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Abstract. Anharmonic effective potential, effective local force constant, thermal expansion 
coefficient, three leading cumulants, and EXAFS (Extended X-ray Absorption Fine Structure) of 
hcp crystals have been studied. Analytical expressions for these quantities have been derived. 
Numerical calculations have been carried out for Zn and Cd. They show a good agreement with 
experiment results measured at HASYLAB (DESY, Germany) and unnegligible anharmonic 
effects in the considered quantities.  

1.  Introduction 

EXAFS and its parameters are often measured at low temperatures and well analysed by the 
harmonic procedure [1] because the anharmonic contributions to atomic thermal vibrations can be 
neglected. But EXAFS may provide apparently different information on structure and on other 
parameters of the substances at different high temperatures [2-11,14,15] due to anharmonicity.   

 This work is devoted to development of a new method for calculation and analysis of the high 
order anharmonic effective potential, local force constant, three leading cumulants, thermal expansion 
coefficient, and EXAFS of hcp crystals. Derivation of analytical expressions for these quantities is 
based on quantum statistical theory with the anharmonic correlated Einstein model [9] and Morse 
potential is used to characterize interaction between each pair of atoms. Numerical results for Zn and 
Cd are found to be in good agreement with experiment [16] and show unnegligible anharmonic effects 
in the considered quantities. 

2. Formalism 

According to cumulant expansion approach the EXAFS oscillation function is given by [11] 
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where )(kF  is the real atomic backscattering amplitude, Φ  is the net phase shift, k  and λ  are the 

wave number and the mean free path of the photoelectron, respectively, rR =  with r  as the 
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instantaneous bond length between absorbing and backscattering atoms and σ (n) (n = 1, 2, 3, …) are 
the cumulants [2].  

The total mean square relative displacement (MSRD) or 2nd cumulant ( )T2σ  at a given 
temperature T is given as the sum of harmonic ( )T2σ  and anharmonic ( )TA

2σ  contributions [11] 
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where γG is Grüneisen parameter, ∆V/V is the relative volume change due to thermal expansion, 2
oσ  is 

zero-point contribution to ( )T2σ . 
The anharmonic effective potential can be expressed as a function of the displacement 0rrx −=  

along the 0R̂  direction, r and 0r  being the instantaneous and equilibrium bondlengths between 
absorbing and backscattering atoms, respectively 
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where 0k is effective local force constant, and 3k  is cubic parameter giving the asymmetry due to 
anharmonicity. (Here and in the following, the constant contributions are neglected). 

For calculation of thermodynamic parameters we use the further definition axy −= , 

0rra −=  [9, 18], to write Eq. (3) as 
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where effk  is an effective local force constant, in principle different from 0k . 
Making use of quantum statistical methods [13], the physical quantity is determined by an  

averaging procedure using canonical partition function Z and statistical density matrix ρ  
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Atomic vibrations are quantized in terms of phonon, and anharmonicity is the result of phonon-
phonon interaction, that is why we express y in terms of annihilation and creation operators, â and 

+â , respectively 
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and use the harmonic oscillator state n  as the eigenstate with the eigenvalue EnEn ωh= , ignoring 
the zero-point energy for convenience, here Eω  is correlated Einstein frequency. 

A Morse potential is assumed to describe the interatomic interaction, and expanded to the third 
order around its minimum 
  ( ) ( )L+−+−≅−= −− 33222 12)( xxDeeDxV xx αααα , (7) 
where α describes the width of the potential and D is the dissociation energy.   

In the case of relative vibrations of absorber and backscatterer atoms, including the effect of 
correlation and taking into account only the nearest neighbor interactions, the effective pair potential is 
given by 
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where the first term on the right concerns only absorber and backscatterer atoms, the remaining sums 
extend over the remaining neighbors, and the second equality is for monoatomic hcp crystals.  

In accordance with Eq. (4), using Morse potential Eq. (7), and 2
0 5 αDk =  the effective potential 

Eq. (8) is expressed as 
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where the local force constant is given by 
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where Eθ , µ  are the correlated Einstein temperature and reduced mass, respectively. 
For further calculation we write the effective interatomic potential as the sum of the harmonic 

contribution and a perturbation Vδ  due to the weak anharmonicity  
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Using the above results for correlated atomic vibrations and the procedure depicted by Eqs. (5, 6), 
as well as, the first-order thermodynamic perturbation theory with considering the anharmonic 
component in the potential Eq. (9), we derived the cumulants.  

The 2nd cumulant or mean square relative displacement (MSRD) is expressed as 
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First and third cumulants are 
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and Eq. (13) the thermal expansion coefficient is resulted as 
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where R is the bond length, ( ) ( )3
0

2
0

1
0 ,, σσσ  are zero-point contributions to ( ) ( )321 ,, σσσ  and 0

Tα  is the 
constant value of Tα  at high-temperature. 

To calculate the total MSRD including anharmonic contribution Eq. (2) an anharmonic factor has 
been derived 
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The anharmonic contribution to the EXAFS phase at a given temperature is the difference between 
the total phase and the one of the harmonic EXAFS, and it is given by  
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We obtained from Eq. (1), taking into account the above results, the temperature dependent K-
edge EXAFS function including anharmonic effects as 
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where 2
0S  is the square of the many body overlap term, jN  is the atomic number of each shell, the 

remaining parameters were defined above, the mean free path λ  is defined by the imaginary part of 
the complex photoelectron momentum λ/ikp += , and the sum is over all atomic shells.  

3. Numerical results and comparison to experiment  

Now we apply the above derived expressions to numerical calculations compared to experiment 
for Zn and Cd measured at HASYLAB (DESY, Germany) [16]. Morse potential parameters of Zn and 
Cd have been calculated by generalizing the procedure for cubic crystals [12] to the one for hcp 
crystals. They are compared to the EXAFS experimental data [16]. Effective local force constants, 
correlated Einstein frequencies and temperatures have been calculated using these Morse parameters. 
The results are written in Table 1. They are used for calculation of anharmonic EXAFS and its 
parameters. The calculated anharmonic effective potentials for Zn and Cd are compared to experiment 
and to their harmonic components (Figure 1a). The calculated anharmonic factors for Zn and Cd are 
shown in Figure 1b). They agree with the extracted experimental results [16].  

Table 1. Calculated and experimental values of D, α , or , and effk , Eω , Eθ  for Zn, Cd 

Bond D(eV) α (Å-1) 
or (Å) )/( mNkeff  )10( 13 HzE ×ω  Eθ (K) 

Zn-Zn, Calc. 0.1698 1.7054 2.7931 39.5616 2.6917 205.6101 
Zn-Zn, Expt. [16] 0.1685 1.7000 2.7650 39.0105 2.6729 204.1730 
Cd-Cd, Calc. 0.1675 1.9069 3.0419 48.7927 2.2798 174.1425 
Cd-Cd, Expt. [16] 0.1653 1.9053 3.0550 48.0711 2.2628 172.8499 

 
 
 
  
 

 

 
a) b) 

Fig. 1. Calculated anharmonic effective potentials and their harmonic components (a), and  anharmonic factors 
(b) for Zn, Cd. They are compared to experiment [16].  
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Figure 2 illustrates the temperature dependence of our calculated 1st cumulant (a) describing the net 
thermal expansion and 2nd cumulant (b) describing Debye-Waller factor for Zn and Cd compared to 
experiment at 77 K and 300 K [16].  
 
 
 
 
 
 
 
 
 
 
 
 
 

 (a)                        (b) 
Fig. 2. Calculated temperature dependence of 1st (a) and 2nd (b) cumulants for Zn and  Cd compared to 

experiment at 77 K and 300 K [16]. 

Figure 3 demonstrates the temperature dependence of our calculated 3rd cumulant and thermal 
expansion coefficient for Zn and Cd. They agree with the measured values at 77 K and 300 K [16]. All 
three calculated cumulants of Zn and Cd satisfy their fundamental properties. They contain zero-point 
contribution at low temperature as quantum effects. At high-temperatures the 1st and 2nd cumulants are 
linearly proportional to the temperature T, but the 3rd cumulant to T3. Our calculated temperature 
dependence of thermal expansion coefficients for Zn and Cd agree with experimental values at 77 K 
and 300 K. Moreover, they satisfy Grueneisen theorem, where at low temperatures they behave as T3 
and at high-temperatures they approach the constant values as the form of specific feat.  
 
 
 
 
 
 
 
 
 
 
 

 
(a)      (b) 

Fig. 3. Calculated temperature dependence of 3rd cumulants (a) and thermal expansion coefficients for Zn and Cd 
compared to experiment at 77 K and 300 K [16].  
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Figure 4 shows the EXAFS spectra χk3 calculated by our theory at 77 K, 300 K and 500 K (a) and 
their Fourier transform magnitude at 300 K (b) compared to experiment [16]. The EXAFS are 
attenuated and shifted shifted to the right as the temperature increases. Our calculated Fourier 
transform magnitude agrees with experiment [16] and is shifted to the left compared to the harmonic 
FEFF code results [1]. This is indicative of the necessity of including anharmonic contributions in the 
EXAFS data analysis.  
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)       (b) 
Fig. 4. Calculated anharmonic EXAFS at 77 K, 300 K, 500 K (a) and Fourier transform magnitude at 300 K 

compared to experiment [16] and to FEFF result [1] for Zn. 

4. Conclusions 

In this work a new method for calculation and analysis of anharmonic effective potential, effective 
local force constant, three leading cumulants, and EXAFS for hcp crystals has been explored. This 
anharmonic theory contains the harmonic model at low temperatures and the classical limit at high-
temperatures as special cases. 

 Derived analytical expressions for the considered quantities satisfy all their fundamental 
properties and provide a good agreement between the calculated and experimental results. This 
emphasizes the necessity of including anharmonic contributions in the EXAFS data analysis. 
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