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Abstract. In this paper we study periodic solutions of the equation

% <% + aA> w(z, ) = vG(u— f), (1)

with conditions

U= = Ug—b, /X(u(x), 1)dx=0 (2)

over a Riemannian manifold X', where

Gula, 1) = /X o, y)uly)dy

is an integral operator, u(x, t) is a differential form on X, A = ¢(d+0) is a natural differential
operator in X . We consider the case when X is a tore I12. It is shown that the set of parameters
(v, b) for which the above problem admits a unique solution is a measurable set of complete
measure in C x R,

Keyworks and phrases: Natural differential operators, small denominators, spectrum of compact
operators.

1. Introduction

Beside authors, as from A.A. Dezin (see, [1]), considered the linear differential equations on
manifolds in which includes the external differential operators.

At research of such equations appear so named the small denominators, so such equations is
incorrect in the classical space.

There is extensive literature on the different types of the equations, in which appear small
denominators. We shall note, in particular, work of B.I. Ptashnika. (see, [2])

This work further develops part of the authors® result in [3], on the problem on the periodic
solution, to the equation in the space of the smooth functions on the multidimensional tore [1”. We shall
consider one private event, when the considered manifold is 2-dimension tore I1? and the considered
space is space of the smooth differential forms on I12.
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We shall note that X -n-dimension Riemannian manifold of the class C™ is always expected

oriented and close. Let
£ = & of? = B  A(T"X)© C

is the complexified cotangent bundle of manifolds X, C>(¢) is the space of smooth differential forms
and H*(¢) is the Sobolev space of differential forms over X (see. [4]). By A we denote operator i(d-+6).
so-called natural differential operator on manifold X, where d is the exterior differential operator and
0 = d*- his formally relative to the scalar product on C*°(¢), that inducing by Riemannian structure
on X. It is well known (see, [4], [5]) that d + ¢ is an elliptical differential first-order operator on X .

From the main result of the elliptical operator theories on close manifolds (see, [4]) there will
be a following theorem.
Theorem 1. In the Hilbert space H°(¢) there is an orthonorm basis of eigenvector { f,,}, m € Z, of the
operator A = i(d+0) that correspond to the eigenvalues \,. Else Ny, = i, tm € Ry Ay = =Xy

andm—>0whenm—>oo.

Proof. This theorem was in [5].
The change of variable { = b7 reduces our problem to a problem with a fixed period, but with
a new equation in which the coefficient of the 7-derivative is equal to 1/b :
0
(—— + a(d + 0)u(z, br) = vG(u(z,br) — f(2,bT))
iboT
2. Thus, in IT? = R?/(2Z)? problem (1)(2) turns into the problem on periodic solution of the equation
0
Lu= (% +a(d+9))u(z, t) = vG(u(z, t) — f(2,1)) (3)

with the following conditions:

Ulp—0 = ult=1, /H2 (u(z), 1)da = 0. (4)

Here
’u,()(.%‘,t) ’u,0<$,t)
_ 1 2 1 2 ui(z,t) | _ | wi(z,t)
w(z,t) = (1 da' da? da' Ada?) wlet) | = | wla )
’u,3<$7t) ’u,3<$,t)

- complex form with coefficient dependent for ¢, ¢ € [0, 1]; a # 0, v are given numbers,

(w(x), v(2)) = uo(@)vo(x) + u(x)vy (@) + ug(@)vg() + us(a)vs(x),

Gutayt) = [ gty iy

is an integral operator on the space Ly = L2(H°(£),[0,1]) with a smooth kernel

defined on 112 x I12 such that

/H2 ( goo(z,y) gor(z,y) goz(w,y) gos(z,y) )de =0 Yy e I
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1,0 10 . . . .
We assume that operator _<b_8t + aA) = 5 + a(d + §) given in the differential form space
i

u(z, t) € C*(C™>(¢), [0, 1]), with these conditions
o = ule=1, / (u(z), 1)da = 0.
112

.1 .
Let L -denote the closure of operation —b% +a(d +8) in La(H?(€),]0,1]). So, an element
i

1
u € La(H(€), 0, 1]) belongs to the domain D(L) of operator I, = —(biat +aA), if and only if there
i

is a sequence {u;} C C™(C™(€),[0,1]) ujli—o = ujli=1, [y (u;j(®), 1) d = 0 such that limu; = w,
lim Lu; = Lu in Lo(H°(€), [0, 1]).
Let ‘H-denote a subspace of space Lo(H(¢),[0,1])

M {uet) € L@, 0,1 | [ (u(e0),1)do 0}

{#im\[k? + k3 = +in|k|; k= (k1, ko) € Z*}

is the set of eigenvalue of operator A = i(d + &) on I1? and eigenvectors, coresponding to
imnay/ k3 + k3,

: 1 2
S () = em(kzlx + ko >wkm

We note that

are given by the formula:

here wy,, € @2:0 AP(C?),n = (m,m2) € {—1,+1}? is some basic in 4— dimensional space of the
complex differential forms with coefficients being constant. These coefficients depend on k € Z? and
clements of this basic are numbered by parameters 7. We are not show wy,, on concrete form. (see, [6]).
Lemma 1. The forms epm, = 2™ fi,(x),k = (ki,k2) # 0, are eigenform operator L that
corresponds to the eigenvalues

b b

in the space H. These forms form an orthonorm basis in given space. The domain of operator L is
given by formula

D(L) ={u= Zukmnekmn | Z |>\kmnukm’r]|2 < oo, Z |Ukmn|2 < oo}

k0 k0 k0

2m
me<—wawm>——+Mn (5)

The spectrum o (L) operator L is the closure of the set A = { gy}

We note that the number of dimensions of the eigensubspace is finite and we shall not indicate
exactly how many there are of them.
Lemma 2. Let g(x,y) € La(11% x 112) and

1/2
Mo<//||gwy|dwdy> -

Then G - linear operator is bounded in H°(¢) and his norm ||G|| < M.
Here ||g(x,y)|| - matric norm g

g(%,y): (gij<x7y>>7 i,j:(),.?)



20 D.K. Hoi / VNU Journal of Science, Mathematics - Physics 26 (2010) 17-27

lgll = sup{ llgull | v € R? x R?, [luf| <1 }.
Proof. If u(z) € HO(¢)

Gu@IP =1l [ atemumat< ([ loutlay) <

([ lote.ol-lalian) < [ oG- [t Pa
Icull = [ lGuta)| e <

L (] ateiPay [ lwiPay ) ae

P < [ [ latwlPaody | oy = b3l
1G]] < Mo.
The lemma is proved.
Let B = (—=A,)*™,a > 0. Then B is M-operator in H°(¢) and gfkn = Wk fiy. here
pr = (m|k|)?T2* are eigenvalues. Operator (—A,)*"! is self-conjugate. We suppose that kemel
g(z,y) of operator G having the following behaviour (—A,)*g;i(w,y) € Lo(I12 x 11%) (gi5(., v)

belongs to space Sobolev W22+20‘ for almost every y € 112). Then product operator B o (G is integral
operator (—A,)' ™ o (i, with kernel

(—A) g, y) = (—A2) "%gij) (2, 9)), 4,5 = 0,3,
Let M = max{||(=A,)' ™o G|, ||G]]}.
Lemma 3. Let v = Gu = ) Vkynn€hmy, then

AMZ[ul|?

2 < : 6
el (i 1 1)2 )
If k #£ 0 then
2
2 o |O‘kmn|
el S Gl T 2
here

Qo = (=A% 0 Gu, €kmn) Lo
Proof. We have

1 1
Qo = (=A) 0 Gu, €hmn) Ly = / (=A) 0 Gu, €hmn) At = / (Gu, (—Az)l+o‘ekmn>dt -
0 0

1 1
/ <G’U,7 ,ukekm’r]>dt - m/ <G’U,, ekm'r]>dt - W<Guy ekm'r]>L2 — mvkmn-
0 0
Then, if pg # 0 ( so that || > 1) we have

A x|

2 mn
Vemyl” < 773
R (AR
Thus, by Parseval dentity

S [ tmnl® = 1(=22)%7 0 Gul]® < M2l
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So that
4M?||ul|?
2
Vkm S .
[V (e +1)?
In the case wg = 0 by Parseval dentit Viemn|? = ||Gul|? we have
Yy Y n
4 M3||u))?
2 201,112 201,112
Vime 2 < G lul? < 4GP Ju]]? < ———L.
Vkmn|” < (G| |ll |G [|] T+ 12

The lemma is proved.
We assume that a is real number. Then by Lemma 1, the spectrum o (L) lies on the real axis.
The most typical and interesting is the case where the number ab/2 and (ab/2)? are irrational. In
this case, 0 # Mgy Y € Z, k € 72,k # 0 and the H Weyl theorem (see, .., [7]) says that, the set
of the numbers Mg, is everywhere dense on R and (L) = R. Then in the subspace H the inverse
operator L~ ! is well defined , but unbounded. The expression for this inverse operator involves small
denominators [§].
Lot t) = 373 oy (")

where the vy, are the Fourier coefficient of the series

vz, t) = Z (I T—-

me k€ 2k#0
For positive numbers C, o let A,(C) denote the set of all positive b such that

C
[ Mermn| = e (8)

forall m € Z,k € Z*,n = (m,n2),m2= £1,k # 0.

From the definition it follows that the set A, (C') extends as C' reduces and as o grows. There-
fore, in what follows, to prove that such a set or its part is nonempty, we require that C' > 0 be
sufficiently small and o sufficiently large. Let A, denote the union of the sets A, (C) over all C' > 0.
If inequality (8) is fulfilled for some b and all m, k, then it is fulfilled for m = 0; this provides a
condition necessary for the nonemptiness of A, (C):

C < [k|"lan k|| ¥ k 7 0. (9)

We put d = |a|7 and C < d/2.
Theorem 2. The sets A,(C), A, are Borel. The set A, has complete measure, i.e., its complement
to the half-line R" is of zero measure.

[o. 9]

Proof. Obviously, the sets A,(C) are closed in RT. The set A4, = U As(1/r) - is Borel, being
r=1

a countable union of closed sets. We show that A, has complete measure in R". Suppose b, | >

d . . . ..
0, C < —; we consider the complement (0,7)\ A,(C). This set consists of all positive numbers b,
for which there exist m, k, k # 0, such that

C

|>‘kmn| <
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Solving this inequality for b, we see that, for m, k, k& # 0 fixed, the number b forms an interval
It = (mog, mBy), where m = 1,2, 3, ...,
27 27

c /8k — C

|a7r|k:||+W |a7r|k:||—W

A —

The length of Iy ,,, 1s My, with

G 4 Clk| =1
* laxlk|[P = CPlR[F 20

: d :
Since ' < 3 by assumption, we have

167C
o < — 11
kS SR Tan k]2 (1)

For k fixed and m varying, there is only a finite amount of intervals [, that intersect the given
segment (0, 7). Such intervals arise for the values of m = 1, 2..., satisfying may < [, ie.,

l
O<m< %<|CL7T|I€|| + C|k’|7170>.
. 1 N .
Since C|k| 177 < §|a7r|k:||7 we can write simpler restrictions on m :

3 l
0<m< §§|a7r|k:||< ;|a7r|k:||. (12)
The measure of the intervals indicated ( for £ # 0 fixed ) is dominated by 01 Sk, where
Sk = Si(l) is the sum of all integers m satisfying (12). Summing an arithmetic progression, we obtain
~ l
Sic < 5 glalll ol + ). (13
Considering the union of the intervals in question over k and m, and using (11), we see that

(O, \A(C)) < 7 &Sk < CS(),
k0, ke 2

where

S—S(l)— Z 8{l|ar|k|| + 7}

3|kl lam k]|
k0, ke 2
Observe that the quantity
lar|k|| + =
7lam k|
is dominated by a constant 1), therefore, (since o > 0)

We have

p((0, )\ Ag) < pu((0,)\ A,(C)) <CS(1) ¥C > 0.
It follows that 1((0,1)\ Ay) =0 VI > 0. Thus, u((0,00) \ A,) = 0 and A,- has complete measure.
The theorem is proved.
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Theorem 3. Suppose g(x,y) € La(112 x 112) such that (—A,) ™g(x,y) is continuous on 112 x 112
and

/2 ( goo(z,y) gor(w,y) goow,y) gos(w,y) )de =0 vy eIl
11

Let 0 <o <1, and let b € A,(C). Then in the space H the inverse operator L~ is well defined,
and the operator L~ o G is compact.

Proof. Since b € A,(C), we have Mgy £ 0 YV m € Z,k € Z%, k # 0 so that in the space H,
|k,|2+20
((m|k[)272e + 1)2
|k| — oo because 0 < o < 1, a > 0. Therefore, given £ > 0, we can find an integer kp > 0, such that

|k[*27 (=C)
((w|k|)?72e 4 1)2 — M2

L1 is well defined and looks like the expression in (7). Observe that lim =0 as

2
for all |k| > ko. We write

Lilfu(x, 1) = Qi v + Qrpov, v = Gu,

where

Vkmn Vkmn
ka’l} — Z hy C€kmn, Qkogv — Z hy C€kmn-

0<lkl<h " R
For the operator ()i, we have

|VEma|*
||Qk01’l}||2 - Z b\ ! 2
0< |k|<ko
Observe that if 0 < |k| < ko, then

1
lim S = 0.
| = o ar kel

1
Therefore, the quantity S is dominated by a constant C'(kg). Then
|T + ar|k|n2?
1@ror 01> < Y [kl *Clko) < Clko)lJol

which means that (), is a bounded operator.
Consider the operator ()i, o G. By Lemma 3 and (8), we have

2
| Qros? 11> = | Qrog 0 Gul> = 3 ||:kmnl2 -
km |
|k|>ko g
|Oékm |2 1 - 1 =C'
Z <<W|k|)2+2no‘+1)2<6>2|k|2+2 = <6)2<M>2 Z | |? < 22|l 2.
|k|>ko ko

Consequently, ||Qx,, o G|| < e.
Since ' is compact and Q)g,, 1s bounded, Q)x,, o ¢ is compact. Next, we have

||L710G_Qk01 OGH - ||Qk02 OGH <e.

Thus, we see that the operator L' o (¢ is the limit of sequence of compact operators. Therefore, it is
compact itself. The theorem is proved. We denote K = K = L~ o .

Theorem 4. Suppose b € A,(C). Then problem (1)(2) has the unique periodic solution with period
b for all v € C, except, possibly, an at most countable discrete set of values of v.
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Proof. Equation (3) reduces to

: 1 1
We write L ' oG — — = K — —.
v v

Since K = L~ ! o (G is a compact operator, its spectrum o(K) is at most countable, and the

1
limit point of o(K) (if any ) can only be zero. Therefore, the set S = {v # 0 | — € o(K)} is at most
v

1
countable and discrete, and for all v # 0, v ¢ S the operator (K — —) is invertible, i.e., equation (3)
v
is uniquely solvable. The theorem is proved.
We pass to the question about the solvability of problem (1)(2) for fixed ». We need to study
1
the structure of the set £ C C x R, that consists of all pairs (v, b), such that v £ 0 and — ¢ o(K}),
v
where K, = L' o G.
Theorem 5. F is a measurable set of complete measure in C x RT.
For the proof, we need several auxiliary statements.

~ 1
Lemma 4. For any £ > 0 there exists an integer ko such that || Ky — Ky|| < 2 forallb € A,(=), 0 <
r

o<1, where r =1,2, ...,

_ VE =~ Vk
Kyu= 1Ly Ly = Z 3 mnb Ckmn, Kpu = 3 mnb Chmn -
(1) s V(D)
|k,|2+20 &

2<1

Proof. Observe that for any £ > 0 there is an integer ko such that CLIGEENE < (m)

for all |k| > ko, 0 <o < 1,a > 0. We have

=~ Vim
(Kp — Kp)u = Kggpu = Z i €hmn
AkaJ(b)
|k|>ko
2 2 2420
~ Ve ) r akmn|k|
(Kb — Kp)ul|* = || Kgopul|* = | T |* < <

= 2 156! S 2 G

2, € \2 2 2, € \2,,2 2 2 2

R < —_— = .

P S kol <) Ml = 2l

|k|>ko
Thus || Ky — Ky|| = || Kkg,|| < € as required.

1
Lemma 5. The operator-valued function b — Ky, is continuous for b € A,(—).
r

Proof. Suppose b, b+ Ab € AU(%) and £ > 0. By Lemma 4 there exists an integer ky (independent
of b, b+ Ab) such that || Ky, — Ky|| = || Kepl| < 2 and || Koy a6 — Ko asl] = || Koo a0)|| < 2. Next,
Kypab — Ko = (Kprap + Kioor an) — (Ko + Kig),

whence we obtain

Kb ab — Kbl < [Kprap — Kbl + 1 Ko oran |+ 1Kkl
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Considering the operators I?HN,, [~(b, we have

~ ~ 1 1
(Kprap — Kp)u = ( - ) Vkinn €km
0<;k0 Nemp(b+ Ab) Ay (D) e
I 7% |Ab|2 |vkmn|2 4m27r2
| Kpu = Ky apul|* = 72— Y 5 5 (14)
o0+ SO 2, Driang(b + SO Ny D)

1
Ifb+ Abe Ay (=), 0<|k| <ko, 0<o <1, then

r

|’Ukmn|2 <| |2 2|k,|2+20 < 2k3 2+2a| |2
g0+ BB = 7 S e
Am?2r? Am?r?
The relation lim ————— — b? and the condition 0 < |k| < ko imply that the quantity ————— —
, o | Mo (B) ]2 | A (0)]?
4
mr i1s dominated by a constant C'(kg) depending on ky. Therefore
ey y P g
=25+ anlb ol
| AbJ? Z |Ukmn|2 4m2r?
o0+ ADP | 2=, Db+ BB iy O
|AbJ? -
To T ApE D ke Ck) e <
0< |k|<ko
| AbJ? -
WT2]€O2+2 C(k’o) Z |'Ukmn|2.
0< |k|<ko

Since

> [Vkmgl? < [J0l1? < Ml ?,
0< |k|<ko
we arrive at the estimate

Abl?
A4 s M?r2ko* 27 C (ko).

K K2 < 120
[ Kbt a0 — K| = 1b(b + Ab)|

We choose Ab so as to satisty the condition

|AbJ?
|b(b + AD)|?
Then ||Kp+ap — Kp|| < 3e. This shows that the operator-valued function b — K}, is continuous on

M?r%kg? T2 C (ko) < .

Ay(=). The Lemma is proved.
r

Lemma 6. The spectrum o(K) of the compact operator K depends continuously on K in the space
Comp(Ho) of compact operators on Hy, in the sense that for any e there exists 6 > 0 such that for
all compact ( and even bounded ) operators B with |B — K|| < d we have

o(B) Co(K) +V(0), o(K) Co(B)+V(0). (15)
Here V.(0) = {\ € C | |\| < &} is the e-neighborhood of the point 0 in C.
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Proof. Let K be a compact operator; we fix £ > (. The structure of the spectrum of a compact operator
shows that there exists £1 < £/2 such that £; # |A| forall A € o(K). Let S = {1, ..., Ax} be the set
of all spectrum points A with || > £, and let V' = U Vz,(A). Then V is neighborhood of o(K)
A€SU{0}

and V C o(K) + V.(0). By the well-known property of spectra ( see, ¢.2..[9]. Theorem 10.20) there
exists ¢ > 0 such that o(B) C V for any bounded operator B with ||B — K| < §. Moreover (see, ¢.g.,
9], p.293, Exercise 20), the number 6 > 0 can be chosen so that o(B) NV, (A) # 0 ¥A € SU{0}.
Then for all bounded operators B with || B — K|| < 4 the required inclusion o(K) C o(B)+ Vs, (0) C
o(B) +V.(0) and o(B) CV C o(K) + V.(0) are fulfilled. The lemma is proved.

From Lemma 6 we have the following statement.
Proposition 1. The function p(\, K) = dist(\, 0(K)) is continuous on C x Comp(Hy).
Proof. Suppose A € C, K € Comp(Hp) and £ > 0. By Lemma 6 there exists § > 0 such that for any
operator H lying in the d-neighborhood of K, ||H — K|| < 9, the inclusions (15) are fulfilled; these
inclusions directly imply the estimate |p(A, K) — p(A, H)| < . Then for all p € C with | — \| < &
and all H with ||[H — K|| < § we have

lp(p, K) — p(A, H)| < [p(p, K) — p(N, K|+ [p(X, K) — p(A, H)| < [p— Al + 2 < 2,
Since £ > 0 is arbitrary, the function p(\, K) is continuous. The proposition is proved.

Combining Proposition 1 and Lemma 5 we obtain the following fact.
1
Corollary 1. The function p(\,b) = dist(\, o0(Ky)) is continuous on (X, b) € C x A, (=).
r
Now we are ready to prove Theorem 5.
Proof of Theorem 5. By Corollary 1, the function p(1/v, b) is continuous with respect to the variable

(v,b) € (C\ {0}) x A,( 1). Consequently, the set

B, ={(v,b) | p(1/v,b)#0, bEAa(%)}

is measurable, and is so the set B = U, B,.. Clearly, B C E and I = B U By, where By = I\ B.
Obviously, By lies in the set C x (RT \ A,) of zero measure ( recall that, by Theorem 3, A, has
complete measure in RT ). Since the Lebesgue measure is complete, By is measurable. Thus, the set
F is measurable, being the union of two measurable sets. Next, by Theorem 4, for b € A, the section
E* = {v € C | (v,b) € E} has complete measure, because its complement {1/v | v € o(K})} is at
most countable. Therefore, the set I is of full plane Lebesgue measure. The Theorem is proved.

The following important statement is a consequence of Theorem 5.
Corollary 1. For a.e. v € C, problem (1)(2) has a unique periodic solution with almost every period
be R
Proof. Since the set I/ is measurable and has complete measure, for a.e. v € C the section I, = {b €
RY | (n,b) € E}={b e R" | 1/v ¢ o(K})} has complete measure, and for such b’s problem (1)(2)
has an unique periodic solution with period b. The Corollary is proved.
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