9 " . . w2
The relation lim B2 b* and the condition 1 < k < kg imply that the quantity 5 =
RN v (3] EYNGIE km<b>|

Am?2r

S is dominated by a constant C'(kg) depending on k. Therefore
|T + ak(k +n—1)?

| Ab2 |0k dm?n?
2 2 2 —
6(b+ Ab)| KZM [N (0 4 Ab)|2 A (b))

Ab|?
# Z T2]€04C<k0)|’l}km|2§

2
|b(b+ Ab)| e
|Ab|2 27, 4 E 2
WT k’o C(k’o) |'Ukm| .

1<k<kg
Since

Y Joknl® < l0l1? < M,
1<k<ko
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we arrive at the estimate

| Ky ap — Ky||* < WM2r2k04C(ko).
We choose Ab so as to satisty the condition
Ab|?
0+ A ) <=

Then ||Kp+ap — Kp|| < 3e. This shows that the operator-valued function b — K}, is continuous on

Ay(=). The Lemma is proved.
r

Lemma 6. The spectrum o(K) of the compact operator K depends continuously on K in the space
Comp(Ho) of compact operators on Hy, in the sense that for any e there exists 6 > 0 such that for
all compact ( and even bounded ) operators B with |B — K|| < d we have

o(B) Co(K)+V(0), o(K)Co(B)+V(0). (16)

Here V.(0) = {\ € C | |\| < &} is the e-neighborhood of the point 0 in C.

Proof. Let K be a compact operator; we fix £ > (. The structure of the spectrum of a compact operator
shows that there exists €1 < £/2 such that £ # |A| for all A € o(K). Let S = {\1,..., \¢} be the
set of all spectrum points A with |A\| > &1 and let V' = U Vz,(A). Then V is neighborhood of

A€SU{0}

o(K)and V C o(K) + V.(0). By the well-known property of spectra ( see, e.g.,[5], Theorem 10.20)
there exists 6 > 0 such that o(B) C V for any bounded operator B with ||B — K| < ¢. Moreover
(see, e.g., [5], p-293, Exercise 20), the number § > 0 can be chosen so that o(B) N V., (A) # 0
YA € S U{0}. Then for all bounded operators B with |B — K| < § the required inclusions
o(K) Co(B)+ Vae, (0) Co(B) 4+ V.(0) and o(B) CV C o(K) + V-(0) are fulfilled. The lemma
is proved.

It is easy to deduce the following statement from [LLemma 6.
Proposition 1. The function p(\, K) = dist(\, 0(K)) is continuous on C x Comp(Hy).
Proof. Suppose A € C, K € Comp(Hp) and £ > 0. By Lemma 6, there exists § > 0 such that for any
operator H lying in the d-neighborhood of K, ||H — K|| < 9, the inclusions (16) are fulfilled; these
inclusions directly imply the estimate |p(A, K) — p(A, H)| < . Then for all p € C with | — \| < &
and all H with ||[H — K|| < § we have

lp(p, K) — p(A, H)| < [p(p, K) — p(N, K|+ [p(X, K) — p(A, H)| < [p— Al + 2 < 2,
Since £ > 0 is arbitrary, the function p(\, K) is continuous. The proposition is proved.

Combining Proposition 1 and Lemma 5 we obtain the following fact.

1
Corollary 1. The function p(\,b) = dist(\, o0(Ky)) is continuous on (X, b) € C x A, (=).
r
Now we are ready to prove Theorem 4.
Proof of Theorem 4. By Corollary 1, the function p(1/v, b) is continuous with respect to the variable
1
(v,b) € (C\ {0}) x A,(—). Consequently, the st

7

B, ={(v,b) | p(1/v,b)#0, bEAa(%)}
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is measurable, and so is the set B = U,.B,.. Clearly, B C E and I = B U By, where By = I\ B.
Obviously, By lies in the set C x (R \ A,) of zero measure ( recall that, by Theorem 1, A, has
full measure in R" ). Since the Lebesgue measure is complete, By is measurable. Thus, the set F
is measurable, being the union of two measurable sets. Next, by Theorem 3, for b € A, the section
E* = {v € C| (v,b) € EY} has full measure, because its complement {1/v | v € o(K,)} is at most
countable. Therefore, the set I is of full plane Lebesgue measure. The Theorem is proved.

The following important statement is a consequence of Theorem 4.
Corollary 2. For a.e. v € C, problem (1), (2) has a unique periodic solution with almost every
period b € R,
Proof. Since the set I/ is measurable and has full measure, for ae. v € C the section F, = {b €
R | (v,b) e B} ={beR" | 1/v ¢ o(K})} has full measure, and for such b’s problem (1), (2) has
unique periodic solution with period b. The Corollary is proved.
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